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Abstract

Spectral graph theoretic methods have recently shown great promise for the problem of image segmentation. However,
due to the computational demands of these approaches, applications to large problems such as spatiotemporal data and
high resolution imagery have been slow to appear. The contribution of this paper is a method that substantially reduces the
computational requirements of grouping algorithms based on spectral partitioning making it feasible to apply them to very
large grouping problems. Our approach is based on a technique for the numerical solution of eigenfunction problems known
as the Nystr¨om method. This method allows one to extrapolate the complete grouping solution using only a small number of
“typical” samples. In doing so, we leverage thefact that there are far fewer coherent groups in a scene than pixels.

1 Introduction

�
O humans, an image is more than a collection of pixels; it is a meaningful organization of surfaces and objects in a scene.
The Gestalt psychologists were the first to draw attention to this important phenomenon and listed various factors that

contribute to this process including grouping cues such as proximity, similarity and common fate. A great deal of research in
computational vision over the last few decades has sought principled ways to operationalize these ideas.

One key component is the development of grouping “engines” that use these low-level cues to perform image and video
segmentation. A common characteristic among several recently proposed techniques is the idea of clustering pixels or
other image elements using pairwise affinities. The pairwise affinity computed between two pixels captures their degree of
similarity as measured by one or more cues. The pixels can then be grouped based on the set of pairwise affinities using
methods such as spectral graph partitioning [28, 30, 20, 24, 26, 18], deterministic annealing [23], or stochastic clustering
[14].

As discussed in [8], pairwise grouping methods present an appealing alternative to central grouping. Central grouping
techniques such as�-means or Gaussian Mixture Model fitting via EM [5] tend to be computationally efficient since they
only require one to compare the image pixels to a small set of cluster prototypes. However, they have the significant drawback
of implicitly assuming that the feature vectors representing the pixels in each group have a Gaussian distribution, justifying
the use of Euclidean or Mahalanobis distance for comparing feature vectors. By propagating similarity in a transitive fashion
from neighbor to neighbor, pairwise methods can avoid the restriction that all points in a cluster must be close to some
prototype. This allows the recovery of clusters that take on more complicated manifold structures in feature space.

Pairwise methods also offer great flexibility in the definition of the affinities between pixels. For example, if the feature
vectors represent color histograms, then�-means clustering is inappropriate since� � distance between histograms doesn’t
have a meaningful interpretation. In such a case, pairwise methods can readily employ a suitable affinity function such as the
�� distance. Affinities can even be defined between features with no natural vector space structure (e.g. string kernels [16]).

Naturally, the drawback of pairwise methods is the requirement of comparing all possible pairs of pixels in an image. Pro-
cessing short video sequences or the output of inexpensive multi-megapixel digital cameras can easily involve�� �� pairwise
similarities (a number that will continue to increase in the near future). Consequently, the number of pairs considered in
practice is often restricted by placing a threshold on the number of connections per pixel, e.g. by specifying a cutoff radius in
the image plane. While this allows the use of efficient sparse representations, it discourages the use of long-range connections
resulting in the over-segmentation of homogeneous regions. In this paper, we present an approximation technique applicable
to spectral grouping methods that alleviates this computational burden.

Our approach is based on a classical method for the solution of the integral eigenvalue problem known as the Nystr¨om
method. In short, the approximation works by first solving the grouping problem for a small random subset of pixels and then
extrapolating this solution to the full set of pixels in the image or image sequence. This provides the flexibility of pairwise
grouping with a computational complexity comparable to that of central grouping: rather than compare all pixels to a set of
cluster centers, we compare them to a small set of randomly chosen samples. The approach is simple and has the appealing
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characteristic that for a given number of sample points, its complexity scales linearly with the resolution of the image. In this
sense we exploit the fact that the number of coherent groups in an image is generally much smaller than the number of pixels.

The structure of this paper is as follows. In Section 2 we discuss the pairwise grouping framework and review the
Normalized Cut [28] grouping algorithm. We discuss the Nystr¨om method in Section 3 and highlight our application to the
NCut grouping formulation. We consider the computational costs and approximation error associated with this scheme in
Section 4. Results on static images and video are presented in Section 5 and we conclude with Section 6.

