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Motivations: Why Irregular Domains?
Motivations: Why Irregular Domains?

o Consider a bounded domain of general shape Q cR?.

RE

(a) QcRr? (b) M. Kac (1914-1984)
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e Consider a bounded domain of general shape Q cRY.
@ Want to analyze the spatial frequency information inside of the object
defined in Q = need to avoid the Gibbs phenomenon due to 0Q.
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e Consider a bounded domain of general shape Q cRY.

@ Want to analyze the spatial frequency information inside of the object
defined in Q = need to avoid the Gibbs phenomenon due to 0Q.

o Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. = need fast decaying expansion
coefficients relative to a meaningful basis.

RE
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(a) QcRr? (b) M. Kac (1914-1984)
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Motivations: Why Irregular Domains?
Motivations: Why Irregular Domains?

o Consider a bounded domain of general shape Q cR?.

@ Want to analyze the spatial frequency information inside of the object
defined in Q = need to avoid the Gibbs phenomenon due to 0Q.

@ Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. = need fast decaying expansion
coefficients relative to a meaningful basis.

@ Want to extract and analyze geometric information about the domain
Q = M. Kac: “Can one hear the shape of a drum?” (1966);
spectral geometry; shape clustering/classification.

RE

o0

(a) QcRr? (b) M. Kac (1914-1984)
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Motivations: Why Irregular Domains?
Object-Oriented Image Analysis

o

(a) Original (b) Background

(c) Object (d) Anomalies
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Data Analysis on a Complicated Domain
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Motivations: Why Irregular Domains?
3D Hippocampus Shape Analysis (Courtesy: F. Beg)
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Motivations: Why Irregular Domains?
Climate Data Analysis: Continent (Courtesy: T. DelSole)
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Climate Data Analysis: Ocean (Courtesy: T. DelSole)

Laplacian 1
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Enter Laplacian Eigenfunctions!

@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.
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Enter Laplacian Eigenfunctions!

@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.

@ Let us first consider an irregular (i.e., general shape) Euclidean
domain Q cR?.
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Enter Laplacian Eigenfunctions!
@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.

@ Let us first consider an irregular (i.e., general shape) Euclidean
domain Q cR?.

o &
on? " oxg)

0 let X =—A=-
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Enter Laplacian Eigenfunctions!

@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.

@ Let us first consider an irregular (i.e., general shape) Euclidean
domain Q cRY.

0? 82

[ + cee + .

0x12 0x42

@ The Laplacian eigenvalue problem is defined as:

0 let X =—A=-

Lu=—Au=2Au inQ,

together with some appropriate boundary condition (BC).
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Enter Laplacian Eigenfunctions!

@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.
@ Let us first consider an irregular (i.e., general shape) Euclidean
domain Q cRY.
0? 82
[ + cee + .
0x12 0x42
@ The Laplacian eigenvalue problem is defined as:

0 let X =—A=-

Lu=—Au=2Au inQ,

together with some appropriate boundary condition (BC).
@ Most common (homogeneous) BCs are:
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Enter Laplacian Eigenfunctions!

@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.
@ Let us first consider an irregular (i.e., general shape) Euclidean
domain Q cRY.
0? 82
[ + cee + .
0x12 0x42
@ The Laplacian eigenvalue problem is defined as:

0 let X =—A=-

Lu=—Au=2Au inQ,

together with some appropriate boundary condition (BC).

@ Most common (homogeneous) BCs are:
o Dirichlet: u=0 on 0Q;
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Enter Laplacian Eigenfunctions!

@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.
@ Let us first consider an irregular (i.e., general shape) Euclidean
domain Q cRY.
0? 82
[ + cee + .
0x12 0x42
@ The Laplacian eigenvalue problem is defined as:

0 let X =—A=-

Lu=—Au=2Au inQ,

together with some appropriate boundary condition (BC).
@ Most common (homogeneous) BCs are:
o Dirichlet: u=0 on 0Q;

0
e Neumann: gu =0 on 0Q;
ov
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Enter Laplacian Eigenfunctions!

@ On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.
@ Let us first consider an irregular (i.e., general shape) Euclidean
domain Q cRY.
0? 82
[ + cee + .
0x12 0x42
@ The Laplacian eigenvalue problem is defined as:

0 let X =—A=-

Lu=—Au=2Au inQ,

together with some appropriate boundary condition (BC).
@ Most common (homogeneous) BCs are:
o Dirichlet: u=0 on 0Q;

0
e Neumann: gu =0 on 0Q;
ov

0
e Robin (or impedance): au+ ba—z =0o0ndQ, a#0#b.
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Enter Laplacian Eigenfunctions ...

@ The nontrivial solution u = ¢ of such a boundary value problem
(BVP) is called the Laplacian eigenfunction corresponding to the
eigenvalue A.
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Enter Laplacian Eigenfunctions ...

@ The nontrivial solution u = ¢ of such a boundary value problem
(BVP) is called the Laplacian eigenfunction corresponding to the
eigenvalue A.

@ Via Green's 1st identity, the Dirichlet BC leads to:

O<A A <--- <A — 0.
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Enter Laplacian Eigenfunctions ...

@ The nontrivial solution u = ¢ of such a boundary value problem
(BVP) is called the Laplacian eigenfunction corresponding to the
eigenvalue A.

@ Via Green's 1st identity, the Dirichlet BC leads to:

O<A A <--- <A — 0.

@ On the other hand, the Neumann BC leads to:

0=A1 = <--- <A — 0.
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Enter Laplacian Eigenfunctions ...

@ The nontrivial solution u = ¢ of such a boundary value problem
(BVP) is called the Laplacian eigenfunction corresponding to the
eigenvalue A.

@ Via Green's 1st identity, the Dirichlet BC leads to:

O<A A <--- <A — 0.

@ On the other hand, the Neumann BC leads to:
0=A1 = <--- <A — 0.

@ In the case of the Robin BC, some eigenvalues may be even negative.
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Enter Laplacian Eigenfunctions ...

@ The nontrivial solution u = ¢ of such a boundary value problem
(BVP) is called the Laplacian eigenfunction corresponding to the
eigenvalue A.

@ Via Green's 1st identity, the Dirichlet BC leads to:

O<A A <--- <A — 0.

@ On the other hand, the Neumann BC leads to:
0=A1 = <--- <A — 0.

@ In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace  (b) J.P.G.L. Dirichlet  (c) Carl Neumann (d) Gustave Robin
(1749-1827) (1805-1859) (1832-1925) (1855-1897)
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Motivations: Why Irregular Domains?
Laplacian Eigenfunctions ... Why?

@ Why not analyze (and synthesize) an object of interest defined or
measured on an irregular domain Q using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, tori, balls, etc.?
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Motivations: Why Irregular Domains?
Laplacian Eigenfunctions ... Why?

@ Why not analyze (and synthesize) an object of interest defined or
measured on an irregular domain Q using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, tori, balls, etc.?

o After all, sines (and cosines) are the eigenfunctions of the Laplacian
on a rectangular domain (e.g., an interval in 1D) with Dirichlet (and
Neumann) boundary condition.
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Motivations: Why Irregular Domains?
Laplacian Eigenfunctions ... Why?

e Why not analyze (and synthesize) an object of interest defined or
measured on an irregular domain Q using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, tori, balls, etc.?

o After all, sines (and cosines) are the eigenfunctions of the Laplacian
on a rectangular domain (e.g., an interval in 1D) with Dirichlet (and
Neumann) boundary condition.

@ Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 15/108



Motivations: Why Irregular Domains?
Laplacian Eigenfunctions ... Why?

e Why not analyze (and synthesize) an object of interest defined or
measured on an irregular domain Q using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, tori, balls, etc.?

o After all, sines (and cosines) are the eigenfunctions of the Laplacian
on a rectangular domain (e.g., an interval in 1D) with Dirichlet (and
Neumann) boundary condition.

@ Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.

e Laplacian eigenfunctions (LEs) allow us to perform spectral analysis

of data measured at more general domains or even on graphs and
networks => Generalization of Fourier analysis!
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Motivations: Why Irregular Domains?
Laplacian Eigenfunctions ... Why?

@ LEs have more physical meaning (i.e., vibration modes, heat
conduction, ...) than other popular basis functions such as wavelets
and wavelet packets.
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Motivations: Why Irregular Domains?
Laplacian Eigenfunctions ... Why?

