Math 25 — Solutions to Homework Assignment #3

Solutions

- 1. Let F be a field.
 - (a) Fix some $a, b, c \in F$. By commutativity of multiplication (axiom A1), distributivity of multiplication over addition (axiom AM1), and commutativity of multiplication again (A1), respectively, c(a + b) = (a + b)c = ac + bc = ca + cb.
 - (b) Fix some a, b ∈ F such that ab = 0 and assume (without loss of generality) a ≠ 0. Then by the existence of a multiplicative inverse (axiom M4) a has an inverse element a⁻¹ such that a⁻¹a = 1. By a claim proved in class, x ⋅ 0 = 0 for any x ∈ F. Applying this with x = a⁻¹ and then using associativity (M2) and the defining property (M3) of 1 gives that 0 = a⁻¹ ⋅ 0 = a⁻¹(ab) = (a⁻¹a)b = 1 ⋅ b = b. Thus, b = 0.
 - (c) Fix some $a, b, c \in F$, with ac = bc and $c \neq 0$. By the existence of multiplicative inverse, substitution, and assicativity of multiplication, $ac = bc \Longrightarrow (ac)c^{-1} = (bc)c^{-1} \Longrightarrow a(cc^{-1}) = b(cc^{-1}) \Longrightarrow a1 = b1 \Longrightarrow a = b.$
- 2. If \mathbb{Z}_{12} is a field, then as shown in problem 1. (b), for any $a, b \in \mathbb{Z}_{12}$, ab = 0 implies that either a = 0 or b = 0. However, $3 \cdot 4 = 12$, so that in \mathbb{Z}_{12} , $3 \odot 4 = 0$, while $3 \neq 0$ and $4 \neq 0$. Thus, \mathbb{Z}_{12} cannot be a field.
- 3. We begin by proving two useful results:

Result 1 For any $x \in \mathbb{R}, x^2 \ge 0$.

Proof. This is trivial if x = 0. Instead, let x > 0. Then:

$$x \cdot x > 0 \cdot x = 0 \quad (O4)$$

On the other hand, let x < 0. In this case,

$$0 = x + (-x) < 0 + (-x) = -x \quad (O3)$$

So that, using the result for x > 0, $x^2 = (-x)^2 > 0$.

Result 2 For any positive $x, y \in \mathbb{R}$ with $x > y, x^2 > y^2$.

Proof. Use axiom O4 twice:

$$x^2 = x \cdot x > y \cdot x = x \cdot y > y \cdot y = y^2.$$

Now, consider any positive $x, y \in \mathbb{R}$. Then $x - y \in \mathbb{R}$, so $(x - y)^2 \ge 0$, as shown above. But, if $(x - y)^2 > 0$:

$$0 < (x - y)^{2} = x^{2} - 2xy + y^{2}$$

$$4xy < x^{2} + 2xy + y^{2} \quad (O3)$$

$$xy < \frac{(x + y)^{2}}{4} \quad (O4)$$

$$\sqrt{xy} < \frac{x + y}{2} \quad (\text{contrapos. of Result 2})$$

If
$$(x - y)^2 = 0$$
, then $x = y$ in which case $\sqrt{xy} = x = \frac{x+y}{2}$.

4. (a)
$$\sup E = \infty$$
; $\inf E = 1 = \min E$; $\max E$ does not exist.

- (b) $\sup E = \infty$; $\inf E = -\infty$; $\max E, \min E$ do not exist.
- (c) $\sup E = \infty$; $\inf E = -\infty$; $\max E, \min E$ do not exist.
- (d) $\sup E = \infty$; $\inf E = -\infty$; $\max E, \min E$ do not exist.
- (e) $\sup E = 7 = \max E$; $\inf E = -3 = \min E$
- (f) $\sup E = \sqrt{2}$; $\inf E = -\sqrt{2}$; $\max E, \min E$ do not exist.
- (g) $\sup E = \frac{1+\sqrt{5}}{2}$; $\inf E = \frac{1-\sqrt{5}}{2}$; $\max E, \min E$ do not exist.
- (h) $\sup E = 1 = \max E$; $\inf E = 0$; $\min E$ does not exist.
- (i) $\sup E = \sqrt[3]{3} = \max E$; $\inf E = 1 = \min E$.
- 5. $\sup E = s$ and, because we assume it to exist, set $\max E = m$. m is then an upper bound to E. Because, by definition, the supremum is bounded above by any other upper bound on $E, s \leq m$. Moreover, since $m \in E$, and s is itself an upper bound to $E, m \leq s$. Thus, m = s.