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Motivations Motivations: Why Irregular Domains?

Motivations: Why Irregular Domains?
Consider a bounded domain of general shape Ω⊂Rd .
Want to analyze the spatial frequency information inside of the object
defined in Ω =⇒ need to avoid the Gibbs phenomenon due to ∂Ω.
Want to represent the object information efficiently for analysis,
interpretation, discrimination, etc. =⇒ need fast decaying expansion
coefficients relative to a meaningful basis.
Want to extract and analyze geometric information about the domain
Ω =⇒ M. Kac: “Can one hear the shape of a drum?” (1966);
spectral geometry; shape clustering/classification.

(a) Ω⊂Rd (b) M. Kac (1914–1984)
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Object-Oriented Image Analysis

(a) Original (b) Background

(c) Object (d) Anomalies
saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 8 / 108



Motivations Motivations: Why Irregular Domains?

Data Analysis on a Complicated Domain

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 9 / 108



Motivations Motivations: Why Irregular Domains?

3D Hippocampus Shape Analysis (Courtesy: F. Beg)
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Climate Data Analysis: Continent (Courtesy: T. DelSole)
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FIG. 5. The first three Laplacian eigenfunctions over land on a 5◦×5◦ regular grid. The patterns are orthogonal

with respect to an area weighted inner product and normalized such that the area averaged square equals one.
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Climate Data Analysis: Ocean (Courtesy: T. DelSole)
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FIG. 9. The first three Laplacian eigenfunctions over the ocean on a 5◦× 5◦ regular grid. The patterns are

orthogonal with respect to an area weighted inner product and normalized such that the area averaged square

equals one.

548

549

550

35

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 12 / 108



Motivations Motivations: Why Irregular Domains?

Enter Laplacian Eigenfunctions!
On irregular Euclidean domains, appropriately defined Laplacian
eigenfunctions play an important role for data analysis.
Let us first consider an irregular (i.e., general shape) Euclidean
domain Ω⊂Rd .

Let L :=−∆=−
(
∂2

∂x1
2 +·· ·+ ∂2

∂xd
2

)
.

The Laplacian eigenvalue problem is defined as:

L u =−∆u =λu in Ω,

together with some appropriate boundary condition (BC).
Most common (homogeneous) BCs are:

Dirichlet: u = 0 on ∂Ω;
Neumann: ∂u

∂ν
= 0 on ∂Ω;

Robin (or impedance): au +b
∂u

∂ν
= 0 on ∂Ω, a 6= 0 6= b.
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Enter Laplacian Eigenfunctions . . .
The nontrivial solution u =ϕ of such a boundary value problem
(BVP) is called the Laplacian eigenfunction corresponding to the
eigenvalue λ.
Via Green’s 1st identity, the Dirichlet BC leads to:
0<λ1 ≤λ2 ≤ ·· · ≤λk →∞.
On the other hand, the Neumann BC leads to:
0=λ1 ≤λ2 ≤ ·· · ≤λk →∞.
In the case of the Robin BC, some eigenvalues may be even negative.

(a) P.-S. Laplace
(1749–1827)

(b) J.P.G.L. Dirichlet
(1805–1859)

(c) Carl Neumann
(1832–1925)

(d) Gustave Robin
(1855–1897)
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Laplacian Eigenfunctions . . . Why?

Why not analyze (and synthesize) an object of interest defined or
measured on an irregular domain Ω using genuine basis functions
tailored to the domain instead of the basis functions developed for
rectangles, tori, balls, etc.?
After all, sines (and cosines) are the eigenfunctions of the Laplacian
on a rectangular domain (e.g., an interval in 1D) with Dirichlet (and
Neumann) boundary condition.
Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave
Functions, are part of the eigenfunctions of the Laplacian (via
separation of variables) for the spherical, cylindrical, and spheroidal
domains, respectively.
Laplacian eigenfunctions (LEs) allow us to perform spectral analysis
of data measured at more general domains or even on graphs and
networks =⇒ Generalization of Fourier analysis!
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Laplacian Eigenfunctions . . . Why?

LEs have more physical meaning (i.e., vibration modes, heat
conduction, . . . ) than other popular basis functions such as wavelets
and wavelet packets.
LEs may particularly be useful for inverse problems and imaging:
Suppose the domain shape Ω is fixed yet the material contents inside
that domain, say u(x), x ∈Ω, change over time, i.e., u(x , t ), x ∈Ω,
t ∈ [0,T ]. Suppose one want to detect whether there is any change in
the material contents in Ω over time, i.e., estimate ut (x , t ) via
imaging.
LEs may also be necessary for many shape optimization problems:
e.g., among all possible 2D shapes having unit area, what is the shape
that minimizes its fifth smallest Dirichlet-Laplacian eigenvalues?
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Shape Optimization (Courtesy of B. Osting)

Computational results for single eigenvalues

Oudet (2004)TITLE WILL BE SET BY THE PUBLISHER

No Optimal union of discs Computed shapes

10

46.125 46.125

9

64.293 64.293

8

78.4782.462

7

88.9692.2506

107.47110.42

5

119.9127.88

4

133.52138.37

3

143.45154.62

Fig. 5. Best-known shapes

Fig. 6. λ1 (left) and λ2 (right)

[6] M. G. Crandall and P. L. Lions, Viscosity Solutions of Hamilton-Jacobi Equations, Tran. AMS 277 (1983),
1-43.

[7] G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die
kreisförmige den tiefsten Grundton gibt, Sitz. Ber. Bayer. Akad. Wiss. (1923), 169-172.

[8] S. Finzi Vita, Constrained shape optimization for Dirichlets problems : Discretization via relaxation, Adv. in
Math. Sci. and Appl. 9 (1999), 581-596.

[9] A. Henrot, Minimization problems of eigenvalues of the laplacian, to appear in Journal of Evol. Eq.

[10] A. Henrot, E. Oudet, Le stade ne minimise pas λ2 parmi les ouverts convexes du plan, C. R. Acad. Sci. Paris
Sér. I Math., 332 (2001), 417-422.

