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Problem: We consider a novel approach for estimating the
intrinsic dimensionality of high-dimensional point clouds. Assuming
that the points are sampled from a k-dimensional data set
corrupted by D-dimensional noise, with k << D, we estimate
dimensionality via a new multiscale algorithm that generalizes
PCA. The algorithm exploits the low-dimensional structure of the
data, so that its power depends on k rather than D.

Dimensionality estimation is important in many applications in
machine learning, including:

1. signal processing

2. discovering number of variables in linear models

3. molecular dynamics

4. genetics

5. financial data
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PCA Approach

Counting number of “significant” singular values is classical
technique in dimensionality estimation. When data is linear and
noiseless, this method cannot fail.

Idea:

• Consider data points x1, x2 . . . xn in RD .

• Form normalized data matrix:

X =
1√
n


−x1−
−x2−
. . . . . .
−xn−


• Let C = XTX (the covariance matrix).

• Compute singular values of X (σi (X ) =
√
λi (C ), i = 1 . . .D).
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Issues with PCA Approach

• Finite sample case is not completely understood; how many
data points do we need for accurate results?

• Noise confuses the dimensionality.

Example:
Sample 1000 points from
10-dim plane in R100; corrupt
with Gaussian noise of level
σ = .2 (.2 N(0, I100) added
to each point)

• Non-linear data results in overestimation of the dimensionality.
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Model: Manifold plus Noise

1. Let M be manifold of dimension k embedded in RD

(bounded curvature).

2. Let x1, x2, ..., xn be n samples.

3. Suppose data is corrupted by D-dimensional noise:
x̃n = xn + σηn (e.g. η ∼ N(0, ID) )

4. Let:

X̃n =


−x̃1−
−x̃2−
. . . . . .
−x̃n−


be the corresponding noisy data matrix.

5. Goal: Estimate the dimensionality k w.h.p. from X̃n.
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Multiscale Algorithm to Estimate
Pointwise Dimensionaliy

Fix z . Specify scale:

• Let X (r) =M
⋂
Bz(r)

• Let Xn(r) = Xn
⋂
Bz(r)

• Let X̃n(r) = X̃n
⋂
Bz(r)

Algorithm:

1. Let {σr
i }Di=1 be the singular values of X̃n(r).

2. Classify the σi as follows:
• linear growth in r : tangent plane singular value
• quadratic growth in r : curvature singular value
• no growth in r : noise singular value

3. Dimensionality at z = number of tangent plane σi ’s
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Example: Growth of Singular Values

• Consider S5 embedded in R100

• Take 1000 noisy samples (σ = .05)
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Outline of Analysis, I

1. Approximate the data set by a linear manifold X ||(r) and a
normal correction X⊥(r). It turns out that
cov(X (r)) = cov(X ||(r)) + O(κ2r4), with
||cov(X (r))|| ∼ O(r2).
−→ upper bound on r to avoid distortion due to curvature

2. Apply sampling theorems for covariance matrices to bound

distance between cov(X
||
n (r)) and cov(X ||(r))

−→ need O(k log k) points

−→ lower bound on r so that X
||
n (r) contains enough points,

i.e. O(k log k) w.h.p.

3. Add ambient noise and bound w.h.p. its effect on the

spectrum of X
||
n (r), using results from random matrix theory

and matrix perturbation.
−→ lower bound on r so that the tangent plane structure is
distinguishable from the noise.
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Outline of Analysis, II

1. Natural normalization: E[||η||2RD ] = O(1) (e.g. σ = σ0D
− 1

2 ).
Under the niceness assumptions κ = O(1) and σ0 = O(1), the
algorithm succeeds w.h.p. with only O(k log k) samples,
independently of D.

2. If E[||η||2RD ] grows with D (e.g. linearly as when
η ∼ N (0, ID)), then for D large enough the algorithm fails
w.h.p.

3. Consistency (n→ +∞) of the algorithm follows trivially from
our analysis with niceness assumptions on the noise and
curvature.

4. The random matrix scaling limit (n→ +∞, D → +∞,
n
D → γ) is a particular case of our analysis.
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Comparison with other algorithms

Our algorithm:

• Requires O(k log k)
points (under niceness
assumptions on noise and
curvature)

• Finite sample guarantees

• Only input: X̃n

• Discovers correct scale
using multiscale approach

Other algorithms:

• Volume based (they require O(2k)
points)

• Typically, no finite sample
guarantees
(at most consistent)

• Sensitive to noise

• Some involve many parameters

• Require user to specify correct scale
(such as number of nearest
neighors to consider)
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Q5(D = 100, n = 500) and Q10(D = 100, n = 500)
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S4(D = 100, n = 500) and S9(D = 100, n = 500)
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Future Research

Short-term:

• Tuning algorithm

• Extending results to manifolds of different dimensionalities

• Kernelization

Long-term (employing techniques in various applications):

• Molecular Dynamics

• Genetics

• Financial data
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