@ LEs have more physical meaning (i.e., vibration modes, heat
conduction, ...) than other popular basis functions such as wavelets
and wavelet packets.

@ LEs may particularly be useful for inverse problems and imaging:
Suppose the domain shape Q is fixed yet the material contents inside
that domain, say u(x), x € Q, change over time, i.e., u(x,t), x€Q,
t€[0, T]. Suppose one want to detect whether there is any change in
the material contents in Q over time, i.e., estimate u;(x, t) via

imaging.
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Motivations: Why Irregular Domains?
Laplacian Eigenfunctions ... Why?

@ LEs have more physical meaning (i.e., vibration modes, heat
conduction, ...) than other popular basis functions such as wavelets
and wavelet packets.

@ LEs may particularly be useful for inverse problems and imaging:
Suppose the domain shape Q is fixed yet the material contents inside
that domain, say u(x), x € Q, change over time, i.e., u(x,t), x€Q,
t€[0, T]. Suppose one want to detect whether there is any change in
the material contents in Q over time, i.e., estimate u;(x, t) via
imaging.

@ LEs may also be necessary for many shape optimization problems:
e.g., among all possible 2D shapes having unit area, what is the shape
that minimizes its fifth smallest Dirichlet-Laplacian eigenvalues?
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Motivations: Why Irregular Domains?
Shape Optimization (Courtesy of B. Osting)

Computational results for single eigenvalues

No

Oudet (2004)

‘Optimal union of discs Computed shapes.

>
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> Eigenvalues computed via meshless method

Relaxed formulation used to
compute eigenvalues

The k-th eigenvalue of the
minimizer is multiple

coefficients

MAT 207B: Lectures 26, 27, 28

» Domains parameterized using Fourier

» k = 13 minimizer is not symmetric
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Laplacian Eigenfunctions ...Some Facts

o Analysis of £ is difficult due to its unboundedness, etc.
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Laplacian Eigenfunctions ...Some Facts

o Analysis of £ is difficult due to its unboundedness, etc.

@ Much better to analyze its inverse, i.e., the Green's operator because
it is compact and self-adjoint.
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Laplacian Eigenfunctions ...Some Facts

o Analysis of £ is difficult due to its unboundedness, etc.

@ Much better to analyze its inverse, i.e., the Green's operator because
it is compact and self-adjoint.

e Thus #7! has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
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Laplacian Eigenfunctions ...Some Facts

Analysis of £ is difficult due to its unboundedness, etc.

@ Much better to analyze its inverse, i.e., the Green's operator because
it is compact and self-adjoint.

Thus 27! has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.

@ £ has a complete orthonormal basis of I[2(Q), and this allows us to
do eigenfunction expansion in L2(Q).
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Laplacian Eigenfunctions ... Difficulties

@ The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
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Laplacian Eigenfunctions ... Difficulties

@ The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.

@ Unfortunately, computing the Green's function for a general Q
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.
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Outline

@ History of Laplacian Eigenvalue Problems — Spectral Geometry
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1D Wave Equation
Outline

@ History of Laplacian Eigenvalue Problems — Spectral Geometry
e 1D Wave Equation
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1D (5 EEE)
Laplacian Eigenfunctions in 1D — The Wave Equation

Around mid 18 C, d'Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.
o Consider a perfectly elastic and flexible string of length #.
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1D (5 EEE)
Laplacian Eigenfunctions in 1D — The Wave Equation

Around mid 18 C, d'Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.

o Consider a perfectly elastic and flexible string of length #.

@ p(x): a mass density; T(x): the tension of the string at x € [0,¢].
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1D (5 EEE)
Laplacian Eigenfunctions in 1D — The Wave Equation

Around mid 18 C, d'Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.
o Consider a perfectly elastic and flexible string of length ¢.
@ p(x): a mass density; T(x): the tension of the string at x € [0,¢].
o If u(x,t) is the vertical displacement of the string at location x € [0, ¢]
and time ¢ =0, then the string vibrates according to the 1D wave

tion (a.k.a. the stri tion): p( )62” (T( )au)
e ation (a.K.a. e string e ation): X)——F=— X)—
quatt ng equation): PRS2 T 5y ox
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1D (5 EEE)
Laplacian Eigenfunctions in 1D — The Wave Equation

Around mid 18 C, d'Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.
o Consider a perfectly elastic and flexible string of length ¢.
@ p(x): a mass density; T(x): the tension of the string at x € [0,¢].
o If u(x,t) is the vertical displacement of the string at location x € [0, ¢]
and time ¢ =0, then the string vibrates according to the 1D wave

tion (a.k.a. the stri tion): p( )azu (T( )
equation (a.K.a. € string equation): X)——F =7 X)——
q g eq pPZ5 =57

(a) Jean d’'Alembert (b) Leonhard Euler (c) Daniel Bernoulli
(1717-1783) (1707-1783) (1700-1782)
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History—Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions

@ From now on, for simplicity, we assume the uniform density and
constant tension, i.e., p(x)=p, T(x)=T.
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History—Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions

@ From now on, for simplicity, we assume the uniform density and
constant tension, i.e.,, p(xX)=p, T(x)=T.
@ Under this assumption, the above wave equation simplifies to:

U = czuxx c=+TIp.
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History—Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions

@ From now on, for simplicity, we assume the uniform density and
constant tension, i.e.,, p(xX)=p, T(x)=T.
@ Under this assumption, the above wave equation simplifies to:

U = czuxx c=+TIp.

@ The 1D wave equation above has infinitely many solutions.
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T
Importance of the Boundary and Initial Conditions
@ From now on, for simplicity, we assume the uniform density and

constant tension, i.e.,, p(xX)=p, T(x)=T.
@ Under this assumption, the above wave equation simplifies to:

U = czuxx c=+TIp.

@ The 1D wave equation above has infinitely many solutions.
o Need to specify a boundary condition (BC) and an initial condition
(IC) to obtain the desired solution.
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History—Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions

@ From now on, for simplicity, we assume the uniform density and
constant tension, i.e.,, p(xX)=p, T(x)=T.
Under this assumption, the above wave equation simplifies to:

Ui = czuxx c=vTlp.

The 1D wave equation above has infinitely many solutions.

o Need to specify a boundary condition (BC) and an initial condition
(IC) to obtain the desired solution.
@ One possibility: both ends of the string are held fixed all the time =

the Dirichlet BC: u(0,t) = u(4,t) =0, Vt=0.
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History—Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions

@ From now on, for simplicity, we assume the uniform density and
constant tension, i.e.,, p(xX)=p, T(x)=T.
@ Under this assumption, the above wave equation simplifies to:

Ui = czuxx c=vTlp.

@ The 1D wave equation above has infinitely many solutions.

o Need to specify a boundary condition (BC) and an initial condition
(IC) to obtain the desired solution.

@ One possibility: both ends of the string are held fixed all the time =
the Dirichlet BC: u(0,t) = u(4,t) =0, Vt=0.

@ As for the IC, let u(x,0) = f(x) (initial position); u(x,0) = g(x) (initial
velocity), Vx € [0,4]. What we have then is:

Upr = CPllyy for x€(0,¢) and t>0;
u,)=ull,1=0 for t=0; (1)
u(x,0) = f(x), us(x,0)=gx) for xel0,7].
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Behavior of the String u(x, )

@ Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, t) = X(x)T(1).
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1D Wave Equation
Behavior of the String u(x, )

@ Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, £) = X(x)T(1).
@ Plugging X(x)T(¢) into the (1), we get:
XI/ T/l

XT"ZCZX”T:>—=—=]€,
X 2T

where k must be a constant.
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1D Wave Equation
Behavior of the String u(x, )

@ Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, £) = X(x)T(1).
@ Plugging X(x)T(¢) into the (1), we get:

XI/ T/l

XT'=X"T=—=—5==k
X AT
where k must be a constant.
@ This leads to the following ODEs:
X"-kX=0 with X(0)=X()=0, (2)
T"-c*kT=0 (3)
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1D Wave Equation
Behavior of the String u(x, )

@ Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, t) = X(x) T (¥).