16

ha
l-0

03
84

99
6,

 v
er

si
on

 1
 - 

18
 M

ay
 2

00
9

I The level set method is used to
represent the domains

I Relaxed formulation used to
compute eigenvalues

I The k-th eigenvalue of the
minimizer is multiple

Antunes + Freitas (2012)

i Ω multiplicity λ∗
i Oudet’s result

5 2 78.20 78.47

6 3 88.52 88.96

7 3 106.14 107.47

8 3 118.90 119.9

9 3 132.68 133.52

10 4 142.72 143.45

11 4 159.39 -

12 4 172.85 -

13 4 186.97 -

14 4 198.96 -

15 5 209.63 -

Table 2: Dirichlet minimizers with the optimal values for λ∗
i and the corresponding multiplicity.

do this, we find that the results obtained do not differ in a significant way and, in particular, the numerical optimizer

for λ13 remains without any symmetries.

6 Symmetries, multiplicities and TRIANGULAR domains

An analysis of the optimizers obtained suggests several remarks and directions for future study, both numerically and

analytically. One first issue is related to symmetry. It is part of the folklore of this subject that optimizers should

have some sort of symmetry. Although this seems to be the case in most situations, we found one example, λ13,

for which there seems to be no symmetry involved. Due to the high multiplicies involved and to the complexity of

the optimization procedure we can’t, of course, ensure that there does not exist another domain - which does not

necessarily have to be close to this one - for which λ13 is lower than the one given here. We have considered the

optimization of λ13 among domains which are symmetric by reflection with respect to some line. Instead of the

expansion (12), we have considered

r(t) ≈ r̃(t) =
M∑

j=0

aj cos(j t) (17)

and then optimized the cooefficients aj , j = 0, ..., M to minimize λ13|Ω|. Our symmetric numerical optimizer is

plotted in Figure 5 together with the optimizer obtained without symmetry constraint. For this symmetric domain,

we obtained λ13 = 187.92 which, due to the high accuracy of the MFS, we believe to be significantly larger than 186.97

13

I Eigenvalues computed via meshless method

I Domains parameterized using Fourier
coefficients

I k = 13 minimizer is not symmetric
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Motivations Motivations: Why Irregular Domains?

Laplacian Eigenfunctions . . . Some Facts

Analysis of L is difficult due to its unboundedness, etc.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Thus L −1 has discrete spectra (i.e., a countable number of
eigenvalues with finite multiplicity) except 0 spectrum.
L has a complete orthonormal basis of L2(Ω), and this allows us to
do eigenfunction expansion in L2(Ω).
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Motivations Motivations: Why Irregular Domains?

Laplacian Eigenfunctions . . . Difficulties

The key difficulty is to compute such eigenfunctions; directly solving
the Helmholtz equation (or eigenvalue problem) on a general domain
is tough.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann,
Robin) is also very difficult.
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History–Spectral Geometry

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Summary & References
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History–Spectral Geometry 1D Wave Equation

Laplacian Eigenfunctions in 1D — The Wave Equation
Around mid 18 C, d’Alembert, Euler, D. Bernoulli examined and created
the theory behind vibrations of a 1D string.

Consider a perfectly elastic and flexible string of length `.
ρ(x): a mass density; T (x): the tension of the string at x ∈ [0,`].
If u(x, t ) is the vertical displacement of the string at location x ∈ [0,`]
and time t ≥ 0, then the string vibrates according to the 1D wave

equation (a.k.a. the string equation): ρ(x)
∂2u

∂ t 2 = ∂

∂x

(
T (x)

∂u

∂x

)

(a) Jean d’Alembert
(1717–1783)

(b) Leonhard Euler
(1707–1783)

(c) Daniel Bernoulli
(1700–1782)
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History–Spectral Geometry 1D Wave Equation

Importance of the Boundary and Initial Conditions
From now on, for simplicity, we assume the uniform density and
constant tension, i.e., ρ(x) ≡ ρ, T (x) ≡ T .
Under this assumption, the above wave equation simplifies to:

ut t = c2uxx c ≡√
T /ρ.

The 1D wave equation above has infinitely many solutions.
Need to specify a boundary condition (BC) and an initial condition
(IC) to obtain the desired solution.
One possibility: both ends of the string are held fixed all the time =⇒
the Dirichlet BC: u(0, t ) = u(`, t ) = 0, ∀t ≥ 0.
As for the IC, let u(x,0) = f (x) (initial position); ut (x,0) = g (x) (initial
velocity), ∀x ∈ [0,`]. What we have then is:

ut t = c2uxx for x ∈ (0,`) and t > 0;
u(0, t ) = u(`, t ) = 0 for t ≥ 0;
u(x,0) = f (x), ut (x,0) = g (x) for x ∈ [0,`].

(1)
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History–Spectral Geometry 1D Wave Equation

Behavior of the String u(x, t )

Use the method of separation of variables to seek a nontrivial solution
of the form: u(x, t ) = X (x)T (t ).
Plugging X (x)T (t ) into the (1), we get:

X T ′′ = c2X ′′T =⇒ X ′′

X
= T ′′

c2T
= k,

where k must be a constant.
This leads to the following ODEs:

X ′′−k X = 0 with X (0) = X (`) = 0, (2)

T ′′− c2kT = 0 (3)

The characteristic equation of (2), i.e., r 2 −k = 0, must be analyzed
carefully.
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History–Spectral Geometry 1D Wave Equation

Solving ODEs
Case I: k > 0 =⇒ r =±pk; hence

X (x) = Ae
p

kx +Be−
p

kx or A cosh(
p

kx)+B sinh(
p

kx).

Applying the BC X (0) = X (`) = 0 yields A = B = 0, thus the
case of k > 0 is not feasible.

Case II: k = 0 =⇒ X ′′ = 0 =⇒ X (x) = Ax +B , which again leads to
X (x) ≡ 0.

