
Math 25: Advanced Calculus UC Davis, Spring 2011

Math 25 — Solutions to practice problems

Question 1

For n = 0, 1, 2, 3, . . . and 0 ≤ k ≤ n define numbers Cn
k by

Cn
k =

n!

k!(n− k)!
=

n(n− 1) . . . (n− k + 1)

k!

(for k = 0 and k = n we define Cn
0 = Cn

n = 1).

(a) Prove that for all n ≥ 1 and 1 ≤ k ≤ n− 1,

Cn
k = Cn−1

k−1 + Cn−1
k

Proof.

Cn−1
k−1 + Cn−1

k =
(n− 1)(n− 2) . . . (n− k + 1)

(k − 1)!
+

(n− 1)(n− 2) . . . (n− k)

k!

=
k + (n− k)

k
· (n− 1) . . . (n− k + 1)

(k − 1)!

=
n

k
· (n− 1) . . . (n− k + 1)

(k − 1)!
= Cn

k

(b) Prove by induction on n that for all n ≥ 1,

n∑
k=0

Cn
k = Cn

0 + Cn
1 + Cn

2 + . . . + Cn
n = 2n

Proof. For n = 1 we have Cn
0 +Cn

1 = 1+1 = 21, so the claim is true. Let
n ≥ 1 be given, and assume the claim is true for that value of n. Then,
by using the result of (a) above, we see that

n+1∑
k=0

Cn+1
k = 1 +

n∑
k=1

Cn+1
k + 1 = 2 +

n∑
k=1

(
Cn

k−1 + Cn
k

)
= 2 +

n∑
j=0

Cn
j +

n∑
k=1

Cn
k = 2 +

(
n−1∑
j=0

Cn
j − 1

)
+

(
n−1∑
k=0

Cn
k − 1

)
= 2 + (2n − 1) + (2n − 1) = 2 · 2n = 2n+1,
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where we used the inductive hypothesis in the transition from the second
row to the third. This shows that the claim is true for n+1 and completes
the induction.

Question 2

(a) Let (an)∞n=1, (bn)∞n=1 be sequences of real numbers. For each of the follow-
ing identities, explain what assumptions are needed to ensure that the
identity is valid:

i. lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn

ii. lim
n→∞

(an · bn) = lim
n→∞

an · lim
n→∞

bn

iii. lim
n→∞

an

bn

=
limn→∞ an

limn→∞ bn

Solution. By a theorem we learned, i. and ii. are valid under the assump-
tion that the sequences (an)∞n=1 and (bn)∞n=1 are convergent. For iii., one
needs the additional assumption that the limit of (bn)∞n=1 is not zero.

(b) Find the limit L of the sequence given by

an =
5n4 + 3n2 − 10

(2n2 + sin(n))2

Prove rigorously that L = lim
n→∞

an, by appealing either to the definition

of the limit or to known results about limits.

Solution. First, we bring an to a form more suitable for computing the
limit, by noting that

an =
5 + 3

n2 − 10
n4(

2 + sin(n)
n2

)2 .

Now we apply the theorem referred to in part (a) above, with the stan-
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dard limits

lim
n→∞

5 = 5,

lim
n→∞

3

n2
= 0,

lim
n→∞

−10

n4
= 0,

lim
n→∞

2 = 2,

lim
n→∞

sin(n)

n2
= 0.

The last limit is a result of an application of the squeeze theorem, since
we have the inequalities

−1

n2
≤ sin(n)

n2
≤ 1

n2

Putting these results together, we conclude that (an)∞n=1 is convergent,
and its limit is equal to

lim
n→∞

an =
5 + 0− 0

(2 + 0)(2 + 0)
=

5

4
.

Question 3

(a) State the squeeze theorem.

Solution. See Theorem 2.20 in Section 2.8 in the textbook.

(b) Denote an = n
√

n. Prove that lim
n→∞

an = 1. You may use the fact that

the inequality (1 + x)n ≥ n(n−1)
2

x2 holds for all n ≥ 1 and x > 0.

Solution. See Example 2.33 in Section 2.10 in the textbook.
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Question 4

(a) Prove that the harmonic series
∞∑

n=1

1

n
diverges.

(b) Let p be a positive real number. Prove that the series
∞∑

n=1

1

np
converges

if and only if p > 1.

(c) Prove that the series
∞∑

n=2

1

n log2 n
diverges (here, log2 n = ln(n)/ ln(2)

denotes the base-2 logarithm of n).

Solution. For parts (a) and (b) see Section 3.4.2 in the textbook. For part (c),
see the solution to problem 5 in homework assignment #9.

Question 5

(a) Evaluate the infinite series

1− 1

2
+

1

4
− 1

8
+

1

16
− . . .

Solution. Recall the formula for the sum of a geometric series

∞∑
n=0

xn =
1

1− x
,

which is valid for all −1 < x < 1. The above series is a geometric series
with x = −1

2
, so its sum is

1

1−
(
−1

2

) =
1

3/2
=

2

3
.

(b) Evaluate the infinite series

1 +
1

3
+

1

9
+

1

27
+

1

81
+ . . .