@ Plugging X(x)T(¢) into the (1), we get:

XI/ T/l

XT"ZCZX”T:>—=—=]C,
X AT
where k must be a constant.
@ This leads to the following ODEs:
X"-kX=0 with X(0)=X()=0, (2)
T"-c*kT=0 (3)

@ The characteristic equation of (2), i.e., r? — k=0, must be analyzed
carefully.

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 24 /108



History—Spectral Geometry 1D Wave Equation

Solving ODEs
Case I: k>0=r =+vk; hence

X(x) = AeVkx L pe=VEx o Acosh(Vkx) + Bsinh(Vkx).

Applying the BC X(0) = X(¢) =0 yields A= B =0, thus the
case of k>0 is not feasible.
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History—Spectral Geometry 1D Wave Equation

Solving ODEs
Case I: k>0=r =+vk; hence

X(x) = AeVkx L pe=VEx o Acosh(Vkx) + Bsinh(Vkx).

Applying the BC X(0) = X(¢) =0 yields A= B =0, thus the
case of k>0 is not feasible.

Case ll: k=0= X" =0= X(x) = Ax+ B, which again leads to
X(x)=0.
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History—Spectral Geometry 1D Wave Equation

Solving ODEs
Case |: k>0= r=+Vk; hence

X(x) = AeV** 4 BeVEx o Acosh(Vkx) + Bsinh(Vkx).

Applying the BC X(0) = X(¢) =0 yields A= B =0, thus the
case of k>0 is not feasible.

Case ll: k=0= X" =0= X(x) = Ax+ B, which again leads to
X(x)=0.

Case lll: k<0. Set k=—-¢&2 and £ >0. Then the characteristic
equation becomes r?+¢&2 =0, i.e., r = +i¢. Therefore we get

X(x) = Acos(éx) + Bsin(éx)
By the BC X(0) = X(¥) =0, we get:

X(0)=0 — A=0

X)) =Bsin(¢l)=0 — ¢= %, VneN
Note n =0 leads to X(x) =0 in this case, so it should not be
included.
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History—Spectral Geometry 1D Wave Equation

Forming the Solution

@ Hence we have X(x) =Bsin(%x), and for convenience, by setting
B=+v2/¢, let us define

2 . (nm
X,(x) = (pn(x)::\/;mn(?x),

so that [[@nllz20,¢) = 1. Note that {¢,},en form an orthonormal basis
for L2[0,¢].
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History—Spectral Geometry 1D Wave Equation

Forming the Solution

@ Hence we have X(x) = Bsin %x), and for convenience, by setting
B=+v2/¢, let us define

2 . (nm
X,(x) = (pn(x)::\/gmn(?x),

so that [[@nllz20,¢) = 1. Note that {¢,},en form an orthonormal basis
for L2[0,7].
@ Similarly, by T = —&2¢?T we obtain the family of solutions

T,(t) =a, cos(% t) +by, sin(% t).
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History—Spectral Geometry 1D Wave Equation

Forming the Solution

@ Hence we have X(x) =Bsin(%x), and for convenience, by setting
B=+v2/¢, let us define

2 . (nm
X,(x) = (pn(x):z\/;mn(?x),

so that [[@nllz20,¢) = 1. Note that {¢,},en form an orthonormal basis
for L2[0,¢].

@ Similarly, by T = —&2¢?T we obtain the family of solutions
nic . (n7c
T,(t) = a, cos (7 t) +by, sm(T t).
@ Now, for each neN, the function

Un (%, 1) = Tn(8) - () = {a,mos(%t) + bnsin(% t)} %gin(%x}

satisfies (1).
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History—Spectral Geometry 1D Wave Equation

Forming the Solution ...

@ Hence, by the Superposition Principle,

ulx, ) = il un(x,t) = i {ancos(g t) +bnsin($t)}<pn(x) (4)

n=1

is a general solution with yet undetermined coefficients a, and bj,.
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History—Spectral Geometry 1D Wave Equation

Forming the Solution ...

@ Hence, by the Superposition Principle,

ulx, ) = il un(x,t) = i {a,mos(% t) +bnsin($t)}<pn(x) (4)

n=1

is a general solution with yet undetermined coefficients a, and bj,.

o Next, we specify the coefficients a, and b, by matching (4) with the
ICs in (1). Thus we get

(o] 2 o0
u(x,0) = f(x) = Z an zsin(%x) = Z an@np(x)
n=1 n=1

Then

an={f,¢n)= \/gfogf(x)sin(%x) dx,

which is a Fourier sine series expansion of f.
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History—Spectral Geometry 1D Wave Equation

Forming the Solution ...

00 2
o Similarly, u(x,0)=g(x)=)_ %bn\/;sin(%x)-

n=1

Figure: Jean Baptiste Joseph Fourier (1768-1830)
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History—Spectral Geometry 1D Wave Equation

Forming the Solution ...

00 2
o Similarly, u(x,0)=g(x)=)_ %bn\/;sin(%x)-

n=1

nmc 0
@ Note that Tbn = <g;(Pn> - bn = %Q{y(ﬂn)

Figure: Jean Baptiste Joseph Fourier (1768-1830)
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History—Spectral Geometry 1D Wave Equation

Forming the Solution ...

00 2
o Similarly, u(x,0)=g(x)=)_ %bn\/;sin(%xy

n=1

nmc 0
@ Note that Tbn = <g,(Pn> - bn = %Q{y(l)n)

@ Finally, we obtain the particular solution:

x nnc ¢ . (n7c
ux, t) = ngi {(f,(pn>cos (7 t) + — (g,(pn>s1n(7 t)}(pn(x),

which satisfies (1) completely including both BC & IC.

Figure: Jean Baptiste Joseph Fourier (1768-1830)
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History—Spectral Geometry 1D Wave Equation

Remarks

@ Need to check if our solution makes sense physically. Notice that

T nt | T
¢ = — = the sound frequency = va ;
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History—Spectral Geometry 1D Wave Equation

Remarks

@ Need to check if our solution makes sense physically. Notice that

T T
¢®=— = the sound frequency = —/—

f P

@ Hence, ¢ is short, T is high, and p is small (thin), then such a string
generates a high frequency tone.
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History—Spectral Geometry 1D Wave Equation

Remarks

@ Need to check if our solution makes sense physically. Notice that

T T
¢®* == = the sound frequency = 7 R

@ Hence, ¢ is short, T is high, and p is small (thin), then such a string
generates a high frequency tone.

@ On the other hand, if ¢ is long, T is low, and p is large (thick), then
it generates a low frequency tone.
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History—Spectral Geometry 1D Wave Equation

Remarks

@ Need to check if our solution makes sense physically. Notice that

T T
¢®* == = the sound frequency = 7 R

@ Hence, ¢ is short, T is high, and p is small (thin), then such a string
generates a high frequency tone.

@ On the other hand, if ¢ is long, T is low, and p is large (thick), then
it generates a low frequency tone.

@ Note that the Neumann BC imposes
uy(0,)=u,(l,)=0 Vr>0.

This leads to the Fourier cosine series expansions of f and g. Note
that the Neumann problem allows the solution ug(x, t) = ag = const.
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History—Spectral Geometry 1D Wave Equation

Remarks . ..

@ Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

-X"=&X with X(0)= X(¢) =0. (5)
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History—Spectral Geometry 1D Wave Equation

Remarks . ..

@ Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

-X"=&X with X(0)= X(¢) =0. (5)

o Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Q= (0, ).
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1D Wave Equation
Remarks . ..

@ Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

-X"=&X with X(0)= X(¢) =0. (5)

o Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Q= (0, ).

@ More importantly, we obtained two objects, namely:
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1D Wave Equation
Remarks . ..

@ Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

-X"=&X with X(0)= X(¢) =0. (5)

o Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Q= (0, ).

@ More importantly, we obtained two objects, namely:
N2
Eigenvalues: A2 = (7) nenN;
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1D Wave Equation
Remarks . ..

@ Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

-X"=&X with X(0)= X(¢) =0. (5)

o Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Q= (0, ).

@ More importantly, we obtained two objects, namely:

: . 4D _ (T2 .
Eigenvalues: 1, =(7) neN;

2
Eigenfunctions: ¢ (x) = \/;sin(\/ Aﬁ’x) neN.
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History—Spectral Geometry 1D Wave Equation

Remarks . ..

@ Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

-X"=&X with X(0)= X(¢) =0. (5)

o Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Q= (0, ).