Case III: k < 0. Set k =−ξ2 and ξ> 0. Then the characteristic
equation becomes r 2 +ξ2 = 0, i.e., r =±iξ. Therefore we get

X (x) = A cos(ξx)+B sin(ξx)

By the BC X (0) = X (`) = 0, we get:{
X (0) = 0 =⇒ A = 0
X (`) = B sin(ξ`) = 0 =⇒ ξ= nπ

` , ∀n ∈N
Note n = 0 leads to X (x) ≡ 0 in this case, so it should not be
included.
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History–Spectral Geometry 1D Wave Equation

Forming the Solution

Hence we have X (x) = B sin( nπ
` x), and for convenience, by setting

B =p
2/`, let us define

Xn(x) =ϕn(x) :=
√

2

`
sin

(nπ

`
x
)

,

so that ‖ϕn‖L2[0,`] = 1. Note that {ϕn}n∈N form an orthonormal basis
for L2[0,`].
Similarly, by T ′′ =−ξ2c2T we obtain the family of solutions

Tn(t ) = an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)

.

Now, for each n ∈N, the function

un(x, t ) = Tn(t ) ·ϕn(x) =
{

an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)}√

2

`
sin

(nπ

`
x
)

satisfies (1).
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so that ‖ϕn‖L2[0,`] = 1. Note that {ϕn}n∈N form an orthonormal basis
for L2[0,`].
Similarly, by T ′′ =−ξ2c2T we obtain the family of solutions

Tn(t ) = an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)

.

Now, for each n ∈N, the function

un(x, t ) = Tn(t ) ·ϕn(x) =
{

an cos
(nπc

`
t
)
+bn sin

(nπc

`
t
)}√

2

`
sin

(nπ

`
x
)

satisfies (1).
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u(x, t ) =
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n=1
un(x, t ) =

∞∑
n=1

{
an cos

(nπc

`
t
)
+bn sin

(nπc

`
t
)}
ϕn(x) (4)

is a general solution with yet undetermined coefficients an and bn .
Next, we specify the coefficients an and bn by matching (4) with the
ICs in (1). Thus we get

u(x,0) = f (x) =
∞∑

n=1
an

√
2

`
sin

(nπ

`
x
)
=

∞∑
n=1

anϕn(x)

Then
an = 〈

f ,ϕn
〉=√

2

`

∫ `

0
f (x)sin

(nπ

`
x
)

dx,

which is a Fourier sine series expansion of f .
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History–Spectral Geometry 1D Wave Equation

Forming the Solution . . .

Similarly, ut (x,0) = g (x) =
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n=1

nπc

`
bn

√
2

`
sin

(nπ

`
x
)

.

Note that nπc

`
bn = 〈

g ,ϕn
〉=⇒ bn = `

nπc

〈
g ,ϕn

〉
.

Finally, we obtain the particular solution:

u(x, t ) =
∞∑

n=1

{〈
f ,ϕn

〉
cos

(nπc

`
t
)
+ `

nπc

〈
g ,ϕn

〉
sin

(nπc

`
t
)}
ϕn(x),

which satisfies (1) completely including both BC & IC.

Figure: Jean Baptiste Joseph Fourier (1768–1830)
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History–Spectral Geometry 1D Wave Equation

Remarks

Need to check if our solution makes sense physically. Notice that

c2 = T

ρ
=⇒ the sound frequency = nπ

`

√
T

ρ
.

Hence, ` is short, T is high, and ρ is small (thin), then such a string
generates a high frequency tone.
On the other hand, if ` is long, T is low, and ρ is large (thick), then
it generates a low frequency tone.
Note that the Neumann BC imposes

ux (0, t ) = ux (`, t ) = 0 ∀t > 0.

This leads to the Fourier cosine series expansions of f and g . Note
that the Neumann problem allows the solution u0(x, t ) = a0 = const.
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History–Spectral Geometry 1D Wave Equation

Remarks . . .

Through the separation of variables for finding a solution to the 1D
string equation with BC & IC (1), we arrive at the system

−X ′′ = ξ2X with X (0) = X (`) = 0. (5)

Notice that (5) is a 1D version of the Dirichlet-Laplacian eigenvalue
problem with Ω= (0,`).
More importantly, we obtained two objects, namely:
Eigenvalues: λD

n =
(nπ

`

)2
n ∈N;

Eigenfunctions: ϕD
n (x) =

√
2

`
sin

(√
λD

n x

)
n ∈N.

In the case of the Neumann-Laplacian, we got
Eigenvalues: λN

n =
(nπ

`

)2
n ∈N0 :={0}∪N;

Eigenfunctions: ϕN
n (x) =

√
2

`
cos

(√
λN

n x

)
n ∈N0.
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History–Spectral Geometry 1D Wave Equation

Remarks . . .

We see that in either BCs, {λn}∞n=1 contains geometric information of
the domain Ω= (0,`).
For instance, the size of the first eigenvalue, λ1 = (π/`)2 tells us the
volume of Ω (i.e., the length ` of Ω in 1D).
Under our assumption of constant tension and constant density,

small λ1 ⇐⇒ long `

large λ1 ⇐⇒ short `

Furthermore, the set {ϕn}∞n=1 forms an orthonormal basis for L2(Ω), so
the eigenfunctions allows us to analyze functions living on Ω.
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History–Spectral Geometry Spectral Geometry 101

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry
1D Wave Equation
Spectral Geometry 101

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Summary & References
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History–Spectral Geometry Spectral Geometry 101

Spectral Geometry 101

The Laplacian eigenfunctions defined on the domain Ω provides the
orthonormal basis of L2(Ω).
The Laplacian eigenvalues encode geometric information of the
domain Ω=⇒ “Can we hear the shape of a drum?” (Mark Kac, 1966).
Temporarily, consider the Laplacian eigenvalue problem on a planar
domain Ω ∈R2 with the Dirichlet boundary condition:{

−∆u =λu in Ω
u = 0 on ∂Ω.