2 Spectral Methods for Pairwise Clustering

Spectral methods for image segmentation are based on the eigenvectors and eigenvalues of an��� matrix derived from the
matrix of pairwise affinities.� denotes the number of pixels in the image. These eigenvectors induce an embedding of the
pixels in a low-dimensional subspace wherein a simple central clustering method (such as�-means) can then be used to do
the final partitioning. The spectral method we will focus on in this work is Normalized Cut [28], the background for which
is discussed next.

Let the symmetric matrix� � ���� denote the weighted adjacency matrix for a graph� � ���	� with nodes�
representing pixels and edges	 whose weights capture the pairwise affinities between pixels. Let
 and� represent a
bipartition of � , i.e. 
 � � � � and
 � � � �. Let cut�
��� denote the sum of the weights between
 and�:
cut�
��� �

�
���������� . The degree of the�th node is defined as
 � �

�
���� and the volume of a set as the sum of

the degrees within that set: vol�
� �
�

��� 
� and vol��� �
�

��� 
�. The Normalized Cut between sets
 and� is then
given as follows:

NCut�
��� �
� � cut�
���

vol�
��vol���

where� denotes the harmonic mean1.
We wish to find
 and� such that NCut�
��� is minimized. Appealing to spectral graph theory [10], Shi and Malik [28]

showed that an approximate solution may be obtained by thresholding the eigenvector corresponding to the second smallest
eigenvalue�� of the normalized Laplacian�, which is defined as

� � ������� 	� ������ � � 	�����������

where� is the diagonal matrix with entries��� � 
�. The matrix� is positive semidefinite, even when� is indefinite. Its
eigenvalues lie on the interval��� �� so the eigenvalues of����������� are confined to lie inside�	�� ��.

Extensions to multiple groups are possible via recursive bipartitioning or through the use of multiple eigenvectors. In this
work we employ multiple eigenvectors to embed each element into an��-dimensional Euclidean space, with�� 
 � , such
that significant differences in the normalized affinities are preserved while “noise” is suppressed. The�-means algorithm is
then be used to discover groups of pixels in this embedding space.

To find such an embedding, we compute the� ��� matrix of the leading eigenvectors� and the�� ��� diagonal
matrix of eigenvalues	 of the system

�������������� � � 	

The the�th embedding coordinate of the�th pixel is then given by

	�� �
�������

��	 ��������

� � � �� � � � � �� � � � �� � � � � �

where the eigenvectors have been sorted in ascending order by eigenvalue. Thus each pixel is associated with a column of	
and the final partitioning is accomplished by clustering the columns.

Unfortunately, the need to solve this system presents a serious computational problem. Since� grows as the square of the
number of elements in the grouping problem, it quickly becomes infeasible to fit� in memory, let alone compute its leading
eigenvectors. One approach to this problem has been to use a sparse, approximate version of� in which each element is
connected only to a few of its nearby neighbors in the image plane and all other connections are assumed to be zero [27].
While this makes it possible to employ efficient, sparse eigensolvers (e.g. Lanczos) the effects of this process are not well
understood. Our proposed alternative based on sampling allows all affinities to be retained at the expense of some numerical
accuracy in their values.

1Recall��� � ������ � ��.
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3 The Nyström Extension

3.1 Background

The Nyström method [19] [3] [21] is a technique for finding numerical approximations to eigenfunction problems of the form

� 	




� ��� ������
� � �����

We can approximate this integral equation by evaluating it at a set of evenly spaced points� �� ��� � � � �� on the interval��� ��
and employing a simple quadrature rule,

��	 ��

�

��
���

� ��� ���
����� � �
���� (1)

where
���� is an approximation to the true����. To solve (1) we set� � � � yielding the system of equations

��	 ��

�

��
���

� ���� ���
����� � �
����� �� � �� � � � �


Without loss of generality, we let��� �� be��� �� and structure the system as the matrix eigenvalue problem:



� � �
�	

where
�� � � ���� ��� and� � ����� � � ���� are the� eigenvectors of
 with corresponding eigenvalues� �� ��� � � � ��.
Substituting back into equation (1) yields theNyström extensionfor each
��


����� �
�

���

��
���

� ��� ���
������ (2)

This expression allows us to extend an eigenvector computed for a set of sample points to an arbitrary point� using� ��� � ��
as the interpolation weights.