@ More importantly, we obtained two objects, namely:

: . 4D _ (T2 .
Eigenvalues: 1, =(7) neN;

2
Eigenfunctions: ¢ (x) = \/;sin(\/ Aﬁ’x) neN.

@ In the case of the Neumann-Laplacian, we got
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History—Spectral Geometry 1D Wave Equation

Remarks . ..

@ Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

—X"=¢X with X(0)=X(¢) =0. (5)

@ Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Q = (0, ¢).

@ More importantly, we obtained two objects, namely:

nm\2
Eigenvalues: A,?: (7) neN;

2
Eigenfunctions: ¢ (x) = \/;sin(\/ A],gx) neN.

@ In the case of the Neumann-Laplacian, we got

. nm\2
Eigenvalues: )L],Y= (7) neNy:={0}uN;
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History—Spectral Geometry 1D Wave Equation

Remarks . ..

@ Through the separation of variables for finding a solution to the 1D

string equation with BC & IC (1), we arrive at the system

—X"=¢X with X(0)=X(¥)=0.

(5)

@ Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue

problem with Q = (0, ¢).
@ More importantly, we obtained two objects, namely:
N2

Eigenvalues: A,?: (7) neN;

2
Eigenfunctions: ¢ (x) = \/;sin(\/ A],gx) neN.

@ In the case of the Neumann-Laplacian, we got

. nm\2
Eigenvalues: )L],Y= (7) neNy:={0}uN;

2
Eigenfunctions: (p],;](x) = \/;cos (\/ AI,Yx) neNp.
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History—Spectral Geometry

Remarks . ..

@ We see that in either BCs, {1,}92, contains geometric information of
the domain Q = (0, 4).
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History—Spectral Geometry 1D Wave Equation

Remarks . ..

@ We see that in either BCs, {1,}92, contains geometric information of
the domain Q = (0, 4).

@ For instance, the size of the first eigenvalue, 1, = (71/£)? tells us the
volume of Q (i.e., the length ¢ of Q in 1D).
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History—Spectral Geometry 1D Wave Equation

Remarks . ..

@ We see that in either BCs, {1,}92, contains geometric information of
the domain Q = (0, 4).

e For instance, the size of the first eigenvalue, A1 = (n/£)? tells us the
volume of Q (i.e., the length ¢ of Q in 1D).

@ Under our assumption of constant tension and constant density,

small A\; < long ¢

large Ay < short ¢
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1D Wave Equation
Remarks . ..

@ We see that in either BCs, {1,}92, contains geometric information of
the domain Q = (0, 4).

@ For instance, the size of the first eigenvalue, 1, = (/0)? tells us the
volume of Q (i.e., the length ¢ of Q in 1D).

@ Under our assumption of constant tension and constant density,

small 1, < long ¢

large Ay < short ¢

e Furthermore, the set {¢,}>, forms an orthonormal basis for L?(Q), so
the eigenfunctions allows us to analyze functions living on Q.
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Spectral Geometry 101
Outline

@ History of Laplacian Eigenvalue Problems — Spectral Geometry

@ Spectral Geometry 101
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S
Spectral Geometry 101

@ The Laplacian eigenfunctions defined on the domain Q provides the
orthonormal basis of L2(Q).

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 33/108



S
Spectral Geometry 101

@ The Laplacian eigenfunctions defined on the domain Q provides the
orthonormal basis of L?(Q).

@ The Laplacian eigenvalues encode geometric information of the
domain Q = “Can we hear the shape of a drum?” (Mark Kac, 1966).
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S
Spectral Geometry 101

@ The Laplacian eigenfunctions defined on the domain Q provides the
orthonormal basis of L%(Q).

@ The Laplacian eigenvalues encode geometric information of the
domain Q = “Can we hear the shape of a drum?” (Mark Kac, 1966).

@ Temporarily, consider the Laplacian eigenvalue problem on a planar
domain Q € R? with the Dirichlet boundary condition:

{—Au:/lu in Q

u=0 on 0Q.
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S
Spectral Geometry 101

@ The Laplacian eigenfunctions defined on the domain Q provides the
orthonormal basis of L%(Q).

@ The Laplacian eigenvalues encode geometric information of the
domain Q = “Can we hear the shape of a drum?” (Mark Kac, 1966).

@ Temporarily, consider the Laplacian eigenvalue problem on a planar
domain Q € R? with the Dirichlet boundary condition:

-Au=Au in Q
u=0 on 0Q.

o Llet0<A; Ay <A3<---< A <---— o0 be the sequence of
eigenvalues of the above Dirichlet-Laplace eigenvalue problem.
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S
Spectral Geometry 101 ...

Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

Se

Q 0Q
_’1”=u— 09 +0(t_1/2) as t 0.

k=1 awt  8yvmt
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S
Spectral Geometry 101 ...

Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

§ et 121 100

-1/2
+o(t ) ast]O0.
k=1 awt  8yvmt

(a) Hermann Weyl (b) S. Minakshisundaram (c) Ake Pleijel (d) Mark Kac
(1885-1955) (1913-1968) (1913-1989) (1914-1984)
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History—Spectral Geometry

Universal (or Payne-Pélya-Weinberger) Inequalities (7 € N)

0 Ams1—Am<2 1fa~- Ami1 <3 lfa-- Amat g
m+1 m = mj:1 Jjo m+1 = mj:1 jo /1m = 0.
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Spectral Geometry 101
Universal (or Payne-Pélya-Weinberger) Inequalities (7 € N)

O Am+1
=<3.
Ll 3,

1
‘m
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ISR I eI Spectral Geometry 101

Universal (or Payne-Pélya-Weinberger) Inequalities (7 € N)

® Ami1—Am<2 1fﬂt~- Ami1<3 1§ Amit _ g
m+1 m = mj:1 Jjo m+1 m A = /lm =9.

(Hile-Protter).
m+1 _/1]

j=1

saito@math.ucdavis.edu (UC Davis)
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Spectral Geometry 101
Universal (or Payne-Pélya-Weinberger) Inequalities (7 € N)

i A1 <3.

1
“m Am

(a) L. E. Payne (1923-2011) (b) G. Polya (1887 1985)  (c) H. Weinberger (1928-)
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History—Spectral Geometry

Isoperimetric Inequalities
nzjg'l
Q2

o A= (Rayleigh-Faber-Krahn)
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ISR I eI Spectral Geometry 101

Isoperimetric Inequalities

7[2 i2

°o A= |£;|0; (Rayleigh-Faber-Krahn)
A i

o Z2< % ~2.5387  (Ashbaugh-Benguria)
Mo don

saito@math.ucdavis.edu (UC Davis)

MAT 207B: Lectures 26, 27, 28

March, 2025

36 /108



ISR I eI Spectral Geometry 101

Isoperimetric Inequalities

2 o
°o A= |Q|é (Rayleigh-Faber-Krahn)
A i
o < % ~2.5387  (Ashbaugh-Benguria)
M Joa

® ji1 is the first zero of the Bessel function of order k, i.e., Jk(jk,1) =0.
Jo,1 ~2.4048, j11~3.8317, and |Q| is the area of Q. In both cases,
the equality is attained iff Q is a disk in R?.
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ISR I eI Spectral Geometry 101

Isoperimetric Inequalities

232
T"Joa .
o A= P (Rayleigh-Faber-Krahn)
A i
o < % ~2.5387  (Ashbaugh-Benguria)
M Joa

® ji1 is the first zero of the Bessel function of order k, i.e., Jk(jk,1) =0.
Jjo,1 ~2.4048, j11~=3.8317, and |Q| is the area of Q. In both cases,
the equality is attained iff Q is a disk in R?.

(a) Lord Rayleigh (b) Georg Faber (c) Edgar Krahn (d) Mark (e) Rafael
(1842-1919) (1877-1966) (1894-1961) Ashbaugh (1953-) Benguria (1951-)
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ISR I eI Spectral Geometry 101

Remarks

Excellent references on these inequalities are:

e R. D. Benguria, H. Linde, & B. Loewe: “Isoperimetric inequalities for
eigenvalues of the Laplacian and the Schroédinger operator,” Bull.
Math. Sci., vol. 2, pp. 1-56, 2012.