Let 0 <λ1 ≤λ2 ≤λ3 ≤ ·· · ≤λk ≤ ·· ·→∞ be the sequence of
eigenvalues of the above Dirichlet-Laplace eigenvalue problem.
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History–Spectral Geometry Spectral Geometry 101

Spectral Geometry 101 . . .

Kac showed (based on the work of Weyl, Minakshisundaram-Pleijel):

∞∑
k=1

e−λk t = |Ω|
4πt

− |∂Ω|
8
p
πt

+o(t−1/2) as t ↓ 0.

(a) Hermann Weyl
(1885–1955)

(b) S. Minakshisundaram
(1913–1968)

(c) Åke Pleijel
(1913–1989)

(d) Mark Kac
(1914–1984)
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History–Spectral Geometry Spectral Geometry 101

Universal (or Payne-Pólya-Weinberger) Inequalities (m ∈N)

λm+1 −λm ≤ 2 · 1

m

m∑
j=1

λ j ; λm+1 ≤ 3 · 1

m

m∑
j=1

λ j ;
λm+1

λm
≤ 3.

m∑
j=1

λ j

λm+1 −λ j
≥ m

2
(Hile-Protter).

m∑
j=1

(λm+1 −λ j )2 ≤ 2
m∑

j=1
λ j (λm+1 −λ j ) (Yang).

(a) L. E. Payne (1923–2011) (b) G. Pólya (1887–1985) (c) H. Weinberger (1928– )
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Isoperimetric Inequalities

λ1 ≥
π2 j 2

0,1

|Ω|2 (Rayleigh-Faber-Krahn)

λ2

λ1
≤

j 2
1,1

j 2
0,1

≈ 2.5387 (Ashbaugh-Benguria)

jk,1 is the first zero of the Bessel function of order k, i.e., Jk ( jk,1) = 0.
j0,1 ≈ 2.4048, j1,1 ≈ 3.8317, and |Ω| is the area of Ω. In both cases,
the equality is attained iff Ω is a disk in R2.

(a) Lord Rayleigh
(1842–1919)

(b) Georg Faber
(1877–1966)

(c) Edgar Krahn
(1894–1961)

(d) Mark
Ashbaugh (1953-)

(e) Rafael
Benguria (1951-)
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Remarks

Excellent references on these inequalities are:
R. D. Benguria, H. Linde, & B. Loewe: “Isoperimetric inequalities for
eigenvalues of the Laplacian and the Schrödinger operator,” Bull.
Math. Sci., vol. 2, pp. 1–56, 2012.
A. Henrot: Extremum Problems for Eigenvalues of Elliptic Operators,
Birkhäuser Verlag, Basel, 2006.
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Other Properties

Domain monotonicity property: Ω1 ⊂Ω2 =⇒λk (Ω1) ≥λk (Ω2), k ∈N.

Scaling property: λk (αΩ) = λk (Ω)

α2 , α> 0, k ∈N.

This implies:
λk (αΩ)

λm(αΩ)
= λk (Ω)

λm(Ω)
, k, m ∈N.

=⇒ the ratios of Laplacian eigenvalues are scale invariant.
Laplacian eigenvalues are translation and rotation invariant.
Using these eigenvalues and eigenvalue ratios for shape recognition
and classification has been quite popular recently as I will describe
later.
Some properties and inequalities listed above should hold not only for
the Dirichlet Laplacian eigenvalues but also for our Laplacian
eigenvalues. Note, however, that the domain monotonicity does not
hold for the Neumann Laplacian eigenvalues.
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An Counterexample to the Domain Monotonicity
Consider a 2D rectangle of sides a and b with a > b. Then, let
Ω′ :={(x, y) |0 < x < a, 0 < y < b}, and Ω⊂Ω′ be the inscribed thin rectangle
of sides

√
α2 +β2 ×

√
(a −α)2 + (b −β)2:

α

β

β

α

Ω
′

Ω

︷
︸
︸

︷

b

︷︸︸︷

a

Figure: The Neumann BC generates an counterexample (From A. Henrot, 2006)
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An Counterexample to the Domain Monotonicity . . .

Can easily compute the Neumann eigenvalues and eigenfunctions for
a rectangle Ω′:

λN
n =λN

`,m =π2
[(

`
a

)2 + (m
b

)2
]

,

ϕN
n (x, y) =ϕN

`,m(x, y) = c0 cos
(
π`x

a

)
cos

(mπy
b

)
. n,`,m = 0,1,2, . . .

where c0 :=2/
p

ab.
Clearly, the smallest eigenvalue is: λN

0 =λN
0,0 = 0, ϕN

0 (x, y) ≡ c0.
How about the next smallest one? Since a > b,

λN
1 =λN

1,0 =
(π

a

)2
, ϕN

1 (x, y) =ϕN
1,0(x, y) = c0 cos

(π
a

x
)

.
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An Counterexample to the Domain Monotonicity . . .

For λN
2 , we have several possibilities, depending on the relationship

between a and b.
Here are just two examples:

(i) If 2
a > 1

b , i.e., b < a < 2b, then

λN
2 =λN

0,1 =
(π

b

)2
, ϕN

2 (x, y) =ϕN
0,1(x, y) = c0 cos

(π
b

y
)

.

(ii) If 2
a < 1

b , i.e., a > 2b, then

λN
2 =λN

2,0 =
(

2π

a

)2

, ϕN
2 (x, y) =ϕN

2,0(x, y) = c0 cos

(
2π

a
x

)
.

