MAT 121: Advanced Analysis for the Sciences
Final Exam Answers

Problem 1 (20 pts) Consider the following heat equation on a 1D rod:
ut:azum, t>0, —o0o <x <00,
with the initial conditionu(x,0) = f(x).
(&) (10 pts) Solve this PDE. [Hint: Use the Fourier transform. Which variable do you want to

apply the Fourier transform; or ¢? You may also want to use some formula in the Fourier
transform table.]

Answer: We apply the Fourier transform inon both sides of these equations. Assuming that
andf are inL!(R) (i.e., can apply the Fourier transform), we get

ou 2 ~
(60 = @216, 1) = —a*Ea(E. 1) (1)
with R
u(§,0) = f(&)- (2)
Now, for each fixed, (1) can be viewed as a simple ODEtjrwith the initial condition (2).
Therefore, we can easily solve this to get

aE,t) = fl©)e e,
Now, we apply the inverse Fourier transformgito get the solution:
1 & . 1 RPN 242, ~ 2462
u(a,t) = o / A(E, ) de = — / Fleeteitedg = 77 [ fg)e"| . (3)
2 J_ o 2 J_ o

So, this is the inverse Fourier transform of the product of two functions. Here we can use the
convolution formula R .
Flgxh| =Gh = gxh=7F"1 [gh] .

Now, the inverse Fourier transform 6(5) is of coursef(z), so, (3) is now written as:
u(z,t) = fxF! [e_o‘%z} :
To compute the inverse Fourier transformeof’%”, we simply refer the provided table:
ax®\ 5 2w £2
o () ol
So, by settind /(2a) = o?t, i.e.,a = 1/(2a*t), we have
g1 [e—oﬁtﬂ _ ;e—ﬁ/(m%).

Varalt

Plugging this into (3) and using the definition of convolution, finally we have:

1 & )2/ (402
— / e~/ £y

u(z,t) =



(b) (10 pts) Suppose the domain is changed ta = < oo. And suppose initially the rod is in
steady state withu(x,¢) = 0, for¢t < 0, andz € [0,00). Now at¢ = 0 and on, we set
the boundary condition as(0,t) = T, for ¢ > 0. Solve this heat equation. [Hint: Use the
Laplace transform. Which variable do you want to apply the Fourier transfoon;? You
may also want to use some formula in the Laplace transform table.]

Answer: In this case, we take the Laplace transfornt of both sides of the heat equation. Let
U(z,p) be the Laplace transform efz, ), i.e.,

U(x,p) = /_oo u(x,t)e Pdt.

[e.o]

Then, the heat equation becomes

2
P~ (e, 0) = plU =? 0 0

sinceu(z,0) = 0. Viewing p as a constant, this is a 2nd order ODE in terms.oSo0, we
can easily solve this as:

Ulz,p) = AeWP/2)T 4 Be=(VP/o)e,
where A, B are some constants. But, to prevent the blowup as> oo, we must have

A = 0. To determineB, we use the initial conditiony(0,¢) = Ty. By applying the Laplace
transform of both sides of this initial condition gives us:

1o
UO,p) = —.
(0.p) ==
So,B = T, /p. In other words,
T
Ulz,p) = e~ WP/,
p

From the Laplace transform table,

(1/p)e VP S erf(a/(2V1)).

So, by replacing by x/«, we have:

u(z,t) = T {1 ~ orf (Mxﬂ)} .




Problem 2 (10 pts) Solve the following ODE using the Laplace transform:
y'+4y=H(t —7),
with y(0) = ¢/(0) = 0. Note thatH (-) is the Heaviside step function.

Answer: Apply the Laplace transform to the both sides. L&) is the Laplace transform of
y(t). Sincey(0) = y/'(0) = 0, we get:

(P* +4)Y (p) = LIH(t — ).
Therefore,

- 1
Cop2+4

Y (p) CH(E—7)] = L E sin 2t] LIH(E — 7).

Now, we use the convolution formula:

-1

F(p)G(p) == (Fx 9)(t).

So,
L.
y(t) = 531n2t*H(t—7r)
1 t
= 5/ sin2(t — 7)H (7 — m)dr
0

Now,

( ) 0 ifr<m
H(r—m) =
1 if7>m.

So, ift > m, then .
1
/ sin2(t — 7)dr = 1(1 — cos 2t),

= 0. So, we have:

y(t) = iH(t — (1 — cos21).



Problem 3 (10 pts) Solve the following ODE using Green’s function:

y' +4dy = f(b),
with y(0) = ¢/(0) = 0 and f(¢) is a forcing function defined far> 0.

Answer: Let Green’s function of this problem (¢, 7). Then, this function satisfies the follow-
ing ODE:

2

d
@G(t,ﬂ +4G(t, ) = d(t — 1),

whered(-) is the Dirac delta function. We need to solve this ODE with the initial condition

G(0,7) = EG(O, 7) = 0. So, the simplest way to solve this is to use the Laplace transform.
dt

Let G(p, 7) be the Laplace transform ¢f(t, 7). Then, we get

(0 + HG(p,7) = L3(t — 7)),

Glp,7) = = £l6t =)

Using the convolution formula similarly to the argument in Problem 2, we have

G(t,7) = %/0 sin2(t — n)d(n — 7)dn

t—7
- % / sin2(t — 7 —w)d(w)dw by change of variable =1 — .