3.2 Matrix Completion

Whereas� in Equation (2) can take on any real value, in the case of image segmentation, the domain over which we wish to
extend the solution is specifically those pixels that were not sampled. We can express the evaluation of Equation (2) for those
remaining pixels as follows. Let
 again be the� � � matrix of affinities between the sample points, with diagonalization

 � �	�� , and let� represent the� �� matrix of affinities between the� sample points and� remaining points. The
matrix form of the Nystr¨om extension is then� ��	��, wherein� corresponds to� ��� � ��, the columns of� correspond
to the 
������’s, and	�� corresponds to the����’s in Equation (2). The process is illustrated in schematically in Figure 1.

To better understand the nature of the Nystr¨om extension, it is instructive to examine it from the standpoint of matrix
completion. For simplicity in notation, assume that the� randomly chosen samples come first and the remaining� 	 �
samples come next. Now partition the affinity matrix� as

� �

�

 �
�� �

�
(3)

with 
 � ����, � � ��������, � � ������������. Here
 represents the sub-block of weights among the random
samples,� contains the weights from the random samples to the rest of the pixels, and� contains the weights between all
of the remaining pixels. In the case of interest,�
 � , so� is huge. Letting�� denote the approximate eigenvectors of� ,
the Nyström extension gives

�� �

�
�

���	��

�
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and the associated approximation of� , which we denote
� , then takes the form


� � ��	���

�

�
�

���	��

�
	��� 	������

�

�
�	�� �
�� ��
���

�

�

�

 �
�� ��
���

�

�

�


��

�

���
 ��

Thus we see that the Nystr¨om extension implicitly approximates� using� �
���. The quality of the approximation of
the full weight matrix can be quantified as the norm of the Schur complement�� 	 � �
����. The size of this norm is
governed by the extent to which� is spanned by the rows of�.

The Nyström approximation has been used in this form by [32] for fast approximate Gaussian process classification and
regression. As noted in [32] this approximation method directly corresponds to the kernel PCA features space projection
technique of [25]. A generalization of these ideas on low-rank approximation to the SVD is studied in [13][12].

One remaining detail is that the columns of�� are not orthogonal. The process of orthogonalizing the solution can proceed
in two different ways depending on whether
 is positive definite.

3.3 Methods of Solution

If 
 is positive definite, then we can solve for the orthogonalized approximate eigenvectors in one step. Let
 ��� denote the
symmetric positive definite square root of
, define� � 


�������
���� and diagonalize it as� � �
	
�

�

 . If the

matrix� is defined as

� �

�


��

�

�����
	

����

 (4)

then one can show (see Appendix A) that
� is diagonalized by� and	
 , i.e. 
� � � 	
�
� and� �� � � . We assume

that pseudoinverses are used in place of inverses as necessary when there is redundancy in the random samples.
If 
 is indefinite, then two steps are required to find the orthogonalized solution. Let���


 � ���

 	��
 ��


 �� and define
� � ��
	

��� so that 
� � ��� . Let � � denote the diagonalization of� ��. Then the matrix� � � ����� contains
the leading orthonormalized eigenvectors of
� , i.e. 
� � � �� � with � �� � � . As before, a pseudoinverse can be used in
place of a regular inverse when
 has linearly dependent columns. Thus the approximate eigenvectors are produced in two
steps: first we use the Nystr¨om extension to produce��
 and	
 and then we orthogonalize��
 to produce� and�. Although
this approach is applicable in general, the additional!���� step required leads to an increased loss of significant figures. It
is therefore expedient to know when the one-shot method can be applied, i.e. when a given kernel is positive definite.

3.4 Application to Normalized Cut

To apply the Nystr¨om approximation to NCut, it is necessary to compute the row sums of
� . This is possible without
explicitly evaluating the��
��� block since


� � 
�� �

�

�� 
���

��
�� 
��
�����

�

�

�
�� 
 ��

�� 
��
����

�
(5)

where��� �� � �� denote the row sums of
 and�, respectively,�� � �� denotes the column sum of�, and� represents
a column vector of ones.