Solution. This is a geometric series with x = 1/3, so by the formula
above its sum is 1/(1− 1/3) = 3/2.
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(c) Evaluate the infinite series

∞∑
n=1

1

4n2 − 1
=

1

1 · 3
+

1

3 · 5
+

1

5 · 7
+

1

7 · 9
+ . . .

Solution. Note that

1

4n2 − 1
=

1

(2n− 1)(2n + 1)
= 1

2

(
1

2n− 1
− 1

2n + 1

)
.

So, this is a telescoping sum:

∞∑
n=1

1

4n2 − 1
= 1

2

∞∑
n=1

(
1

2n− 1
− 1

2n + 1

)
= 1

2

(
1
1
− 1

3
+ 1

3
− 1

5
+ 1

5
− 1

7
+ . . .

)
= 1

2
.

(Note: to properly prove convergence one needs to do this computation
more carefully for the partial sums first; but, here the question only asked
to find the value of the series).

Question 6

Give an example of:

(a) A divergent series →
∞∑

n=1

1

(b) An absolutely convergent series →
∞∑

n=1

1

2n

(c) A conditionally convergent series →
∞∑

n=1

(−1)n−1

n

(d) A series of the form
∞∑

n=1

(an + bn) that is convergent but such that both

series
∞∑

n=1

an and
∞∑

n=1

bn are divergent.

Solution. Take an = 1, bn = −1
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(e) A series of the form
∞∑

n=1

(an · bn) that is convergent but such that
∞∑

n=1

an

and
∞∑

n=1

bn are divergent.

Solution. Take an = bn = 1
n
.

(f) A divergent series with bounded partial sums →
∞∑

n=1

(−1)n

(g) A series
∞∑

n=1

an that is divergent such that lim
n→∞

(n · an) = 0 (i.e., loosely

speaking, the sequence being summed converges to 0 faster than 1/n).

Solution. The series
∑∞

n=2
1

n log2 n
, which appears in question 4(c) above.

Question 7

(a) Prove that lim
n→∞

n

2n
= 0. You may use the fact that the inequality (1 +

x)n ≥ n(n−1)
2

x2 holds for all n ≥ 1 and x > 0.

Solution. Taking x = 1 in the inequality mentioned in the question gives

2n ≥ n(n− 1)

2
,

so, for n ≥ 2,

0 ≤ n

2n
≤ 2

n− 1
,

and the claim follows from the squeeze theorem.

(b) Prove that
∞∑

n=1

1

2n − n
converges.

Solution. Since lim
n→∞

n

2n
= 0 as shown above, taking ε = 1

10
in the

definition of the limit, we get that there is some N such that

n

2n
≤ 1

10

for all n ≥ N . Therefore, for n ≥ N ,

1

2n − n
=

1

2n
(
1− n

2n

) ≤ 1

2n
(
1− 1

10

) =
10

9
· 1

2n
.
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Since also 2n ≥ 10n, so 1/(2n − n) > 0, it follows that
∞∑

n=N

1

2n − n

converges, by the comparison test. This is different than the series given
in the question in that the summation starts at n = N instead of n = 1,
but as we know, the convergence of a series only depends on its “tail”
— i.e., omitting or adding only a finite number of initial terms does not

affect the convergence, and therefore the original series
∞∑

n=1

1

2n − n
also

converges.

Question 8

The goal of this problem is to compute the value of the infinite sum

S =
∞∑

n=1

n

2n
=

1

2
+

2

4
+

3

8
+

4

16
+

5

32
+ . . .

(and in particular to show that it converges, which strengthens the result of
question 7(a) above).

(a) Define a new sequence (xn)∞n=1 whose terms are given by

(xn)∞n=1 =
{

1
2
, 1

4
, 1

4
, 1

8
, 1

8
, 1

8
, 1

16
, 1

16
, 1

16
, 1

16
, 1

32
, 1

32
, 1

32
, 1

32
, 1

32
, . . .

}
Explain why if

∞∑
n=1

xn converges, then
∞∑

n=1

n

2n
also converges and the

values of the two series are the same.

Solution. It is easy to see that the sequence of partial sums of
∑∞

n=1
n
2n is

a subsequence of the sequence of partial sums of
∑∞

n=1 xn. More precisely,
if we denote

sn =
n∑

k=1

k

2k
, tn =

n∑
k=1

xk,

then we have

s1 = t1,

s2 = t3,

s3 = t6,

...

sn = tn(n−1)/2.

Therefore if (tn)∞n=1 converges, then (sn)∞n=1, being a subsequence, also
converges to the same limit.
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(b) Rearrange the terms of
∞∑

n=1

xn by writing the sum as

(
1
2

+ 1
4

+ 1
8

+ 1
16

. . .
)

+
(

1
4

+ 1
8

+ 1
16

+ . . .
)

+
(

1
8

+ 1
16

+ 1
32

+ . . .
)

+ . . .

(This part is more of a “thinking question”, requiring you to think about
why this rearrangement makes sense and why it is valid to perform it).

(c) Evaluate each of the internal sums in the above rearrangement, and the
sum of their values, to conclude that S = 2.

Solution. This was explained in class in the last lecture.
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