-7

1 .
B §Sin2(t—7) ifo<7<t
0 fo<t<r.

Therefore, finally, we have the following solution:

y(t) = /0 G(t,7)f(r)dr = %/0 sin2(t — 1) f(r)dr.



Problem 4 (10 pts) Find the best (in the least square sense) third-degree polynomial approxima-

tion to
1 if 0<z<1;

0 if —1<x<D.

f(x) = X[O,l}(x> = {

Because the Legendre series expansiofi(of upto order three gives the least squares so-
lution, it suffices to compute the four term Legendre expansiof(oj, i.e., the best third
order polynomial approximation in the least square sense is

coPo(z) + 1 Pi(x) + coPo(x) + c3P3(x),

where . oo
;<f,Pk>— ;/_lf(x)Pk(x)dx.

In this casef(x) = xp,1(x), S0 the integral becomes very simple:

C —

2k

Cp —

+1 [!
. /0 F (@) Po()da.

Now, we need to compute them fbr= 0, 1, 2, 3.

1 [ 1 [t 1
0025/0 Po(x)dx:§/0 1d:17:§.

2 2 2 4
7 [ 7 (M1 7[5, 3,]" 7
— P. der = = - 3 d:__4__2 —
c3 2/0 5 (2)da 2/0 2(5x 3z)dx 1 {4x 5% L .
Therefore, the third-order least squares polynomial is:
1 3 7 1 45 35
—P, “Pi(z) — —=Py(z) = = + —x — —a°.
pPol@) + 3 hale) = fghile) = 5 + 50— e



Problem 5 (10 pts) Find the general solution of the following ODE using the method of Frobenius
(i.e., the generalized power series):

22%y" + 3xy’ —y =0, x>0.
Answer: Our strategy is to plug ip = >~ a,z""* to this ODE, and finda,,} ands. Since

y = Z an(n+s)x" 571y = Z an(n+s)(n+s—1)z"t572,

we have the following table:

s xs—f—l . xn-ﬁ-s

22%y" | 2s(s — 1)ag  2a;(1+s)s ... 2a,(n+s)(n+s—1)
3zy’ 3sap  3ai(l+s) ... 3an(n + s)
) —Aag —aq e —Qy,

Therefore, from the* (i.e.,ay) term, we have:
ap(2s(s —1)+3s—1)=0.
Assuminga is not zero, we have
(2s(s —1)+35s—1) =25 +s5—1=(s+1)(2s— 1) = 0.
Therefores = —1ors = 1/2.
s = —1 case: Consider the:"** = z"~! term (i.e., the term with,,). We have:
2(n—1)(n—2)+3(n—1) —1)a, =n(2n — 3)a, = 0.

Sincen is a non-negative integer,, = 0forn = 1,2, ... So, we have a fundamental solution

=z L

s = 1/2 case: In this case, the term with, is:
(2(n+1/2)(n—1/2) +3(n+1/2) — 1)a, = n(2n + 3)a, = 0.

By the similar reasoning as above, = 0 forn = 1,2, ... So, we have another fundamental
solutiony = z'/2 = /.

A general solution: is a linear combination of the fundamental solutions. Thus we have:

A

whereA and B are arbitrary constants.



Problem 6 (20 pts) We want to find the steady-state temperature distributiora semi-infinite
solid cylinder of radiug if the base is held df, degree and the side wall @degree.

(@) (5 pts) Do the separation of the above equation by assuniing, z) = R(r)©(0)Z(z), and
derive the ODEs oR, ©, and~.

Answer: The Laplace equation in the cylindrical coordinated, 2) is:

10 ( 8u) 1 9%u O%*u

"or

2o T2

Now, assumex(r, 0, z) = R(r)©(0)Z(z), and plug this into the Laplace equation, and then
divide both sides by?©~ to get:

R// R/ @// Z//

— - = 4
Rtrteet 770 @
. . d? d? : .
with the understanding thdt” = d—}j o' = d—e(;) etc. Now, theZ"”/Z part is a function of
T

z only while the other part is a function of 6. Therefore,Z”/Z must be a constant and let
the separation constakt, i.e.,

Zl/ 9
i . 5
7 k¥, k>0 (5)
Then, (4) becomes:
R// R/ (_)// k2
R TP T
Multiplying r2 on both sides and moving tlt&term to the right, we have:
TQR// TR/ @//
Er? = — :
R R VT e

Now, the left-hand side is a function ofonly while the right-hand side is a function 6f
only. Therefore, this must be a constant, and let this separation constaht ®e, in terms
of ©, we have:

"
% =-n? n>0. (6)
Finally, we thus have the ODE fadk as:
R’ +rR + (K°r* —n*)R =0, (7)

which is the so-called Bessel's equation.