@ A. Henrot: Extremum Problems for Eigenvalues of Elliptic Operators,
Birkhauser Verlag, Basel, 2006.
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Other Properties

@ Domain monotonicity property: Q1 € Qs = A1(Q1) = 1£(Q2), keN.
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S5 2l Ceelrey 1)
Other Properties

@ Domain monotonicity property: Q) € Qp = Ar(Q1) = 11(Q2),

Ak(Q)
a? ’

@ Scaling property: Ax(aQ) = a>0,keN.

This implies:
A(@Q) A

An(@Q)  Ap(Q)’

= the ratios of Laplacian eigenvalues are scale invariant.

k, meN.
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S5 2l Ceelrey 1)
Other Properties

@ Domain monotonicity property: Q) cQp = Ap(Q1) = 1(Q2), keN.

Ak(ZQ), a>0,keN.
a

@ Scaling property: Ar(aQ) =

This implies:
A(@Q) A

An(@Q) ~ Ap(Q)’
= the ratios of Laplacian eigenvalues are scale invariant.
@ Laplacian eigenvalues are translation and rotation invariant.

k, meN.
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S5 2l Ceelrey 1)
Other Properties

@ Domain monotonicity property: Q; € Qo = A;(Q1) = 1,(Q2), keN.

Ak(ZQ), a>0,keN.
a

Scaling property: Ap(aQ) =

This implies:
A(@Q) — A(Q)

An(@Q)  Ap(Q)’

k, meN.

= the ratios of Laplacian eigenvalues are scale invariant.
Laplacian eigenvalues are translation and rotation invariant.

Using these eigenvalues and eigenvalue ratios for shape recognition
and classification has been quite popular recently as | will describe
later.
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S5 2l Ceelrey 1)
Other Properties

@ Domain monotonicity property: Q; € Qo = A;(Q1) = 1,(Q2), keN.

Ak(ZQ), a>0keN.
a

@ Scaling property: Ax(a@Q) =
This implies:

@) A(Q)

Am(a€) Am(Q),

= the ratios of Laplacian eigenvalues are scale invariant.

@ Laplacian eigenvalues are translation and rotation invariant.

@ Using these eigenvalues and eigenvalue ratios for shape recognition
and classification has been quite popular recently as | will describe
later.

@ Some properties and inequalities listed above should hold not only for
the Dirichlet Laplacian eigenvalues but also for our Laplacian
eigenvalues. Note, however, that the domain monotonicity does not
hold for the Neumann Laplacian eigenvalues.

k, meN.
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity

Consider a 2D rectangle of sides a and b with a>b. Then, let
Q':={(x,y)|0<x<a, 0<y<b}, and Qc Q' be the inscribed thin rectangle
of sides /a2 + B2 x \/(a—a)?+ (b— B)?:

Q 9

Figure: The Neumann BC generates an counterexample (From A. Henrot, 2006)
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

@ Can easily compute the Neumann eigenvalues and eigenfunctions for
a rectangle Q'

N_ )N _ 2
Ap =Ag,, =mn

’

(&) + (2

PN (x,y) =<p?{m(x,y) = Co cos(T) cos(%5). n6,m=0,1,2,...

where ¢y:=2/V ab.
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

@ Can easily compute the Neumann eigenvalues and eigenfunctions for
a rectangle Q'

N_ )N _ 2
Ap =Ag,, =mn

’

(&) + (2

PN (x,y) =<p?{m(x,y) = Co cos(T) cos(%5). n6,m=0,1,2,...

where ¢y:=2/V ab.

o Clearly, the smallest eigenvalue is: A) = A5, =0, ¢{'(x, ) = co.
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

@ Can easily compute the Neumann eigenvalues and eigenfunctions for
a rectangle Q'

N_ )N _ 2
Ap =Ag,, =mn

() + 7).

PN (x,y) =<p?{m(x,y) = Co cos(”—(’;") cos(%5). n6,m=0,1,2,...

where ¢y:=2/V ab.
o Clearly, the smallest eigenvalue is: A) = A5, =0, ¢{'(x, ) = co.

@ How about the next smallest one? Since a > b,

A{V = /1{\,70 = (g)z’ (P{V(x, y= (pffo(x, Y)=c¢o cos(%x).
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

o For Aé\’, we have several possibilities, depending on the relationship
between a and b.
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An Counterexample to the Domain Monotonicity . ..

o For Aé\’, we have several possibilities, depending on the relationship
between a and b.

@ Here are just two examples:
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

o For Aé\’, we have several possibilities, depending on the relationship
between a and b.
@ Here are just two examples:
(i) If % > %, i.e., b<a<2b, then

/lév = /1(1)\,71 = (%)2, (PéV(X,y) = (pé\,ll(x,y) = cocos(%y).
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

o For Aé\’, we have several possibilities, depending on the relationship
between a and b.
@ Here are just two examples:
(i) If % > %, i.e., b<a<2b, then

Aé\]:/ltl)\,ﬁ:(%)z» (PéV(X,y)=(pé\f1(x,y)=cocos(%y).

(i) If % < %, i.e., a>2b, then

2m)? 27
Ay = /19”0 = (7) ;oY y) = <p9”0(x,y) = cocos(zx).
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

o For Aé\’, we have several possibilities, depending on the relationship
between a and b.
@ Here are just two examples:
(i) If % > %, i.e., b<a<2b, then

Aé\]:/ltl)\,]l:(%)z» (PéV(X,y)=(pé\f1(x,y)=cocos(%y).

(i) If % < %, i.e., a>2b, then

2m)? 27
Ay = /1% = (7) ;oY y) = <p9”0(x,y) = cocos(zx).

@ The point is that /1]1\] of Q' only depends on the longer side of the
rectangle, in this case a.
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ISR I eI Spectral Geometry 101

An Counterexample to the Domain Monotonicity . ..

o For Aé\’, we have several possibilities, depending on the relationship
between a and b.

@ Here are just two examples:
(i) If % > 1—17, i.e., b<a<2b, then

/lévz/ltl)\fl:(%)z» (PéV(X,y)=(pé\f1(x,y)=cocos(%y).

(i) If % < %, i.e., a>2b, then
2m\? 21
)Lé\’:/l%: (7) , (pév(x,y)=<p9”0(x,y):cocos(7x).

@ The point is that /111\’ of Q' only depends on the longer side of the
rectangle, in this case a.

@ Now the longer side of Q is equal to v/(a—a)% + (b— B)2. By choosing
appropriate @ >0, >0 we can have \/(a—a)?+(b-p)2>a. In
other words, we can have AN (Q) < AV (Q), even if Qc Q.

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 41/108




Harmonic Analysis of/on Irregular Domains
Outline

© Harmonic Analysis of /on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians
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Harmonic Analysis of /on Irregular Domains

Numerical Methods for Laplacian Eigenvalue Problems

e Finite Difference Method (FDM)
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Numerical Methods for Laplacian Eigenvalue Problems

e Finite Difference Method (FDM)
e Finite Element Method (FEM)
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Numerical Methods for Laplacian Eigenvalue Problems

e Finite Difference Method (FDM)
e Finite Element Method (FEM)
e Boundary Element Method (BEM)
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Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
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Harmonic Analysis of/on Irregular Domains

Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)

Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)
e Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009
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Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)
e Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009
Method of Fundamental Solutions (MFS)
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Harmonic Analysis of/on Irregular Domains

Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)
e Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009

Method of Fundamental Solutions (MFS)
o Trefftz 1926, ..., Karageorghis 2001, Alves/Antunes 2005, . ..
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Harmonic Analysis of/on Irregular Domains

Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)
e Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009
e Method of Fundamental Solutions (MFS)
o Trefftz 1926, ..., Karageorghis 2001, Alves/Antunes 2005, . ..

e Diagonalization of Integral Operators Commuting with Laplacian (NS,
2008)
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Harmonic Analysis of/on Irregular Domains

Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)
e Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009
e Method of Fundamental Solutions (MFS)
o Trefftz 1926, ..., Karageorghis 2001, Alves/Antunes 2005, . ..

e Diagonalization of Integral Operators Commuting with Laplacian (NS,
2008)
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© Harmonic Analysis of /on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians
@ Integral Operators Commuting with Laplacian
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2 B0 TS EWSTR FAT W [T ETAIT BT EM  Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

@ Analysis of the Laplacian £ =—A is difficult due to its
unboundedness, etc.
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Harmonic Analysis of /on Irregular Domains Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

@ Analysis of the Laplacian & = —A is difficult due to its
unboundedness, etc.