The point is that λN
1 of Ω′ only depends on the longer side of the

rectangle, in this case a.
Now the longer side of Ω is equal to

√
(a −α)2 + (b −β)2. By choosing

appropriate α> 0, β> 0 we can have
√

(a −α)2 + (b −β)2 > a. In
other words, we can have λN

1 (Ω) <λN
1 (Ω′), even if Ω⊂Ω′.
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Harmonic Analysis of/on Irregular Domains

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Summary & References
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Harmonic Analysis of/on Irregular Domains

Numerical Methods for Laplacian Eigenvalue Problems

Finite Difference Method (FDM)
Finite Element Method (FEM)
Boundary Element Method (BEM)
Radial Basis Functions (RBFs)
Method of Particular Solutions (MPS)

Fox/Henrich/Moler 1967, Betcke/Trefethen 2005, Barnett 2009
Method of Fundamental Solutions (MFS)

Trefftz 1926, . . . , Karageorghis 2001, Alves/Antunes 2005, . . .
Diagonalization of Integral Operators Commuting with Laplacian (NS,
2008)
. . .
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Recap on Difficulties Dealing with Laplacian

Analysis of the Laplacian L =−∆ is difficult due to its
unboundedness, etc.
Computing the eigenfunctions of L by directly solving the Helmholtz
equation (or eigenvalue problem) on a general domain is tough.
Much better to analyze its inverse, i.e., the Green’s operator because
it is compact and self-adjoint.
Unfortunately, computing the Green’s function for a general Ω
satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is
also very difficult.
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Harmonic Analysis of/on Irregular Domains Integral Operators Commuting with Laplacian

Integral Operators Commuting with Laplacian
The key idea to avoid difficulties associated with the Laplacian L is
to find an integral operator K commuting with L without imposing
the strict boundary condition a priori.
Then, we know that the eigenfunctions of L is the same as those of
K , which is easier to deal with, due to the following

Theorem (G. Frobenius 1896?; B. Friedman 1956)
Suppose K and L commute and one of them has an eigenvalue with
finite multiplicity. Then, K and L share the same eigenfunction
corresponding to that eigenvalue. That is, Lϕ=λϕ and K ϕ=µϕ.

(a) G. Frobenius (1849–1917) (b) B. Friedman (1915–1966)
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Integral Operators Commuting with Laplacian . . .

The inverse of L with some specific boundary condition (e.g.,
Dirichlet/Neumann/Robin) is also an integral operator whose kernel
is called the Green’s function G(x , y).
Since it is not easy to obtain G(x , y) in general, let’s replace G(x , y)
by the fundamental solution of the Laplacian:

K (x , y) =


−1

2 |x − y | if d = 1,
− 1

2π log |x − y | if d = 2,
|x−y |2−d

(d−2)ωd
if d > 2,

where ωd := 2πd/2

Γ(d/2) is the surface area of the unit ball in Rd , and | · | is
the standard Euclidean norm.
The price we pay is to have rather implicit, non-local boundary
condition although we do not have to deal with this condition directly.
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Integral Operators Commuting with Laplacian . . .

Let K be the integral operator with its kernel K (x , y):

K f (x) :=
∫
Ω

K (x , y) f (y)dy , f ∈ L2(Ω).

Theorem (NS 2005, 2008)
The integral operator K commutes with the Laplacian L =−∆ with the
following non-local boundary condition:∫
∂Ω

K (x , y)
∂ϕ

∂νy
(y)ds(y) =−1

2
ϕ(x) + pv

∫
∂Ω

∂K (x , y)

∂νy
ϕ(y)ds(y), ∀x ∈ ∂Ω,

where ϕ is an eigenfunction common for both operators, and pv indicates
the Cauchy principal value.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2009)
The eigenfunction ϕ(x) of the integral operator K in the previous theorem
can be extended outside the domain Ω and satisfies the following equation:

−∆ϕ=
{
λϕ if x ∈Ω;

0 if x ∈Rd \Ω,

with the boundary condition that ϕ and ∂ϕ

∂ν
are continuous across the

boundary ∂Ω. Moreover, as |x |→∞, ϕ(x) must be of the following form:

ϕ(x) =
{

const · |x |2−d +O
(|x |1−d

)
if d 6= 2;

const · ln |x |+O
(|x |−1

)
if d = 2.
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Integral Operators Commuting with Laplacian . . .

Corollary (NS 2005, 2008)
The integral operator K is compact and self-adjoint on L2(Ω). Thus, the
kernel K (x , y) has the following eigenfunction expansion (in the sense of
mean convergence):

K (x , y) ∼
∞∑

j=1
µ jϕ j (x)ϕ j (y),

and {ϕ j } j forms an orthonormal basis of L2(Ω).
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Harmonic Analysis of/on Irregular Domains Simple Examples

1D Example

Consider the unit interval Ω= (0,1).
Then, our integral operator K with the kernel K (x, y) =−|x − y |/2
gives rise to the following eigenvalue problem:

−ϕ′′ =λϕ, x ∈ (0,1);

ϕ(0)+ϕ(1) =−ϕ′(0) =ϕ′(1).

The kernel K (x , y) is of Toeplitz form =⇒ Eigenvectors must have
even and odd symmetry (Cantoni-Butler ’76).
In this case, we have the following explicit solution.
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Harmonic Analysis of/on Irregular Domains Simple Examples

1D Example . . .

λ0 ≈−5.756915, which is a solution of tanh
√

−λ0

2 = 2√
−λ0

,

ϕ0(x) = A0 cosh
√
−λ0

(
x − 1

2

)
;

λ2m−1 = (2m −1)2π2, m = 1,2, . . .,

ϕ2m−1(x) =
p

2cos(2m −1)πx;

λ2m , m = 1,2, . . ., which are solutions of tan
√
λ2m

2 =− 2√
λ2m

,

ϕ2m(x) = A2m cos
√
λ2m

(
x − 1

2

)
,

where Ak , k = 0,1, . . . are normalization constants.
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First 5 Basis Functions
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Harmonic Analysis of/on Irregular Domains Simple Examples

1D Example: Comparison

The Laplacian eigenfunctions with the Dirichlet boundary condition:
−ϕ′′ =λϕ, ϕ(0) =ϕ(1) = 0, are sines. The Green’s function in this case
is:

GD (x, y) = min(x, y)−x y.

Those with the Neumann boundary condition, i.e., ϕ′(0) =ϕ′(1) = 0,
are cosines. The Green’s function is:

GN (x, y) =−max(x, y)+ 1

2
(x2 + y2)+ 1

3
.

