Math 25 — Homework Assignment #9

Homework due: Tuesday 5/31/11 at beginning of discussion section

Reading material. Read section 3.4, 3.5, 3.6.1, 3.6.2, 3.6.12 in the textbook.

Problems

1. Decide whether or not each of the following infinite series converges or diverges. Prove your claims.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[n]{n}}$$
 (d) $\sum_{n=1}^{\infty} \frac{3n(n+1)(n+2)}{n^3\sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^n}$ (e) $\sum_{n=1}^{\infty} \frac{n+2}{(n^2+1)\sqrt{n}}$
(c) $\sum_{n=1}^{\infty} \frac{n(n+1)}{(n+2)^2}$ (f) $\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$

2. Find the value of the (hint: telescoping) infinite sum

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \frac{1}{4 \cdot 5 \cdot 6} + \dots$$

- 3. If $(a_n)_{n=1}^{\infty} (b_n)_{n=1}^{\infty}$ are sequences such that $a_n, b_n \ge 0$ for all $n \ge 1$, and the sums $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent, prove that $\sum_{n=1}^{\infty} a_n b_n$ converges as well.
- 4. In this problem we study the convergence of the series $\sum_{n=1}^{\infty} a_n$, where

$$a_n = \frac{(n!)^2}{(2n)!} = \frac{1}{\binom{2n}{n}}$$

- (a) Find a simple formula for $\frac{a_{n+1}}{a_n}$, and show that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \frac{1}{4}$.
- (b) Deduce that for any $\varepsilon > 0$, there is a constant C > 0 such that $a_n \leq C(\frac{1}{4} + \varepsilon)^n$.
- (c) Use the comparison test to deduce that the series converges.

Hint. Sections 3.6.4 and 3.6.5 in the textbook contain a general discussion that would give you some guidance for this problem.

(d) (Optional) An alternative approach to showing convergence of the series rests on the fact that $1/a_n = \binom{2n}{n}$ is a binomial coefficient. Observe that by the binomial theorem,

$$4^{n} = (1+1)^{2n} = 1 + 2n + \frac{2n(2n-1)}{2} + \frac{2n(2n-1)(2n-2)}{6} + \dots + \binom{2n}{k} + \dots + \binom{2n}{2n}.$$

That is, the sum of the coefficients in the (2n)th row of Pascal's triangle is 4^n . In particular, $\binom{2n}{n} \leq 4^n$, so $a_n \geq \frac{1}{4^n}$. Unfortunately, to prove convergence of $\sum_{n=1}^{\infty} a_n$ by comparison of series we need a bound for a_n from above rather than from below. To derive such a bound, argue that $\binom{2n}{n}$, the middle coefficient in the (2n)th row of Pascal's triangle, is larger than all the other coefficients on the same row (i.e., that $\binom{2n}{n} \geq \binom{2n}{k}$ for all $0 \leq k \leq 2n$), and conclude from this that $a_n \leq (2n+1)\frac{1}{4^n}$. Then explain why this is enough to deduce convergence.

Note. In *really* advanced calculus, one learns how to compute the value of such sums. A rather nontrivial result says that this one is equal to

$$\sum_{n=1}^{\infty} \frac{1}{\binom{2n}{n}} = \frac{1}{3} + \frac{2\pi\sqrt{3}}{27}$$

5. Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{n \log_2 n}$$

diverges (where $\log_2 n$ is the base-2 logarithm of n — you may replace it with $\ln n$ if you prefer, since $\log_2 n = \ln(n)/\ln 2$). Note that the terms being summed converge to 0 faster than 1/n, but slower than $1/n^p$ for p > 1, so the behavior of this series lies precisely on the boundary between convergence and divergence in the generalized harmonic series and so is too fine to be determined using a simple comparison.

Hint. Show that the partial sums are unbounded, using a similar technique to the one used to prove that the harmonic series diverges.

6. Alter the harmonic series ∑_{n=1}[∞] 1/n by deleting all terms in which the denominator contains the digit 9. Show that the new series converges.
Hint. See Note 52 at the end of Chapter 3.