@ Computing the eigenfunctions of £ by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.
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Recap on Difficulties Dealing with Laplacian

@ Analysis of the Laplacian & = —A is difficult due to its
unboundedness, etc.

@ Computing the eigenfunctions of £ by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.

@ Much better to analyze its inverse, i.e., the Green's operator because
it is compact and self-adjoint.
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Harmonic Analysis of /on Irregular Domains Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

@ Analysis of the Laplacian & = —A is difficult due to its
unboundedness, etc.

o Computing the eigenfunctions of £ by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.

@ Much better to analyze its inverse, i.e., the Green's operator because
it is compact and self-adjoint.

@ Unfortunately, computing the Green's function for a general Q
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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Harmonic Analysis of /on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian

@ The key idea to avoid difficulties associated with the Laplacian &£ is
to find an integral operator £ commuting with £ without imposing
the strict boundary condition a priori.

@ Then, we know that the eigenfunctions of £ is the same as those of
A, which is easier to deal with, due to the following
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Harmonic Analysis of /on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian

@ The key idea to avoid difficulties associated with the Laplacian &£ is
to find an integral operator £ commuting with £ without imposing
the strict boundary condition a priori.

@ Then, we know that the eigenfunctions of £ is the same as those of
A, which is easier to deal with, due to the following

Theorem (G. Frobenius 18967; B. Friedman 1956)

Suppose & and £ commute and one of them has an eigenvalue with
finite multiplicity. Then, # and ¥ share the same eigenfunction
corresponding to that eigenvalue. That is, L@ =A@ and K ¢ = .

(a) G. Frobenius (1849-1917) (b) B. Friedman (1915-1966)
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Harmonic Analysis of /on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian ...

@ The inverse of £ with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel
is called the Green's function G(x,y).
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Harmonic Analysis of /on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian ...

@ The inverse of £ with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel
is called the Green'’s function G(x,y).

@ Since it is not easy to obtain G(x,y) in general, let's replace G(x,y)
by the fundamental solution of the Laplacian:

—3x-yl ifd=1,
Kx,y) = —ﬁloglx—yl if d=2,
lx—yP? ifd>2
d-2wg ma>z,

arz . . .
where wd::% is the surface area of the unit ball in R4, and |-| is
the standard Euclidean norm.
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Integral Operators Commuting with Laplacian ...

@ The inverse of £ with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel
is called the Green'’s function G(x,y).

@ Since it is not easy to obtain G(x,y) in general, let's replace G(x,y)
by the fundamental solution of the Laplacian:

—3x-yl ifd=1,
Kx,y) = —ﬁloglx—yl if d=2,
Iy’ if d>2
d2wa ! '
where wdzzrz(”d—d/;) is the surface area of the unit ball in R4, and |-| is

the standard Euclidean norm.

@ The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Harmonic Analysis of/on Irregular Domains

Integral Operators Commuting with Laplacian ...

@ Let & be the integral operator with its kernel K(x,y):

K f(x):= fQ Kx,yfydy, [eLl*Q.
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Integral Operators Commuting with Laplacian ...

o Let £ be the integral operator with its kernel K(x,y):

.](f(x)::fQK(x,y)f(y)dy, fel?(Q).

Theorem (NS 2005, 2008)

The integral operator # commutes with the Laplacian £ = —A with the
following non-local boundary condition:

0K(x,y)

/K(x 19 s = — Lo + vf 2EY o) dsy), YxedQ
o KV 5, AW ==50@ + pv| == 0()dsw), ,

where @ is an eigenfunction common for both operators, and pv indicates
the Cauchy principal value.
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Integral Operators Commuting with Laplacian

Corollary (NS 2009)

The eigenfunction @(x) of the integral operator % in the previous theorem
can be extended outside the domain Q and satisfies the following equation:

o Ap ifxeQ;
?ZV0  ifxeri\Q

0
with the boundary condition that ¢ and 99 are continuous across the

v
boundary 0Q. Moreover, as |x| — oo, @(x) must be of the following form:

= const- [x[>~% + O(|x|'=%) if d #2;
= const-In|x|+ O(|x|!) ifd=2.
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Integral Operators Commuting with Laplacian ...

Corollary (NS 2005, 2008)

The integral operator & is compact and self-adjoint on L>(Q). Thus, the
kernel K(x,y) has the following eigenfunction expansion (in the sense of
mean convergence):

K@x,p) ~ ) pujpj®e;),
j=1

and {¢j}; forms an orthonormal basis of L*(Q).

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 50 /108



Harmonic Analysis of /on Irregular Domains BT ENSE T ES
Qutline

© Harmonic Analysis of /on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

@ Simple Examples
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1D Example

@ Consider the unit interval Q =(0,1).
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SmFEEE
1D Example

@ Consider the unit interval Q =(0,1).

@ Then, our integral operator £ with the kernel K(x,y)=—|x—y|/2
gives rise to the following eigenvalue problem:

-¢"=Lp, x€(0,1);

@(0) + (1) = —¢'(0) = ¢'(1).
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1D Example

@ Consider the unit interval Q =(0,1).

@ Then, our integral operator £ with the kernel K(x,y)=—|x—y|/2
gives rise to the following eigenvalue problem:

-¢"=Lp, x€(0,1);

@(0) + (1) = —¢'(0) = ¢'(1).

@ The kernel K(x,y) is of Toeplitz form —> Eigenvectors must have
even and odd symmetry (Cantoni-Butler '76).
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SmFEEE
1D Example

Consider the unit interval Q=(0,1).

Then, our integral operator £ with the kernel K(x,y) =—|x—y|/2
gives rise to the following eigenvalue problem:

-¢"=Lp, x€(0,1);

@(0) + (1) = —¢'(0) = ¢'(1).

@ The kernel K(x,y) is of Toeplitz form —> Eigenvectors must have
even and odd symmetry (Cantoni-Butler '76).

In this case, we have the following explicit solution.
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1D Example ...

~ . . N
@ Ao = —5.756915, which is a solution of tanh Y5~ = e

1
@o(x) = Agcosh /- (x - 5) ;
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1D Example ...

~ . . N
@ Ao = —5.756915, which is a solution of tanh Y5~ = Na

1
@o(x) = Agcosh /- (x— 5),

e Lom1=Cm-1%1% m=1,2,...,

Pam-1(x) =V2cos@2m—1)mx;
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SmFEEE
1D Example ...

—_ . . . \/_A'O _ 2
@ Ao = —5.756915, which is a solution of tanh Y= = Nt

1
@o(x) = Agcosh /- (x— 5),

e Lom1=Cm-1%1% m=1,2,...,

QYom-1(x) = V2cos@m - 1)rx;
V /12m — 2

@ Aoy, m=1,2,..., which are solutions of tan Y52 —
2m

1
@om(x) = Az cOSV Ao (x— 5) ,

where A, k=0,1,... are normalization constants.
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First 5 Basis Functions
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1D Example: Comparison

@ The Laplacian eigenfunctions with the Dirichlet boundary condition:
—¢" = Ag, p(0)=¢(1) =0, are sines. The Green's function in this case
is:

Gp(x,y) =min(x, y) — xy.
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1D Example: Comparison

@ The Laplacian eigenfunctions with the Dirichlet boundary condition:
—¢" = Ag, p(0)=¢(1) =0, are sines. The Green's function in this case
is:

Gp(x,y) =min(x, y) — xy.

@ Those with the Neumann boundary condition, i.e., ¢'(0) = ¢'(1) =0,
are cosines. The Green's function is:

L oo 51
GN (%)) = —max(x, y) + 2 (¥ + y) + .
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SmFEEE
1D Example: Comparison

@ The Laplacian eigenfunctions with the Dirichlet boundary condition:
—¢" = Ag, p(0)=¢(1) =0, are sines. The Green's function in this case
is:

Gp(x,y) =min(x, y) — xy.
@ Those with the Neumann boundary condition, i.e., ¢'(0) = ¢'(1) =0,

are cosines. The Green's function is:

L oo 51
GN (%)) = —max(x, y) + 2 (¥ + y) + .

