Homework Set No. 2 — MAT 280, Fall 2013

Due: 11/14/13

1. (a) Let \(q(n) \) denote the number of partitions of an integer \(n \) into odd parts. Explain the generating function identity

\[
1 + \sum_{n=1}^{\infty} q(n)x^n = \prod_{m=1}^{\infty} \frac{1}{1 - x^{2m-1}}.
\]

(There is no need to discuss issues of convergence.)

(b) Let \(r(n) \) denote the number of partitions of an integer \(n \) into distinct parts (i.e., with no repetitions allowed). Find an infinite product formula for the generating function of \(r(n) \), of the form

\[
1 + \sum_{n=1}^{\infty} r(n)x^n = \prod_{m=1}^{\infty} \left[??? \right].
\]

(c) Prove that \(q(n) = r(n) \) for all \(n \geq 1 \).

2. Define partition-counting functions \(A(n), B(n), C(n) \) by

\[
A(n) = \# \text{ of partitions of } n \text{ with no 1’s and no two consecutive parts},
\]

\[
B(n) = \# \text{ of partitions of } n \text{ with no part appearing exactly once},
\]

\[
C(n) = \# \text{ of partitions of } n \text{ with no part } k \text{ satisfying } k \equiv \pm 1 \pmod{6}.
\]

Prove that \(A(n) = B(n) = C(n) \) for all \(n \geq 1 \).

Hints. First, to make sure you understand the definitions, it may be a good idea to start by verifying this directly for \(n = 2, 3, 4 \). Second, prove separately that \(A(n) = B(n) \) using a simple graphical observation about Young diagrams, and that \(B(n) = C(n) \) using generating functions.

3. Let \(m, n, k \geq 1 \) be integers. A generalized permutation of length \(k \) and row bounds \((m,n) \) is a two-line array of integers which has the form

\[
\sigma = \begin{pmatrix}
i_1 & i_2 & \cdots & i_k \\
j_1 & j_2 & \cdots & j_k
\end{pmatrix},
\]

1
where $1 \leq i_1, \ldots, i_k \leq m$, $1 \leq j_1, \ldots, j_k \leq n$, and where the columns are ordered lexicographically, in the sense that if $s < t$ then either $i_s < i_t$, or $i_s = i_t$ and $j_s \leq j_t$. Denote by $\mathcal{P}_{m,n}^k$ the set of generalized permutations of length k and row bounds (m,n).

Next, let $\mathcal{M}_{m,n}^k$ denote the set of $m \times n$ matrices $(a_{i,j})_{1 \leq i \leq m, 1 \leq j \leq n}$ with nonnegative integer entries satisfying $\sum_{i,j} a_{i,j} = k$. For each generalized permutation $\sigma \in \mathcal{P}_{m,n}^k$ define a matrix $M_\sigma = (a_{i,j})_{i,j} \in \mathcal{M}_{m,n}^k$ by setting $a_{i,j}$ to be the number of columns in σ equal to (i_j).

(a) Explain why the mapping $\sigma \mapsto M_\sigma$ establishes a bijection between $\mathcal{P}_{m,n}^k$ and $\mathcal{M}_{m,n}^k$.

(b) Find M_σ when

$$\sigma = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 \\ 1 & 1 & 4 & 5 & 3 & 3 & 5 & 2 & 5 \end{pmatrix}$$

(considered as an element of $\mathcal{P}_{3,5}^{10}$).

(c) Find σ when

$$M_\sigma = \begin{pmatrix} 0 & 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 0 & 3 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 0 & 0 & 0 \end{pmatrix}.$$

(d) Find a formula for the number $|\mathcal{P}_{m,n}^k|$ of generalized permutations of length k with row bounds (m,n).

(e) If $\sigma = \begin{pmatrix} i_1 & \cdots & i_k \\ j_1 & \cdots & j_k \end{pmatrix}$ is a generalized permutation and $1 \leq s_1 < \ldots < s_d \leq k$ is a sequence of column positions, we refer to the generalized permutation $\begin{pmatrix} i_{s_1} & \cdots & i_{s_d} \\ j_{s_1} & \cdots & j_{s_d} \end{pmatrix}$ as a subsequence of σ, and call such a subsequence increasing if $j_{s_1} \leq \ldots \leq j_{s_d}$. If $\sigma \in \mathcal{P}_{m,n}^k$, as for ordinary permutations let $L(\sigma)$ denote the maximal length of an increasing subsequence of σ. Equivalently, $L(\sigma)$ is the maximal length of a weakly increasing subsequence of the bottom row of σ.

Given a matrix $M = (a_{i,j})_{i,j} \in \mathcal{M}_{m,n}^k$, define

$$G(M) = \max \left\{ \sum_{t=0}^{r} a_{i_t,j_t} : (i_0,j_0) \to (i_1,j_1) \to \ldots \to (i_r,j_r) \text{ is an up-right path in } Z(1,1;m,n) \right\}.$$
(That is, the definition of $G(M)$ as a function of the entries $a_{i,j}$ of M is the same as the
definition of the passage time $G(m,n)$ in terms of the clock times $(τ_{i,j})_{1≤i≤m,1≤j≤n}$; see page
254 in the book.) Prove that if $σ ∈ P_{m,n}^k$ and $M = M_σ$ is the associated matrix in $M_{m,n}^k$
then

\[G(M) = L(σ). \]

Hints. To prove that $G(M) ≤ L(σ)$, show how one can associate to any up-right path
$(i_0,j_0) → \ldots → (i_r,j_r)$ in $Z(1,1;m,n)$ a subsequence of $σ$ of length $∑_{ℓ=0}^ra_{i_ℓ,j_ℓ}$. (To get
some intuition, it may be useful to try this first with a concrete example such as the ones in
parts (b), (c) above.)

On the other hand, for an increasing subsequence of $σ$ of length k, by considering the distinct
columns $\begin{pmatrix}i \\ j \end{pmatrix}$ appearing in an increasing subsequence of $σ$ of length k, show that $k ≤ ∑_{ℓ=0}^ra_{i_ℓ,j_ℓ}$
for a suitable up-right path, and deduce that $L(σ) ≤ G(M)$.

Note. Problems 4.10(a),(b) will be part of the next homework set, so you can start working
on that if you have time.