
Math 25: Advanced Calculus UC Davis, Spring 2011

Math 25 — Solutions to Homework Assignment #9

1. Decide whether or not each of the following infinite series converges or diverges. Prove your claims.

(a) The series
∞∑

n=1

1
n√n

diverges.

Proof. Consider the sequence an = n
√

n. Note that

lim
n→∞

log
(

n
√

n
)

= lim
n→∞

log n

n
= 0,

which implies an → 1. So, by the nth term test (also called the trivial test in the textbook), the series
diverges.

(b) The series
∞∑

n=1

1
nn converges.

Proof. Note that nk ≤ nj for n, k, j ∈ N and k < j, so that 1
nk ≥ 1

nj . Then,

∞∑
n=1

1
nn

= 1 +
∞∑

n=2

1
nn
≤ 1 +

∞∑
n=2

1
n2

,

so the series converges by the comparison test.

(c) The series
∞∑

n=1

n(n+1)
(n+2)2

diverges.

Proof. Note that

lim
n→∞

n(n + 1)
(n + 2)2

= 1,

so the series diverges by the nth term test.

(d) The series
∞∑

n=1

3n(n+1)(n+2)
n3
√

n
diverges.

Proof. Note that

∞∑
n=1

3n(n + 1)(n + 2)
n3
√

n
=
∞∑

n=1

3n3 + 9n2 + 6n

n3
√

n
=
∞∑

n=1

3n3

n3
√

n
+

9n2

n3
√

n
+

6n

n3
√

n
≥ 3

∞∑
n=1

1√
n

,

which diverges by the p-series test. So, by the comparison test, the original series diverges.
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(e) The series
∞∑

n=1

n+2
(n2+1)

√
n

converges.

Proof. Note that

∞∑
n=1

n + 2
(n2 + 1)

√
n

=
∞∑

n=1

n

(n2 + 1)
√

n
+

2
(n2 + 1)

√
n
≤
∞∑

n=1

n

(n2 + 1)
√

n
≤
∞∑

n=1

n

(n2)
√

n
=
∞∑

n=1

1

n
3
2

,

which converges by the p-series test. So, by the comparison test, the original series converges.

(f) The series
∞∑

n=2

(−1)n

ln(n) converges.

Proof. Note that the sequence an = ln(n) is monotonically increasing and unbounded. Then 1
ln(n) is

monotonically decreasing to 0. So the series converges by the alternating series test.

2. Find the value of the telescoping infinite sum

∞∑
n=1

1
n(n + 1)(n + 2)

.

Proof. Note that
∞∑

n=1

1
n(n + 1)(n + 2)

=
∞∑

n=1

1
2n
− 1

n + 1
+

1
2n + 4

.

Furthermore, note that
1

2(n + 2)
− 1

(n + 1) + 1
+

1
2n + 4

= 0.

From this, we see that the terms of the form 1
2n will cancel for n ≥ 3, the terms of the form − 1

n+1 will cancel
for n ≥ 2, and all of the terms of the form 1

2n+4 will cancel. That is, the only terms that do not cancel are

1
2
− 1

2
+

1
4

=
1
4
.

So we conclude that the series converges to 1
4 . Alternatively, by writing out the partial sums, one can see

that
Sn =

1
4

+
1

2(n + 1)
− 1

n + 1
+

1
2n + 4

,

which clearly converges to 1
4 .

3. If {an} and {bn} are sequences such that an, bn ≥ 0 and the sums
∞∑

n=1
an and

∞∑
n=1

bn converge, prove that
∞∑

n=1
anbn converges.
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Proof. Consider the partial sums

Sk =
k∑

n=1

an and Tk =
k∑

n=1

bn.

Then, we know that the sequence SkTk converges. Now,

SkTk =
k∑

n=1

an ·
k∑

n=1

bn = a1

k∑
n=1

bn + a2

k∑
n=1

bn + · · ·+ ak

k∑
n=1

bn ≥ a1b1 + a2b2 + · · ·+ akbk =
k∑

n=1

anbn,

where the inequality is justified because an, bn ≥ 0. Then, since the sequence of partial sums is monotonically
increasing and bounded from above, it must converge.

4. Consider the series
∞∑

n=1

(n!)2

(2n)!
.

(a) Find a simple formula for an+1

an
, and show that lim

n→∞
an+1

an
= 1

4 .

Proof. Note that

an+1

an
=

[(n + 1)!]2

(2n + 2)!
· (2n)!

(n!)2
=

(n + 1)2

(2n + 1)(2n + 2)
=

n2 + 2n + 1
4n2 + 6n + 2

,

and it is easy to see that this converges to 1
4 .

(b) Deduce that for any ε > 0, there is a constant C > 0 such that an ≤ C
(

1
4 + ε

)n.

Proof. Fix ε > 0. Since as was shown above an+1/an → 1/4 as n → ∞, it follows that there exists an
N ≥ 1 such that for all n ≥ N , an+1/an < 1/4 + ε. It follows that for n ≥ N ,

an =
an

an−1
· an−1

an−2
· an−2

an−3
· . . . · aN+2

aN+1
· aN+1

aN
· aN ≤ aN

(
1
4 + ε

)n−N =
aN(

1
4 + ε

)N (1
4 + ε

)n
So, if we define C = aN/

(
1
4 + ε

)N then the inequality an ≤ C
(

1
4 + ε

)n holds for n ≥ N . By making C
bigger if necessary we can also make sure that the inequality holds for n = 1, 2, . . . , N − 1 (just take C
bigger than the maximum of the ratios an/(1/4 + ε)n over n = 1, . . . , N − 1).

(c) Use the comparison test to deduce that the series converges.

Proof. We have bounded the original series above by a geometric series, so the original series converges.
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5. Prove that the series
∞∑

n=2

1
n log2 n

diverges.

Proof. The easiest way to solve this problem is to apply the integral test. Doing so, we obtain,∫ ∞
2

1
x log2 x

dx =
∫ ∞

2

1
t

dt,

which clearly diverges. Alternatively, one may instead examine the sequence of partial sums of the given
series. Doing so, we obtain

Sk =
1

2 log2 2
+

1
3 log2 3

+ · · ·+ 1
k log2 k

≥ 1
2

+
1
6

+
1
8

+
1
15

+
1
18

+
1
21

+
1
24

+
1
36

+ · · ·

≥ 1
2

+
1
8

+
1
8

+
1
24

+
1
24

+
1
24

+
1
24

+ · · · = 1
2

+
1
4

+
1
6

+ · · · ,

from which we see the series diverges.

6. Alter the harmonic series
∞∑

n=1

1
n by deleting all terms in which the denominator contains the digit 9. Show

that the new series converges.

Proof. According to the hint, the number of elements of the series that have k digits in the denominator is
equal to 8 · 9k−1. Note that the first (and largest) element of the series that has k digits in the denominator
is 1

10k−1 . Then, if we write the series in the form

∞∑
n=1

an = T1 + T2 + T3 + · · ·

where Tk is the sum of all fractions on our list with k digits in the denominator. Then we see that Tk ≤
1

10k−1 8 · 9k−1, which forms a geometric series with r < 1, so by the comparison test, the original series
converges.
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