Remark: Gridpoint ⇔ DST-I/DCT-I;
Midpoint⇔ DST-II/DCT-II.
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Harmonic Analysis of/on Irregular Domains Simple Examples

2D Example
Consider the unit disk Ω. Then, our integral operator K with the
kernel K (x , y) =− 1

2π log |x − y | gives rise to:
−∆ϕ=λϕ, in Ω;

∂ϕ

∂ν

∣∣∣
∂Ω

= ∂ϕ

∂r

∣∣∣
∂Ω

=−∂Hϕ

∂θ

∣∣∣
∂Ω

,

where H is the Hilbert transform for the circle, i.e.,

H f (θ) := 1

2π
pv

∫ π

−π
f (η)cot

(
θ−η

2

)
dη θ ∈ [−π,π].

Let jk,` is the `th zero of the Bessel function of order k, Jk ( jk,`) = 0.
Then,

ϕm,n(r,θ) =
{

Jm( jm−1,n r )
(cos

sin

)
(mθ) if m = 1,2, . . . , n = 1,2, . . .,

J0( j0,n r ) if m = 0, n = 1,2, . . .,

λm,n =
{

j 2
m−1,n , if m = 1, . . . , n = 1,2, . . .,

j 2
0,n if m = 0, n = 1,2, . . ..
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First 25 Basis Functions

(a) Our Basis (b) Dirichlet-Laplace
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Harmonic Analysis of/on Irregular Domains Simple Examples

3D Example

Consider the unit ball Ω in R3. Then, our integral operator K with
the kernel K (x , y) = 1

4π|x−y | .
Top 9 eigenfunctions cut at the equator viewed from the south:
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Harmonic Analysis of/on Irregular Domains Discretization of the Problem

Discretization of the Problem

Assume that the whole dataset consists of a collection of data
sampled on a regular grid, and that each sampling cell is a box of size∏d

i=1∆xi .
Assume that an object of our interest Ω consists of a subset of these
boxes whose centers are {x i }N

i=1.
Under these assumptions, we can approximate the integral eigenvalue
problem K ϕ=µϕ with a simple quadrature rule with node-weight
pairs (x j , w j ) as follows.

N∑
j=1

w j K (x i , x j )ϕ(x j ) =µϕ(x i ), i = 1, . . . , N , w j =
d∏

i=1
∆xi .

Let Ki , j :=w j K (x i , x j ), ϕi :=ϕ(x i ), and ϕ :=(ϕ1, . . . ,ϕN )T ∈RN . Then,
the above equation can be written in a matrix-vector format as:
Kϕ=µϕ, where K = (Ki j ) ∈RN×N . Under our assumptions, the
weight w j does not depend on j , which makes K symmetric.
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

A Possible Fast Algorithm for Computing ϕ j ’s

Observation: our kernel function K (x , y) is of special form, i.e., the
fundamental solution of Laplacian used in potential theory.
Idea: Accelerate the matrix-vector product Kϕ using the Fast
Multipole Method (FMM).
Convert the kernel matrix to the tree-structured matrix via the FMM
whose submatrices are nicely organized in terms of their ranks.
(Computational cost: our current implementation costs O(N 2), but
can achieve O(N log N ) via the randomized SVD algorithm of
Woolfe-Liberty-Rokhlin-Tygert (2008)).
Construct O(N ) matrix-vector product module fully utilizing rank
information (See also the work of Bremer (2007) and the “HSS”
algorithm of Chandrasekaran et al. (2006)).
Embed that matrix-vector product module in the Krylov subspace
method, e.g., Lanczos iteration.
(Computational cost: O(N ) for each eigenvalue/eigenvector).
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

Tree-Structured Matrix via FMM

(a) Hierarchical indexing scheme (b) Tree-Structured Matrix
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

A Real Challenge: Kernel matrix is of 387924×387924.
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

First 25 Basis Functions via the FMM-based algorithm

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 65 / 108



Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

Splitting into Subproblems for Faster Computation

(a) Whole islands (b) Separated islands
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Harmonic Analysis of/on Irregular Domains Fast Algorithms for Computing Eigenfunctions

Eigenfunctions for Separated Islands
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Harmonic Analysis of/on Irregular Domains General Comments on Applications

General Comments on Applications

Laplacian eigenfunctions on an irregular domain should be useful for:
Interactive image analysis, discrimination, interpretation:

Medical image analysis: e.g., hippocampal shape analysis for early
Alzheimer’s
Biometry: e.g., identification and characterization of eyes, faces, etc.

Geophysical data assimilation:
Incorporating ocean current data measured by high frequency radar
into a numerical model;
Interpolation, extrapolation, prediction of vector-valued meteorology
data (temperature, pressure, wind speed, etc.) measured at the
weather station in the 3D terrain.

. . .

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 69 / 108



Harmonic Analysis of/on Irregular Domains General Comments on Applications

Remark on the DC vector

The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector χΩ :=1N /

p
N ∈RN .

If some application needs to have the DC vector of a given domain Ω
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.
Consider the orthogonal complement to the 1D subspace span{χΩ} in
the column space of the kernel matrix K :

K̃ = (
I −χΩχT

Ω

)
K .

Then, χΩ together with the eigenvectors of K̃ corresponding to the
largest N −1 eigenvalues form the desired orthonormal basis.

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 70 / 108



Harmonic Analysis of/on Irregular Domains General Comments on Applications

Remark on the DC vector

The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector χΩ :=1N /

p
N ∈RN .

If some application needs to have the DC vector of a given domain Ω
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.
Consider the orthogonal complement to the 1D subspace span{χΩ} in
the column space of the kernel matrix K :

K̃ = (
I −χΩχT

Ω

)
K .

Then, χΩ together with the eigenvectors of K̃ corresponding to the
largest N −1 eigenvalues form the desired orthonormal basis.

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 70 / 108



Harmonic Analysis of/on Irregular Domains General Comments on Applications

Remark on the DC vector

The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector χΩ :=1N /

p
N ∈RN .