@ Remark: Gridpoint < DST-1/DCT-I;
Midpoint< DST-11/DCT-II.
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2D Example

@ Consider the unit disk Q. Then, our integral operator £ with the
kernel K(x,y) = —%loglx—yl gives rise to:
-Ap=Ag, inQ;
op| 0|  0H¢
ovlea ™ orlea” 60 loa’
where € is the Hilbert transform for the circle, i.e.,

Jff(@)z—pv f(n)cot((9 )dn 0¢€[-mm].
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SmFEEE
2D Example

o Consider the unit disk Q. Then, our integral operator £ with the
kernel K(x,y) = —5-log|x — y| gives rise to:

-Ap=Ag, inQ;
O0p B Op B oA p
ovlea oarlaa™ 00 loa’

where A is the Hilbert transform for the circle, i.e.,
60—
Jf0): :—pv f(n)cot( )dn 0¢€[-mm].

o Let ji ¢ is the ¢th zero of the Bessel function of order k, Ji(jk¢) =0.

(Pm,n(r;g) = s

Then,
- TmGm-1,2D)()mO)  if m=1,2,...,n=12,...,
Jo(jo,nT) ifm=0,n=1,2,...,

B Tz,
’ B ifm:o)nZI,Z,....

o,n
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First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28



Harmonic Analysis of /on Irregular Domains BT ENSE T ES

3D Example

e Consider the unit ball Q in R3. Then, our integral operator % with

the kernel K(x,y) = m.

U
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3D Example

e Consider the unit ball Q in R3. Then, our integral operator % with
the kernel K(x,y) =

@ Top 9 eigenfunctions cut at the equator viewed from the south:

_1
dr|x—y|"

OB
U
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© Harmonic Analysis of /on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

@ Discretization of the Problem
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Discretization of the Problem

@ Assume that the whole dataset consists of a collection of data
sampled on a regular grid, and that each sampling cell is a box of size
H?:l Axi.

@ Assume that an object of our interest Q consists of a subset of these
boxes whose centers are {xi}ﬁ\il.

@ Under these assumptions, we can approximate the integral eigenvalue
problem % ¢ = p@ with a simple quadrature rule with node-weight
pairs (xj, w;) as follows.

N d
Y wiK(x;,x)ex;) =ppx;), i=1,...,N, wj=]]Ax:.
j=1 i=1
o Let K j:=w;K(x;,x;), ¢;:=¢(x;), and @:=(p1,...,on)" €RN. Then,
the above equation can be written in a matrix-vector format as:
K¢ = ug, where K = (K;;) € RV*N. Under our assumptions, the
weight w; does not depend on j, which makes K symmetric.
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Fast Algorithms for Computing Eigenfunctions
A Possible Fast Algorithm for Computing ¢;'s

@ Observation: our kernel function K(x,y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory.

o ldea: Accelerate the matrix-vector product K¢ using the Fast
Multipole Method (FMM).

@ Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N?), but
can achieve O(NlogN) via the randomized SVD algorithm of
Woolfe-Liberty-Rokhlin-Tygert (2008)).

@ Construct O(N) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS"
algorithm of Chandrasekaran et al. (2006)).

@ Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.

(Computational cost: O(N) for each eigenvalue/eigenvector).
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Tree-Structured Matrix via FMM
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A Real Challenge: Kernel matrix is of 387924 x 387924.
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Harmonic Analysis of /on Irregular Domains

First 25 Basis Functions via the FMM-based algorithm
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(a) Whole islands (b) Separated islands
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Eigenfunctions for Separated Islands
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General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:
@ Interactive image analysis, discrimination, interpretation:

o Medical image analysis: e.g., hippocampal shape analysis for early

Alzheimer's
o Biometry: e.g., identification and characterization of eyes, faces, etc.

@ Geophysical data assimilation:
e Incorporating ocean current data measured by high frequency radar

into a numerical model;

e Interpolation, extrapolation, prediction of vector-valued meteorology
data (temperature, pressure, wind speed, etc.) measured at the
weather station in the 3D terrain.
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Remark on the DC vector

@ The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector xq:=1n/VNeRY.
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Remark on the DC vector

@ The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector xq:=1n/VNeRY.

o If some application needs to have the DC vector of a given domain Q
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.
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Remark on the DC vector

@ The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector xq:=1n/VNeRY.

o If some application needs to have the DC vector of a given domain Q

and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.

o Consider the orthogonal complement to the 1D subspace span{y} in
the column space of the kernel matrix K:

K=(I-xaxo) K.
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G BT TG E WSTERCT I WISV BB General Comments on Applications

Remark on the DC vector

@ The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector xq:=1n/VNeRN.

o If some application needs to have the DC vector of a given domain Q
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.

o Consider the orthogonal complement to the 1D subspace span{y} in
the column space of the kernel matrix K:

K=(I-xaxo) K.

o Then, x, together with the eigenvectors of K corresponding to the
largest N —1 eigenvalues form the desired orthonormal basis.
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Harmonic Analysis of/on Irregular Domains

Remark on the DC vector ...

-0.15 -0.15

0 0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 - o 0.1 02 03 0.4 05 0.6 Of7 08 04‘9 1
x x

(a) Laplacian Eigenfunctions via (b) Laplacian Eigenfunctions incorporating

Commuting Integral Operator the DC vector

—> leads to the generalized discrete cosine basis!
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@ Image Approximation |: Comparison with Wavelets
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Image Approximation; Comparison with Wavelets

50 60 70 80 90

(a) What data?
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Image Approximation; Comparison with Wavelets

50 60 70 80 90 30 40 50 60 70 80 90

a) What data? b) x;- Barbara
J
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Harmonic Analysis of /on Irregular Domains Image Approximation |: Comparison with Wavelets

First 25 Basis Functions
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Image Approximation |: Comparison with Wavelets
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Harmonic Analysis of/on Irregula ains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 Coefficients

50 60 70 80 90 100

(a) Reconstruction
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Image Approximation |: Comparison with Wavelets
Reconstruction with Top 100 Coefficients

30 40 50 60 70 80 90 100

(a) Reconstruction (b) Error
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Image Approximation I: Comparison with Wavelets
Reconstruction with Top 100 2D Wavelets (Symmlet 8)

50 60 70 80 90 100

(a) Reconstruction
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Image Approximation |: Comparison with Wavelets
Reconstruction with Top 100 2D Wavelets (Symmlet 8)

40 50 60 70 80 90

(a) Reconstruction (b) Error
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Image Approximation I: Comparison with Wavelets
Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction
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Image Approximation |: Comparison with Wavelets
Reconstruction with Top 100 1D Wavelets (Symmlet 8)

40 50 60 70 80 90

(a) Reconstruction (b) Error
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Comparison of Coefficient Decay
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© Harmonic Analysis of /on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

@ Image Approximation Il: Robustness against Perturbed Boundaries
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Harmonic Analysis of/on Irregular Domains Image Approximation Il: Perturbed Boundaries

Experiments on Domains with Perturbed Boundaries

We will use the following domains for our experiments:
Qq: The Japanese Islands
Qs: A smoothed and connected version of Qg;
Q3: The same as Q, but with a “jaggy” boundary curve
Q4: The two-component version of Q.

As for the data on these domains, we adopted three functions with
different smoothness:

@ A discontinuous function (i.e., a simple step function whose
discontinuity is a straight line along the “spine” or the main axis of
the domain);

@ A pyramid-shaped function, which is continuous and its first order
partial derivatives are of bounded variation;

© The standard Gaussian function.
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Image Approximation Il: Perturbed Boundaries

80 100 120 140 160 180

(b) xa,

(c) xas (d) xa,
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Harmonic Analysis of/on Irregular Domains Image Approximation Il: Perturbed Boundaries

Decay Rates of the Expansion Coefficients (Unsorted)

o)

—— Discontinuous.

10" 10 10° 10" 10t
«

c) Decay rates on Q3 d) Decay rates on Qg
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Harmonic Analysis of/on Irregular Domains Image Approximation Il: Perturbed Boundaries

Observations on the Decay Rates

The decay rates reflect the intrinsic smoothness of the functions living
in the domain, but are not affected by the existence of the boundary
of the domains.

The decay rates are rather insensitive to the smoothness of the
boundary curves. In particular, the plots for Q,, Q3, and Q4 are
virtually the same whereas those for Q;—the most complicated
domain among these four—seem slightly worse than the others. Yet
all behave better than O(k™!).

