
Math 25: Advanced Calculus UC Davis, Spring 2011

Math 25 — Homework Assignment #8

Homework due: Tuesday 5/24/11 at beginning of discussion section

Reading material. Read sections 2.11, 2.12, 2.13 in the textbook.

Problems

1. For each of the following sequences (an)∞n=1, find lim sup
n→∞

an, lim inf
n→∞

an,

and the set of subsequential limits of (an).

(a) an = (−1)n

(b) an = sin
(

2πn
8

)
(c) (an)∞n=1 = {0, 1

2 , 1, 0, 1
4 ,

2
4 ,

3
4 , 1, 0, 1

8 ,
2
8 ,

3
8 , . . . ,

7
8 , 1, 0, 1

16 , . . . ,
15
16 , 1, 0, 1

32 , . . .}
(d) an =

(
1 + 1

n

)n
(e) an =

(
1 + 1

n2

)n
Hint:

(
1 + 1

n2

)n =
[(

1 + 1
n2

)n2
]1/n

(f) an =
(
1 + 1

n

)n2

Hint:
(
1 + 1

n

)n2

=
[(

1 + 1
n

)n]n
2. Let (an)∞n=1 be a sequence. Denote L = lim sup

n→∞
an. Define a sequence

(bm)∞m=1 by
bm = sup{am, am+1, am+2, . . .}.

(a) Prove that bm is a nonincreasing sequence.
Hint. Use the fact that if A,B ⊆ R are sets of real numbers and
A ⊆ B then sup(A) ≤ sup(B).

(b) Prove that L ≤ bm for any m ≥ 1.
Hint. To make your life a bit easier, prove this first of all for
m = 1 and then explain why the statement generalizes for all
m ≥ 1.

(c) Prove that for any ε > 0, there is some m such that bm < L+ ε.

(d) Use the above results to prove that L = lim
m→∞

bm.
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3. Show that for any bounded sequences (an)∞n=1 and (bn)∞n=1,

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn.

Give an example to show that equality need not occur.

4. Prove that a sequence (an)∞n=1 converges to a limit L if and only if
L = lim

k→∞
ank

for every subsequence (ank
)∞k=1.

5. (Optional problem — not for credit, but recommended). Previously,
we defined an amusing sequence of numbers (sn)∞n=1 given by

s1 =
√

2, s2 =
√

2 +
√

2, s3 =

√
2 +

√
2 +
√

2, . . . , sn+1 =
√

2 + sn, . . .

and showed that lim
n→∞

sn = 2. In this problem we show that this
sequence appears naturally in connection with an interesting limiting
formula for the mathematical constant π.

(a) Start with the familiar double-angle identity from trigonometry:

sin(2x) = 2 sin(x) cos(x),

but rewrite it instead as sin(x) = 2 cos
(
x
2

)
sin
(
x
2

)
. In this iden-

tity, we can use the same identity again to replace sin
(
x
2

)
on the

right-hand side by 2 cos
(
x
4

)
sin
(
x
4

)
. This shows that

sin(x) = 4 cos
(x

2

)
cos
(x

4

)
sin
(x

4

)
.

Show that by repeating the same trick n times one can eventually
arrive at the identity (valid for each n ≥ 1)

sin(x) = 2n cos
(x

2

)
cos
(x

4

)
cos
(x

8

)
· · · cos

( x
2n
)

sin
( x

2n
)
.

(b) Now we want to use the above identity, which is valid for all real
x, with the specific value x = π/2. To compute cos

(
π
2k

)
, note

that we have another double-angle identity,

cos(2x) = cos2 x− sinx = 2 cos2 x− 1,

which can be rewritten as

cos
(x

2

)
=

√
1 + cosx

2
, (if 0 ≤ x ≤ π/2).
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Using this successively starting with x = π/2 gives

cos(π/2) = 0,

cos(π/4) =
√

2
2
,

cos(π/8) =

√
2 +
√

2
2

, . . .

Show that in general we have for all k ≥ 1 that

cos
( π

2k+1

)
=
sk
2

where sk is defined at the beginning of the question.

(c) Combining the results from the previous parts of the question,
show that for all n ≥ 1,

2
π

=
s1s2 · · · sn

2n
(

sin
( π

2n+1

)
/
( π

2n+1

))
Now use without proof the fact that for any constant a,

lim
m→∞

m sin
( a
m

)
= a

(this is an easy consequence of the famous limit result from cal-

culus, lim
x→0

sin(x)
x

= 1, but here we will assume it without proof),
to conclude finally that

2
π

= lim
n→∞

s1s2 · · · sn
2n

.

This famous result, proved by the French mathematician Vieta
in 1592, is often written in the form of an elegant infinite product
of numbers:

2
π

=
√

2
2
·
√

2 +
√

2
2

·

√
2 +

√
2 +
√

2
2

·

√
2 +

√
2 +

√
2 +
√

2

2
· . . .
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