If some application needs to have the DC vector of a given domain Ω
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.
Consider the orthogonal complement to the 1D subspace span{χΩ} in
the column space of the kernel matrix K :

K̃ = (
I −χΩχT

Ω

)
K .

Then, χΩ together with the eigenvectors of K̃ corresponding to the
largest N −1 eigenvalues form the desired orthonormal basis.

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 70 / 108



Harmonic Analysis of/on Irregular Domains General Comments on Applications

Remark on the DC vector

The Laplacian eigenfunction with the least oscillation computed by
diagonalizing the commuting integral operator is not the constant
(i.e., DC) vector χΩ :=1N /

p
N ∈RN .

If some application needs to have the DC vector of a given domain Ω
and the basis vectors orthogonal to the DC vector, there is a way to
include the DC vector into the picture.
Consider the orthogonal complement to the 1D subspace span{χΩ} in
the column space of the kernel matrix K :

K̃ = (
I −χΩχT

Ω

)
K .

Then, χΩ together with the eigenvectors of K̃ corresponding to the
largest N −1 eigenvalues form the desired orthonormal basis.

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 70 / 108



Harmonic Analysis of/on Irregular Domains General Comments on Applications

Remark on the DC vector . . .

(a) Laplacian Eigenfunctions via
Commuting Integral Operator

(b) Laplacian Eigenfunctions incorporating
the DC vector

=⇒ leads to the generalized discrete cosine basis!
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Image Approximation; Comparison with Wavelets

(a) What data?

(b) χJ · Barbara
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Image Approximation; Comparison with Wavelets

(a) What data? (b) χJ · Barbara
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

First 25 Basis Functions
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Next 25 Basis Functions

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 75 / 108



Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 Coefficients

(a) Reconstruction

(b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 Coefficients

(a) Reconstruction (b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 2D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction

(b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Reconstruction with Top 100 1D Wavelets (Symmlet 8)

(a) Reconstruction (b) Error
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Harmonic Analysis of/on Irregular Domains Image Approximation I: Comparison with Wavelets

Comparison of Coefficient Decay
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Experiments on Domains with Perturbed Boundaries

We will use the following domains for our experiments:
Ω1: The Japanese Islands
Ω2: A smoothed and connected version of Ω1;
Ω3: The same as Ω2 but with a “jaggy” boundary curve
Ω4: The two-component version of Ω2.

As for the data on these domains, we adopted three functions with
different smoothness:

1 A discontinuous function (i.e., a simple step function whose
discontinuity is a straight line along the “spine” or the main axis of
the domain);

2 A pyramid-shaped function, which is continuous and its first order
partial derivatives are of bounded variation;

3 The standard Gaussian function.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

The Domains with Perturbed Boundaries

(a) χΩ1 (b) χΩ2

(c) χΩ3 (d) χΩ4

saito@math.ucdavis.edu (UC Davis) MAT 207B: Lectures 26, 27, 28 March, 2025 82 / 108



Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Decay Rates of the Expansion Coefficients (Unsorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Observations on the Decay Rates
The decay rates reflect the intrinsic smoothness of the functions living
in the domain, but are not affected by the existence of the boundary
of the domains.
The decay rates are rather insensitive to the smoothness of the
boundary curves. In particular, the plots for Ω2, Ω3, and Ω4 are
virtually the same whereas those for Ω1—the most complicated
domain among these four—seem slightly worse than the others. Yet
all behave better than O(k−1).
The decay rates are rather insensitive to the number of the separated
subdomains. Again, it will be also of interest to investigate the
behavior the conventional Laplacian eigenfunctions in this respect.
Although the coefficient plots oscillate around the linear lines (in the
log-log scale), the decay rates O(k−α), regardless of the domain
shapes, behave as follows. For the discontinuous functions, α< 1. For
the pyramid-shape function, 1 <α< 1.5. For the Gaussian function,
α≥ 1.5.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Decay Rates of the Expansion Coefficients (Sorted)

(a) Decay rates on Ω1 (b) Decay rates on Ω2

(c) Decay rates on Ω3 (d) Decay rates on Ω4

Figure: The blue, red, and green curves correspond to the discontinuous,
pyramid-shape, and Gaussian functions, respectively. It is obvious that these
curves show no oscillations and their decay rates are faster than those of the
unsorted coefficients. Moreover, the decay rates can be read off easily from the
plots. The three straight lines plotted with the ‘dashdot’ pattern are for the
reference: they indicate decay rates of k−1, k−1.5, k−2, respectively.
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Harmonic Analysis of/on Irregular Domains Image Approximation II: Perturbed Boundaries

Conjecture on the Coefficient Decay Rate

Conjecture (NS 2007)

Let Ω be a C 2-domain of general shape and let f ∈C
(
Ω

)
with

∂ f

∂x j
∈ BV

(
Ω

)
for j = 1, . . . ,d . Let

{
ck = 〈

f ,ϕk
〉}

k∈N be the expansion

coefficients of f with respect to our Laplacian eigenbasis on this domain.
Then, |ck | decays with rate O(k−α) with 1 <α< 2 as k →∞. Thus, the
approximation error using the first m terms measured in the L2-norm, i.e.,∥∥ f −∑m

k=1 ckϕk
∥∥

L2(Ω)
should have a decay rate of O

(
m−α+0.5

)
as m →∞.

The C 2-smoothness of the boundary could be weakened . . .
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Harmonic Analysis of/on Irregular Domains Hippocampal Shape Analysis

Hippocampal Shape Analysis
Presenting the work of Faisal Beg and his group at Simon Fraser
Univ. using our technique
Want to distinguish people with mild dementia of the Alzheimer type
(DAT) from cognitively normal (CN) people
Hippocampus plays important roles in long-term memory and spatial
navigation

Figure: From Wikipedia
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Harmonic Analysis of/on Irregular Domains Hippocampal Shape Analysis

Hippocampal Shape Analysis . . .