The decay rates are rather insensitive to the number of the separated
subdomains. Again, it will be also of interest to investigate the
behavior the conventional Laplacian eigenfunctions in this respect.
Although the coefficient plots oscillate around the linear lines (in the
log-log scale), the decay rates O(k™%), regardless of the domain
shapes, behave as follows. For the discontinuous functions, a <1. For
the pyramid-shape function, 1 < a < 1.5. For the Gaussian function,
a=1.5.
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Decay Rates of the Expansion Coefficients (Sorted)
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Conjecture on the Coefficient Decay Rate

Conjecture (NS 2007)

Let Q be a C?>-domain of general shape and let f € C(ﬁ) with

0 -
% € BV(Q) for j=1,...,d. Let {cx = (f, i)} en be the expansion

J
coefficients of f with respect to our Laplacian eigenbasis on this domain.
Then, |ci| decays with rate O(k™®) with 1< a <2 as k— oo. Thus, the
approximation error using the first m terms measured in the L?>-norm, i.e.,

If-x7, ck<Pk||Lz(Q) should have a decay rate of O(m~**%%) as m — co.

v
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Harmonic Analysis of/on Irregular Domains Image Approximation Il: Perturbed Boundaries

Conjecture on the Coefficient Decay Rate

Conjecture (NS 2007)

Let Q be a C?>-domain of general shape and let f € C(ﬁ) with

0 -
% € BV(Q) for j=1,...,d. Let {cx = (f, i)} en be the expansion

J
coefficients of f with respect to our Laplacian eigenbasis on this domain.
Then, |ci| decays with rate O(k™®) with 1< a <2 as k— oo. Thus, the
approximation error using the first m terms measured in the L?>-norm, i.e.,

If-x7, ck<Pk||Lz(Q) should have a decay rate of O(m~**%%) as m — co.

v

The C?-smoothness of the boundary could be weakened ...
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@ Hippocampal Shape Analysis
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Hippocampal Shape Analysis

@ Presenting the work of Faisal Beg and his group at Simon Fraser
Univ. using our technique

@ Want to distinguish people with mild dementia of the Alzheimer type
(DAT) from cognitively normal (CN) people

@ Hippocampus nlave imnartant ralec in lano-tarm memory and spatial
navigation

Hippocampus

Figure: From Wikipedia
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G ) Sl A
Hippocampal Shape Analysis . ..

@ Dataset: Left hippocampus segmented from 3D MRI images

e Compute the smallest 999 Laplacian eigenvalues (i.e., the largest 999
eigenvalues of the integral operator #") for each left hippocampus

@ Construct a feature vector for each left hippocampus:

Fim [y ):(& et e,

Ao Apsr w'

This feature vector was used by Khabou, Hermi, and Rhouma (2007)
for 2D shape classification (e.g., shapes of tree leaves).

@ Reduce the feature space dimension via PCA to from n =998 to n'’

o Classified by the linear SVM (support vector machine)
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First Three Eigenfunctions of Three Patients

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 90 /108



Harmonic Analysis of/on Irregular Domains

The Second Eigenfunction ¢,

a’ N

(a) N=15135 (b) N =15438 (c) N=14938 (d) N =15256

N S \‘n

(e) N=14201 (f) N=15630 (g) N=12073 (h) N =12240
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Harmonic Analysis of/on Irregular Domains

The Third Eigenfunction ¢5

o
{ A\
(a) N=15135 (b) N=15438 (c) N=14938 (d) N=15256
A &\
N\ * 3 Q
(e) N=14201 (f) N =15630 (g) N=12073 (h) N=12240
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Harmonic Analysis of/on Irregular Domains Hippocampal Shape Analysis

Classification Results

Dataset consists of the segmented left hippocampuses of 18 DAT subjects
and of 26 CN subjects:

Method Accuracy Specificity Sensitivity n n
Momlinv 68.1% 69.2% 66.6% 12 1
Tensorlnv 75.0% 76.9% 722% =1.9E5 17
LapEig 77.2% 84.6% 66.6% 998 14
Geodesiclnv 86.3% 77.7% 92.3% =1.3E6 27
|TP|+|TN| |people correctly diagnosed|
accuracy:= - = _
|people examined| |people examined|
. |TN| |people correctly diagnosed as healthy|
specificity:= = -
|TN|+ |FP| |healthy people examined|
o |TP| |people correctly diagnosed as mild AD|
sensitivity := = - - -
|TP|+|FN]| |people with mild AD examined]|
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o Statistical Image Analysis; Comparison with PCA
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Comparison with PCA

Consider a stochastic process living on a domain Q.

PCA/Karhunen-Loéve Transform is often used.

PCA/KLT implicitly incorporate geometric information of the
measurement (or pixel) location through data correlation.

Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K(x,y).
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Statistical Image Analysis; Comparison with PCA
Comparison with PCA: Example

@ “Rogue’s Gallery” dataset from Larry Sirovich
@ 72 training dataset; 71 test dataset
o Left & right eye regions
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Harmonic Analysis of/on Irregular Domains

Comparison with PCA: Basis Vectors

t »
1 v

(a) KLB/PCA 1:9
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Harmonic Analysis of /on Irregular Domains

Comparison with PCA: Basis Vectors

t »
1 v

(a) KLB/PCA 1:9 (b) Laplacian Eigenfunctions 1:9
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Harmonic Analysis of /on Irregular Domains

Comparison with PCA: Basis Vectors . ..

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Comparison with PCA: Kernel Matrix

4 & St 4 4§
L A

40 60 80

(a) Covariance (b) Harmonic kernel
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Statistical Image Analysis; Comparison with PCA
Comparison with PCA: Energy Distribution over
Coordinates
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(a) KLB/PCA (b) Laplacian Eigenfunctions
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Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vector #7

cy:large cy:large

$7

c7:small c7:small
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Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vector #13

c13:large c13:large

$13

c13:small c13:small
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Asymmetry Detector

.

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Summary & References

Summary: Harmonic Analysis of /on Irregular Domains via Laplacian Eigenfunctions

LEs computed via the commuting integral operator provide an orthonormal
basis on a general shape domain or a graph and allow spectral
analysis/synthesis of data on them

Can get fast-decaying expansion coefficients thanks to the rather implicit BC
that may be more natural under certain situations

@ Can decouple geometry of domains and statistics of data

@ Can extract geometric information of a domain via {Ax}x

@ Allow object-oriented (or localized) data analysis & synthesis, e.g., could be

effective for local reconstruction of an ROl and anomaly detection on it

3 A variety of applications: interpolation, extrapolation, local feature
computation, solving heat equations on complicated domains . ..

@ Fast algorithms are the key for higher dimensions/large domains

@ Can also be defined and computed on a Riemannian manifold (e.g., a curved
surface); to do so, we need the Riemannian metric of the manifold and
geodesic distances between sample points
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Summary & References

References

Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/~saito/lapeig/ contains:

e My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”

@ My Course Slides on "Harmonic Analysis on Graphs and Networks”

o Talk slides of the minisymposia on Laplacian Eigenfunctions at:
ICIAM 2007, Zirich (Organizers: NS, Mauro Maggioni); SIAM
Imaging Science Conference 2008, San Diego (Organizers: NS,
Xiaomin Huo); IPAM 5-day Workshop 2009, UCLA (Organizers:
Peter Jones, Denis Grebenkov, NS); SIAM Annual Meeting 2013, San
Diego (Organizers: Chiu-Yen Kao, Braxton Osting, NS); BIRS 5-day
Workshop 2015, Banff (organizers: Peter Jones, Denis Grebenkov,
NS).
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Summary & References

The following articles (and the other related ones) are available at
http://www.math.ucdavis.edu/“saito/publications/

o N. Saito & J.-F. Remy: “The polyharmonic local sine transform: A
new tool for local image analysis and synthesis without edge effect,”
Applied & Computational Harmonic Analysis, vol. 20, no. 1, pp.
41-73, 2006.

o N. Saito: “Data analysis and representation using eigenfunctions of
Laplacian on a general domain,” Applied & Computational Harmonic
Analysis, vol. 25, no. 1, pp. 68-97, 2008.
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Summary & References

Thank you very much for your attention!
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