MAT 280 — UC Davis, WINTER 2011
LONGEST INCREASING SUBSEQUENCES AND COMBINATORIAL PROBABILITY

Homework Set 1
Homework due: Wednesday 2/2/11

1. Let A =1lim,,_. ¢,/+/n as in Theorem 6 in the lecture notes. The goal of this
problem is to show that the bounds 1 < A < e that follow from Lemmas 3
and 4 can be improved to (8/7)Y? < A < 2.49.

(a) In the proof of Lemma 4 observe that if L(c,) > ¢ then X, ; > (;), so the
bound in (1.4) in the notes can be improved. Take k =~ ay/n and t =~ Sy/n
and optimize the improved bound over o < (3 (using some version of Stirling’s
formula) to conclude that A < 2.49.

(b) Given a standard Poisson Point Process (PPP) II in [0, 00) x [0, 00), con-
struct an increasing subsequence (Xi,Y)), (X2, Y2), (X3,Y3),... of points from
the process by letting (X7,Y7) be the Poisson point that minimizes the coordi-
nate sum z +y, and then by inductively letting (X}, Y;) be the Poisson point in
(Xg_1,00) X (Yj_1,00) that minimizes the coordinate sum = + y. Observe that
the properties of the Poisson point process imply that one can write

k
j=1

where (W), Z;)).,

random vectors in [0, 00)?, each having the same distribution as (X, Y;). Com-

pute the expectations ux = E(X;), uy = E(Y7).

is a sequence of independent and identically distributed

Hint: First, compute the density function of X; + Y;. The only thing that
one needs to know about the Poisson point process is that the probability that
a measurable set A C [0,00)? does not contain any points of II is equal to
exp(—|A|) (where |A] is the Lebesgue measure of A). Next, observe that condi-
tioned on the event X; 4+ Y; = t, the conditional distribution of X; is uniform
in [0,¢]. This follows from one of the properties of the PPP, namely that con-
ditioned on the event that a measurable set A contains k£ points of II, the
distribution of the location of these points is simply that of £ independently
chosen uniformly random points in A; the observation follows by applying this
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property with £ = 1 and the set A = {(z,y) : t <z +y < t+ At} and letting
A — 0.

(c) Now apply the Strong Law of Large Numbers to the sequences X and Y,
to get that (Xy, Yi)/k — (ux, py) almost surely as & — oco. On the other hand,
use the fact (used in the proof of Hammersley’s theorem on the existence of the
limit A = lim,, o ¢,/+/n) that A can also be expressed in terms of the Poisson
point process as the almost-sure limit

A = lim L(IIN [0, va]?)

n—oo

(where L(-) denotes the maximal increasing subsequence length) to conclude
that A > (8/7)'/? ~ 1.596.

. Let p(n) denote the number of partitions of an integer n (or equivalently the
number of Young diagrams of order n). Show that there exists a constant ¢ > 0
such that the inequality p(n) > e®V™ holds for all n > 1.

. For n € N; let ¢(n) denote the number of ordered partitions (also called
compositions) of n, i.e., ways of expressing n as a sum of positive integers,
where different orders are considered distinct representations. Prove that ¢(n) =
2"~1 and deduce trivially that p(n) < 271

. (a) Define the generating function F(z) =1+ > >~ p(n)z". It is traditional to
define p(0) = 1, so this can also be written as F(z) = > p(n)z". Deduce
from the previous problem that the series converges absolutely and uniformly
on compacts in the region |z| < 1/2. Prove that in this range Euler’s product

formula holds:
1
F(z) = )
@ =1l7—=

k=1

(Hint: Expand each of the factors in the infinite product as a geometric series,
and interpret the coefficient of 2™ in the resulting power series combinatorially.)

(b) Show that the product on the right-hand side of Euler’s product formula
actually converges absolutely and uniformly on compacts, and therefore defines
an analytic function, in the region {z € C : |z| < 1}. Deduce that the power
series defining F'(z) also converges absolutely in this region.

(c) Show that if 0 < < 1 then F(z) < %fﬁ (You may need to use the fact
that >>° , n~? = 72/6).



(d) Show that for real x satisfying 0 < z < 1 we have p(n) < 27"F(z). Using
the bound above for F'(x), find a value of z (as a function of n) that makes this

a particularly good bound, and deduce that the bound p(n) < €™V /3 holds
for all n > 1.
(Hint: look for an z of the form # = z, = 1— = for a suitable constant a > 0.)

. Let 0 = (8,2,10,9,3,1,5,4,7,6) € Sy9. Compute the triple (A, P,Q) corre-
sponding to o via the Robinson-Schensted algorithm. Compute the permuta-
tion ¢’ obtained by applying the inverse Robinson-Schensted algorithm to the
transposed Young diagram and pair of standard Young tableaux (X, PT, Q7).
If you wish to get more practice, repeat the computation starting with the
permutation o = (16,8,11,13,9,2,5,6,14,7,3,12,4,1,15,10) € Sys.

. a. Show that the number of involutions (self-inverse permutations) in .S, and
hence also the number of standard Young tableaux of order n, is equal to

/2] ol
L=y ——

(Hint: consider the cycle structure of an involution.)

b. (Optional) Show that I, can be expressed as
I, =E(Z"),

where Z is a random variable with distribution N(1,1) (normal distribution
with mean 1 and variance 1).

. If A is a Young diagram with m rows and row lengths
M2 >3 >

(where \; denotes the length of the j-th row if j < m, or 0if j > m), show that
for any k > m,
H1§i<j§k(/\i - )‘j +J - @)

ngigk@‘i + k- i)!
Hint: First show that it is enough to prove this for & = m. Then prove that
the identity

dy = |\

by .
: . (A +m —1i)!

hk(l,]) = . .

]-1;[1 Hi<j§m(>‘i —Aj+i—1)
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holds for any i = 1,...,m (where hy(i,j) denotes the hook length of the cell
(7,7) in A), and apply the hook length formula.

. Recommended additional reading: Section 5.1.4 in Donald Knuth’s The Art of
Computer Programming, Vol. 3: Sorting and Searching, 2nd Ed. — a highly
readable account of the Robinson-Schensted algorithm and some of its basic
properties.