Dataset: Left hippocampus segmented from 3D MRI images
Compute the smallest 999 Laplacian eigenvalues (i.e., the largest 999
eigenvalues of the integral operator K ) for each left hippocampus
Construct a feature vector for each left hippocampus:

F :=
(
λ1

λ2
, . . . ,

λ1

λn+1

)T
=

(
µ2

µ1
, . . . ,

µn+1

µ1

)T
∈Rn .

This feature vector was used by Khabou, Hermi, and Rhouma (2007)
for 2D shape classification (e.g., shapes of tree leaves).
Reduce the feature space dimension via PCA to from n = 998 to n′

Classified by the linear SVM (support vector machine)
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First Three Eigenfunctions of Three Patients
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Harmonic Analysis of/on Irregular Domains Hippocampal Shape Analysis

The Second Eigenfunction ϕ2

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240
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The Third Eigenfunction ϕ3

(a) N = 15135 (b) N = 15438 (c) N = 14938 (d) N = 15256

(e) N = 14201 (f) N = 15630 (g) N = 12073 (h) N = 12240
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Harmonic Analysis of/on Irregular Domains Hippocampal Shape Analysis

Classification Results
Dataset consists of the segmented left hippocampuses of 18 DAT subjects
and of 26 CN subjects:

Method Accuracy Specificity Sensitivity n n′

MomInv 68.1% 69.2% 66.6% 12 1
TensorInv 75.0% 76.9% 72.2% ≥ 1.9E5 17
LapEig 77.2% 84.6% 66.6% 998 14
GeodesicInv 86.3% 77.7% 92.3% ≥ 1.3E6 27

accuracy := |T P |+ |T N |
|people examined| =

|people correctly diagnosed|
|people examined|

specificity := |T N |
|T N |+ |F P | =

|people correctly diagnosed as healthy|
|healthy people examined|

sensitivity := |T P |
|T P |+ |F N | =

|people correctly diagnosed as mild AD|
|people with mild AD examined|
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Harmonic Analysis of/on Irregular Domains Statistical Image Analysis; Comparison with PCA

Comparison with PCA

Consider a stochastic process living on a domain Ω.
PCA/Karhunen-Loève Transform is often used.
PCA/KLT implicitly incorporate geometric information of the
measurement (or pixel) location through data correlation.
Our Laplacian eigenfunctions use explicit geometric information
through the harmonic kernel K (x , y).
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Comparison with PCA: Example

“Rogue’s Gallery” dataset from Larry Sirovich
72 training dataset; 71 test dataset
Left & right eye regions
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Harmonic Analysis of/on Irregular Domains Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Basis Vectors

(a) KLB/PCA 1:9

(b) Laplacian Eigenfunctions 1:9
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Comparison with PCA: Basis Vectors . . .

(a) KLB/PCA 10:18 (b) Laplacian Eigenfunctions 10:18
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Comparison with PCA: Kernel Matrix

(a) Covariance (b) Harmonic kernel
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Harmonic Analysis of/on Irregular Domains Statistical Image Analysis; Comparison with PCA

Comparison with PCA: Energy Distribution over
Coordinates

(a) KLB/PCA (b) Laplacian Eigenfunctions
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Comparison with PCA: Basis Vector #7 . . .

c7:large c7:large

ϕ7

c7:small c7:small
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Comparison with PCA: Basis Vector #13 . . .

c13:large c13:large

ϕ13

c13:small c13:small
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Asymmetry Detector

Eyes #80 Eyes #22 Eyes #52

Asymmetry detector

Eyes #5 Eyes #84 Eyes #59
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Outline

1 Motivations

2 History of Laplacian Eigenvalue Problems – Spectral Geometry

3 Harmonic Analysis of/on Irregular Domains via Eigenfunctions of
Integral Operators Commuting with Laplacians

4 Summary & References
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Summary: Harmonic Analysis of/on Irregular Domains via Laplacian Eigenfunctions

LEs computed via the commuting integral operator provide an orthonormal
basis on a general shape domain or a graph and allow spectral
analysis/synthesis of data on them
Can get fast-decaying expansion coefficients thanks to the rather implicit BC
that may be more natural under certain situations
Can decouple geometry of domains and statistics of data
Can extract geometric information of a domain via {λk }k

Allow object-oriented (or localized) data analysis & synthesis, e.g., could be
effective for local reconstruction of an ROI and anomaly detection on it
∃ A variety of applications: interpolation, extrapolation, local feature
computation, solving heat equations on complicated domains . . .
Fast algorithms are the key for higher dimensions/large domains
Can also be defined and computed on a Riemannian manifold (e.g., a curved
surface); to do so, we need the Riemannian metric of the manifold and
geodesic distances between sample points
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References

Laplacian Eigenfunction Resource Page
http://www.math.ucdavis.edu/˜saito/lapeig/ contains:

My Course Note (elementary) on “Laplacian Eigenfunctions: Theory,
Applications, and Computations”
My Course Slides on “Harmonic Analysis on Graphs and Networks”
Talk slides of the minisymposia on Laplacian Eigenfunctions at:
ICIAM 2007, Zürich (Organizers: NS, Mauro Maggioni); SIAM
Imaging Science Conference 2008, San Diego (Organizers: NS,
Xiaomin Huo); IPAM 5-day Workshop 2009, UCLA (Organizers:
Peter Jones, Denis Grebenkov, NS); SIAM Annual Meeting 2013, San
Diego (Organizers: Chiu-Yen Kao, Braxton Osting, NS); BIRS 5-day
Workshop 2015, Banff (organizers: Peter Jones, Denis Grebenkov,
NS).
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The following articles (and the other related ones) are available at
http://www.math.ucdavis.edu/˜saito/publications/

N. Saito & J.-F. Remy: “The polyharmonic local sine transform: A
new tool for local image analysis and synthesis without edge effect,”
Applied & Computational Harmonic Analysis, vol. 20, no. 1, pp.
41-73, 2006.
N. Saito: “Data analysis and representation using eigenfunctions of
Laplacian on a general domain,” Applied & Computational Harmonic
Analysis, vol. 25, no. 1, pp. 68–97, 2008.
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Thank you very much for your attention!
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