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Problem 1 (15 pts) Does the following sequence converge or diverge as n →∞ ? Give reasons
for your answer. If it converges, find the limit.

(a) (7 pts)
an = n2e−n .

Answer: Let us define the function f (x) = x2e−x for all x ≥ 1. If lim
x→∞ f (x) exists, then

lim
n→∞ f (n) = lim

x→∞ f (x). Now,

lim
x→∞x2e−x = lim

x→∞
x2

ex

= lim
x→∞

2x

ex
by l’Hôpital’s rule.

= lim
x→∞

2

ex
by l’Hôpital’s rule again.

= 0.

Therefore, this sequence converges to the limit 0.

(b) (8 pts)

an = n cos
1

n
.

[ Hint: Consider how the graph of cos x behave near x = 0. You may also want to use
the fact: cos1 ≈ 0.54. ]

Answer: It diverges. Notice that cos 1
n > cos1 ≈ 0.54 for n = 2,3, . . .. Hence we have:

n cos
1

n
> 0.54n for n = 2,3, . . ..

Now, the righthand side tends to ∞ as n →∞. Therefore, the lefthand side must go
to ∞, i.e.,

lim
n→∞n cos

1

n
=∞.
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Problem 2 (20 pts) Does the following series absolutely converge, conditionally converge, or
diverge? Give reasons for your answer.

∞∑
n=1

(
1− 1

n

)n2

[ Hint: You may want to use the following formula for a particular value of x:

lim
n→∞

(
1+ x

n

)n
= ex ∀x ∈R.

Also, you may want to use the fact: e−1 ≈ 0.36788. ]

Answer: Let an = (
1− 1

n

)n2

. Note that an ≥ 0 for every n ∈N. Hence, there is no need to check
the absolute convergence nor the conditional convergence. Simply checking the usual
convergence suffice. Now, we will use the Root Test.

n
p

an =
(
1− 1

n

)n

=
(
1+ −1

n

)n

→ e−1 ≈ 0.36788 as n →∞.

Hence, the series
∞∑

n=1
an (absolutely) converges via the Root Test since ρ = e−1 < 1.
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Problem 3 (20 pts) Does the following series absolutely converge, conditionally converge, or
diverge? Give reasons for your answer.

∞∑
n=1

lnn

n

[ Hint: Use either the Comparison Test or the Integral Test. ]

Answer (via the Comparison Test): Let an = lnn

n
. It is clear that an ≥ 0 for every n ∈ N. So,

we can use the Comparison Test. Notice that lnn > 1 for every n ≥ 3 since e ≈ 2.718.
Therefore,

lnn

n
> 1

n
for every n ≥ 3.

The series
∞∑

n=3

1

n
diverges because this is the harmonic series. Therefore, by the Compari-

son Test, the series
∞∑

n=3
an diverges so does

∞∑
n=1

an .

Answer (via the Integral Test): Let f (x) = ln x

x
≥ 0 for x ≥ 1. Then, f (n) = lnn

n
≥ 0 for every

n ∈ N. So, let us set an = f (n). Hence, we can apply the Integral Test, i.e.,
∞∑

n=1
an and∫ ∞

1
f (x)dx share the same fate. Now notice that using Integration by Parts, we have

∫
ln x

x
dx = (ln x)2 −

∫
ln x

x
dx.

That is, ∫
ln x

x
dx = 1

2
(ln x)2.

(You can check this is correct by differentiating the righthand side.) Hence,∫ ∞

1

ln x

x
dx =

[
1

2
(ln x)2

]∞
1
=∞.

That is, this integral diverges so does this series via the Integral Test.
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Problem 4 (20 pts) Determine the radius and the interval of convergence of the power series:

f (x) =
∞∑

n=1
(−1)n−1n(x −1)n .

Justify your answers.

Answer: Let an = (−1)n−1n(x −1)n . Then,∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ (−1)n(n +1)(x −1)n+1

(−1)n−1n(x −1)n

∣∣∣∣
= n +1

n
|x −1|→ |x −1| as n →∞ regardless of the value of x.

Therefore, if |x−1| < 1, then this power series converges absolutely (and hence converges)
by the Ratio Test. This means that the radius of convergence is R = 1.

As for the interval of convergence, we need to check the end points of the obvious in-

terval −1 < x − 1 < 1, i.e., 0 < x < 2. If x = 0, then f (0) =
∞∑

n=1
(−1)2n−1n = −

∞∑
n=1

n. The

nth term of the series does not approach zero therefore the series diverges, specifically
to −∞. Hence, x = 0 cannot be included in the interval of convergence. For x = 2,

f (2) =
∞∑

n=1
(−1)n−1n, which diverges because the nth term of the series does not approach

zero. Hence, x = 2 cannot be included in the interval of convergence either. Therefore,
the interval of convergence is 0 < x < 2, or x ∈ (0,2).
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Problem 5 (25 pts) Let f (x) = cos x.

(a) (10 pts) Find the Maclaurin series for f (x).

Answer: Let f (x) = cos x. Then, we have the following derivatives: f (2k)(x) = (−1)k cos x,
f (2k+1)(x) = (−1)k+1 sin x, k = 0,1, . . . Hence, f (2k)(0) = (−1)k while f (2k+1)(0) = 0.
Therefore, we have the following Taylor series of cos x at x = 0:

cos x =
∞∑

k=0

(−1)k

(2k)!
x2k = 1− x2

2!
+ x4

4!
+·· · .

(b) (10 pts) Suppose we want to approximate cos x using P2(x), i.e., the Taylor polynomial
of order 2, centered at x = 0. Use the Remainder Estimation Theorem to determine
the range of x if we want to keep the magnitude of error between cos x and P2(x) less
than 0.0001, i.e., |cos x −P2(x)| < 0.0001.

[ Hint: You may want to use the fact: (0.0006)1/3 ≈ 0.0843. ]

Answer: First of all, the Taylor polynomial of order 2 is clearly

P2(x) = 1− x2

2!
.

Using Taylor’s formula, we have

cos x = P2(x)+R2(x) = 1− x2

2!
+ f (3)(c)

3!
x3 for some c between 0 and x.

Since | f (3)(c)| = |sinc| ≤ 1 for all values of c. Thus by the Remainder Estimation
Theorem

|cos x −P2(x)| = |R2(x)| ≤ 1

3!
|x|3.

Now to determine the range of x values for which the magnitude of error between
cos x and P2(x) less than 0.0001, we find x such that

|R2(x)| ≤ 1

3!
|x|3 < 0.0001 ⇐⇒ 1

3!
|x|3 < 0.0001 ⇐⇒|x| < (0.0006)1/3 ≈ 0.0843.

Hence, the desired range of x is −0.0843 < x < 0.0843 .
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(c) (5 pts) Prove cos2θ = cos2θ− sin2θ using Euler’s Identity.

Answer: In Euler’s Identity, we substitute 2θ for θ to get

ei2θ = cos2θ+ isin2θ. (1)

On the other hand,

ei2θ =
(
eiθ

)2
(2)

= (cosθ+ isinθ)2

= cos2θ+2cosθ · isinθ+ i2 sin2θ

= (cos2θ− sin2θ)+ i(2sinθcosθ)

Comparing the real part of Equations (1) and (2), we have:

cos2θ = cos2θ− sin2θ.

Note also that comparing the imaginary part of Equations (1) and (2), we can also
derive:

sin2θ = 2sinθcosθ.
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