Math 25 — Homework Assignment #6

Homework due: Tuesday 5/10/11 at beginning of discussion section

Reading material. Read section 2.8 in the textbook.

Problems

- 1. Let $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ be sequences that converge to limits $S = \lim_{n \to \infty} s_n$ and $T = \lim_{n \to \infty} t_n$. We proved in class a theorem that says that the sequence $s_n + t_n$ converges to the limit S + T. By imitating the proof of that result, show that the sequence $s_n t_n$ converges to S T.
- 2. Let $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ be defined by

$$s_n = \sqrt{n+1}, \qquad t_n = \sqrt{n}.$$

Explain why the result in problem 1 above does not apply. Prove however that

$$\lim_{n \to \infty} (s_n - t_n) = 0.$$

Hint: Use the identity $\sqrt{a} - \sqrt{b} = \frac{a-b}{\sqrt{a}+\sqrt{b}}$ and the squeeze theorem.

3. Compute the following limits. For each computation, provide a brief explanation how you obtained your answer from known results.

(a)
$$\lim_{n \to \infty} \frac{1}{n^3}$$

(b) $\lim_{n \to \infty} \frac{3n^2 - 1}{n+1}$
(c) $\lim_{n \to \infty} \frac{3n^2 + \sin(n)}{n^2}$
(d) $\lim_{n \to \infty} \frac{5n^4 - 2n^2 + n + 1}{n^2(n^2 + 1)}$

- 4. Let $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ be sequences. Decide which of the following statements are true. In each case, provide a proof or a counterexample.
 - (a) If $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ are both divergent then so is $(s_n + t_n)_{n=1}^{\infty}$.
 - (b) If $(s_n)_{n=1}^{\infty}$ and $(t_n)_{n=1}^{\infty}$ are both divergent then so is $(s_n \cdot t_n)_{n=1}^{\infty}$.
 - (c) If $(s_n)_{n=1}^{\infty}$ and $(s_n + t_n)_{n=1}^{\infty}$ are both divergent then so is $(t_n)_{n=1}^{\infty}$.
 - (d) If $(s_n)_{n=1}^{\infty}$ is convergent then so is $(1/s_n)_{n=1}^{\infty}$.