(b) (5 pts) Solve the above ODEs first to get all possible solutions without considering the bound-
ary conditions.

Answer: From (5), we get

ekz
Z2(z)=4 .. - (8)
(§
As for ©, the basic solutions of (6) is
cosnd
o) = { . : 9)
sin nf
Finally, for R, (7) is Bessel's equation, so the basic solutions are
I (kr)
R(r) = : 10
(r) { N (k) (10)

where J,(-) and N,,(-) are the Bessel functions of a first and a second kind (of ondler
respectively.



(c) (5 pts) Select the possible solutions of those ODEs by matching the boundary conditions and
other geometric considerations.

Answer: The domain is a semi-infinite cylinder, and— 0 asz — oo. Therefore, the only
possibility in (8) is

Z(2) = e *=.

As for ©, from the boundary condition(1, 6, z) = 0 andu(r, 8,0) = Ty, the solution does
not have angular dependency, i.e., the solution should not depehdldwerefore, = 0 is

the only possibility in (9), bu®(#) should not be always zero (otherwise= 0). Therefore,
cos 0 = 1 is the only solution, i.e.,

0(0) = 1.

Finally, in (10), sinceV, (kr) blows up at- = 0, this must be excluded. Moreover, from the
angular independence,= 0 is the only possibility. Thus, we have:

R(r) = Jo(kr).




(d) (5 pts) Find the final solutiom by matching the boundary condition at the bottom and the
cylinder wall.

Answer: Sinceu(1, 6, z) =, we must have
R(1) = Jo(k) = 0.

Letk,,,m =1,2,..., be the zeros of),. Linearly combining the ODE solutions derived in
part (c), we thus form the following linear combination of the basic solutions:

o0

u(r, 0, z) = Z chg(kmr)e_kmz,

m=1

wherec,, are the constants to be determined by matching this with the remaining boundary
condition:u(r, 0,0) = Ty. Now,

'LL(T', 97 0) - TO = Z CmJO(kmr)‘
m=1

Multiplying rJo(k.r) on both sides and integrate themrinusing the orthogonality condi-
tion, we have

1 1
YB/inh@@dr:c{/ r[Jo(ker)]2dr.
0 0

Using the formulas provided in the front page, we have:

T 1
k) = co- G ik, £=0,1,....
14
Therefore, we have
L2
" ke (k)

Consequently, we have the final solution as follows:

o e—kmz

u(r, 0, z) = 2T, —_—
(9,2) OmZ:lk:mJl(km

Jo(kmr),

wherek,, is the zeros of/,.

10



Problem 7 (20 pts) Consider a functiofi(x) = x on the unit intervalo, 1].
(a) (5 pts) Expand this in the Fourier series by viewing this as a periodic function with period

Answer: Since the period i3, if we expandr as

T~ Z ¢, el2m — % + Z(an cos(2mnx) + by, sin(2wnw)),

n=-—0o0 n=1

then

1 : 1
C, = / peimidy — 1 by integration by parts fon # 0, andcy = % _ / rdr =
0 2mn 2 0
Convertinga,,, b, from ¢,,, we have:

an:cn+c_n:;+ : =0, n#0,
T

Therefore,

1 . sin 27tna
TR Dh—s

n=1

(b) (5 pts) Expandf(z) in the Fourier cosine series by reflecting in an even mannerag.

Answer: By even extension at = 0, the function with reflection becomes an even function, and
the period becomex(i.e., the basic interval is nof1, 1]). Thus, we can expand it as:

T~ % + Z an, cos(mn),

n=1

where
1
a, = 2/ x cos(mnx)dx
0

. 1 1
= 2 lxw] — 2/ de via integration by parts.
0 0

™ ™m
_ 2cos(7r2n)2— 1 2(—1)2" 2— 1
2n 2n

for n # 0 anday/2 = 1/2 as part (a). Thus, we have:

[e.9]

1 m(2m — 1)z)
x~—+22 7?2”2 cos(wnx 3~ Z 7r22m—1 :

11



(c) (5 pts) Expandf(x) in the Fourier sine series by reflecting in an odd manner-at0.

Answer: By odd extension at = 0, the function with reflection becomes an odd function, and
the period become(i.e., the basic interval is noyv1, 1]). Thus, we can expand it as:

X~ Z b, sin(mnz),
n=1
where
1
b, = 2/ xsin(mnx)dx
0

1 1
= 2 [—xm} +2/ de via integration by parts.
™™ 0 0 ™

_2COS(7TTL) _y (—1)n+t .

™ ™

Thus, we have:

™

> (_1>n+l .
r~2 Z sin(mnz).
n=1

(d) (5 pts) Argue which of the above three expansions gives us the most faithful representation if
we need to truncate the series in a finite number of terms.

Answer: If we compare the decay of the Fourier coefficients of the above three cases, we have the
following:

y, by, O(1/n) for part (a);
an ~ O(1/n*) for part (b);
by, O(1/n) for part (c).

2

2

Therefore, clearly, part (b), i.e., the Fourier cosine series by reflecting a function in an even
manner atz = 0, is the most faithful representation among these three.

12



