
MAT 280 — UC Davis, Winter 2011
Longest increasing subsequences and combinatorial probability

Homework Set 1

Homework due: Wednesday 2/2/11

1. Let Λ = limn→∞ `n/
√
n as in Theorem 6 in the lecture notes. The goal of this

problem is to show that the bounds 1 ≤ Λ ≤ e that follow from Lemmas 3
and 4 can be improved to (8/π)1/2 ≤ Λ ≤ 2.49.

(a) In the proof of Lemma 4 observe that if L(σn) ≥ t then Xn,k ≥
(
t
k

)
, so the

bound in (1.4) in the notes can be improved. Take k ≈ α
√
n and t ≈ β

√
n

and optimize the improved bound over α < β (using some version of Stirling’s
formula) to conclude that Λ ≤ 2.49.

(b) Given a standard Poisson Point Process (PPP) Π in [0,∞) × [0,∞), con-
struct an increasing subsequence (X1, Y1), (X2, Y2), (X3, Y3), . . . of points from
the process by letting (X1, Y1) be the Poisson point that minimizes the coordi-
nate sum x+y, and then by inductively letting (Xk, Yk) be the Poisson point in
(Xk−1,∞)× (Yk−1,∞) that minimizes the coordinate sum x+ y. Observe that
the properties of the Poisson point process imply that one can write

(Xk, Yk) =
k∑
j=1

(Wj, Zj),

where
(
(Wj, Zj)

)∞
j=1

is a sequence of independent and identically distributed

random vectors in [0,∞)2, each having the same distribution as (X1, Y1). Com-
pute the expectations µX = E(X1), µY = E(Y1).

Hint: First, compute the density function of X1 + Y1. The only thing that
one needs to know about the Poisson point process is that the probability that
a measurable set A ⊂ [0,∞)2 does not contain any points of Π is equal to
exp(−|A|) (where |A| is the Lebesgue measure of A). Next, observe that condi-
tioned on the event X1 + Y1 = t, the conditional distribution of X1 is uniform
in [0, t]. This follows from one of the properties of the PPP, namely that con-
ditioned on the event that a measurable set A contains k points of Π, the
distribution of the location of these points is simply that of k independently
chosen uniformly random points in A; the observation follows by applying this
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property with k = 1 and the set A = {(x, y) : t ≤ x + y ≤ t + ∆t} and letting
∆→ 0.

(c) Now apply the Strong Law of Large Numbers to the sequences Xk and Yk,
to get that (Xk, Yk)/k → (µX , µY ) almost surely as k →∞. On the other hand,
use the fact (used in the proof of Hammersley’s theorem on the existence of the
limit Λ = limn→∞ `n/

√
n) that Λ can also be expressed in terms of the Poisson

point process as the almost-sure limit

Λ = lim
n→∞

L(Π ∩ [0,
√
n]2)

(where L(·) denotes the maximal increasing subsequence length) to conclude
that Λ ≥ (8/π)1/2 ≈ 1.596.

2. Let p(n) denote the number of partitions of an integer n (or equivalently the
number of Young diagrams of order n). Show that there exists a constant c > 0
such that the inequality p(n) > ec

√
n holds for all n ≥ 1.

3. For n ∈ N, let c(n) denote the number of ordered partitions (also called
compositions) of n, i.e., ways of expressing n as a sum of positive integers,
where different orders are considered distinct representations. Prove that c(n) =
2n−1, and deduce trivially that p(n) ≤ 2n−1.

4. (a) Define the generating function F (z) = 1 +
∑∞

n=1 p(n)zn. It is traditional to
define p(0) = 1, so this can also be written as F (z) =

∑∞
n=0 p(n)zn. Deduce

from the previous problem that the series converges absolutely and uniformly
on compacts in the region |z| < 1/2. Prove that in this range Euler’s product
formula holds:

F (z) =
∞∏
k=1

1

1− zk
.

(Hint: Expand each of the factors in the infinite product as a geometric series,
and interpret the coefficient of zn in the resulting power series combinatorially.)

(b) Show that the product on the right-hand side of Euler’s product formula
actually converges absolutely and uniformly on compacts, and therefore defines
an analytic function, in the region {z ∈ C : |z| < 1}. Deduce that the power
series defining F (z) also converges absolutely in this region.

(c) Show that if 0 < x < 1 then F (x) ≤ π2

6
x

1−x . (You may need to use the fact
that

∑∞
n=1 n

−2 = π2/6).
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(d) Show that for real x satisfying 0 < x < 1 we have p(n) < x−nF (x). Using
the bound above for F (x), find a value of x (as a function of n) that makes this

a particularly good bound, and deduce that the bound p(n) ≤ eπ
√

2n/3 holds
for all n ≥ 1.
(Hint: look for an x of the form x = xn = 1− α√

n
for a suitable constant α > 0.)

5. Let σ = (8, 2, 10, 9, 3, 1, 5, 4, 7, 6) ∈ S10. Compute the triple (λ, P,Q) corre-
sponding to σ via the Robinson-Schensted algorithm. Compute the permuta-
tion σ′ obtained by applying the inverse Robinson-Schensted algorithm to the
transposed Young diagram and pair of standard Young tableaux (λ′, P>, Q>).
If you wish to get more practice, repeat the computation starting with the
permutation σ = (16, 8, 11, 13, 9, 2, 5, 6, 14, 7, 3, 12, 4, 1, 15, 10) ∈ S16.

6. a. Show that the number of involutions (self-inverse permutations) in Sn, and
hence also the number of standard Young tableaux of order n, is equal to

In =

bn/2c∑
k=0

n!

2kk!(n− 2k)!
.

(Hint: consider the cycle structure of an involution.)

b. (Optional) Show that In can be expressed as

In = E(Zn),

where Z is a random variable with distribution N(1, 1) (normal distribution
with mean 1 and variance 1).

7. If λ is a Young diagram with m rows and row lengths

λ1 ≥ λ2 ≥ λ3 ≥ . . .

(where λj denotes the length of the j-th row if j ≤ m, or 0 if j > m), show that
for any k ≥ m,

dλ = |λ|!
∏

1≤i<j≤k(λi − λj + j − i)∏
1≤i≤k(λi + k − i)!

.

Hint: First show that it is enough to prove this for k = m. Then prove that
the identity

λi∏
j=1

hλ(i, j) =
(λi +m− i)!∏

i<j≤m(λi − λj + j − i)
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holds for any i = 1, . . . ,m (where hλ(i, j) denotes the hook length of the cell
(i, j) in λ), and apply the hook length formula.

8. Recommended additional reading: Section 5.1.4 in Donald Knuth’s The Art of
Computer Programming, Vol. 3: Sorting and Searching, 2nd Ed. — a highly
readable account of the Robinson-Schensted algorithm and some of its basic
properties.
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