With 
� in hand, the required blocks of
����� 
� 
����� are given by


�� �

���

�� 
��

� �� � � �� � � � � �
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and

��� �
����

�� 
����

� � � �� � � � � �� � � �� � � � ��

to which we can apply one of the two methods from Section 3.3, depending on whether
 is positive definite. Figure 2 gives
example MATLAB code for carrying out the computation of the embedding vectors using the “one-shot” technique.

4 Performance Considerations

4.1 Approximation Properties

It is natural to ask how the approximation actually compares to the solution given by the dense problem or other sparse
approximation schemes. In this section we attempt to provide an answer by focusing on an empirical quantitative analysis of
performance on a synthetic clustering problem.

The stimulus used for this study consists of the randomly generated annulus/clump pointset shown in Figure 3(a). We
increase the difficulty of the grouping task by bringing the clump closer to the annulus; this distance is denoted". The
samples are arranged so that the first 50 correspond to the clump and the following 100 correspond to the annulus. The
affinities are given by the Gaussian weighted Euclidean distance, i.e.� �� � ����	��� 	 ������#��. We measure the
quality of the NCut bipartition provided by the second eigenvector in each approximation method using the Fisher criterion
[5] which is defined as

$������� �
�%� 	 %��

�

&�� 
 &��

where%� and&�� represent the mean and variance of the points in the�th cluster. The parameter# in the affinity function has
been chosen to optimize performance as documented in Figure 3(c).

We compare the Nystr¨om approximation to the dense solution along with two other possible approximations based on
sparse representations. The first technique is to sort the entries of the affinity matrix and zero out only the smallest ones.
For matrices that have many zero or nearly zero entries, this approximation can be quite accurate and preserve exactly
the eigenstructure. However, unless there is an oracle that allows one to avoid computing small entries, this still requires
!���� affinity calculations which can be quite expensive. A more likely alternative, analyzed in some detail by [1] is
to zero out random entries in the matrix. Both of these options allow one to employ a sparse matrix representation and
corresponding sparse eigensolver (Lanczos/Arnoldi) which can improve significantly over the!�� �� complexity required
of a dense solution.

The remaining frames in Figure 3 show the relation between the number of entries used to approximate the eigenvectors
of the matrix and the quality of the resulting eigenvectors. Here the number of samples represents the number of non-zero
entries above the diagonal (since the matrix is symmetric). This means that each algorithm potentially has access to the same
amount of “information” from the affinity matrix.

Figure 4 makes an empirical comparison of the running times associated with the algorithms. The graphs show the actual
running time of a compiled MATLAB implementation versus number of samples. Multiple curves show the timings for
increasingly difficult problems (small"). Asymptotically, the performance of the Lanczos method which takes!���� �niter�
operations is quite similar to that of the Nystr¨om technique which takes!�� �� 
 !�� � ��. However, as the curves in
Figure 4 indicate, while the random Lanczos technique can achieve accuracy similar to that of Nystr¨om given the same
number of samples, its running time is highly dependent on the “difficulty” of the problem (highly diagonal matrices take
many Lanczos/Arnoldi iterations in practice). In particular, the results in Figure 4 for� � ��� demonstrate that the sparse
eigenvector approximation can take longer than simply running MATLAB’s dense solver.

4.2 Sampling

As suggested above, it is often possible to achieve performance comparable to the dense case using very few samples. We
conducted an empirical study to estimate the number of samples needed for a diverse set of natural images. Since it’s not
possible to solve the dense problem in this case, we use a cross-validation approach. By choosing two different sets of random
samples, we can compare the resulting eigenvectors computed by the approximation in order to assess how many samples
are necessary for a stable result.
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To measure repeatability, we use the Frobenius norm of the inner product�
���

�� ��
�

between sets of eigenvectors� and
� generated by different random samplings. For each of��� images from the Corel dataset we compute�� different sets of
� leading eigenvectors and average the norm between all unique pairs. Figure 5 shows the result. Perfect agreement would
yield a norm of� which the approximation quickly converges towards with a small number of samples. The images contain
���� ��� � ����� pixels but it’s only necessary to sample less than�� of them.

5 Segmentation Results

In this section we demonstrate the use of the Nystr¨om extension on both static image and video segmentation problems.

5.1 Color and Texture Segmentation

The�� test is a simple and effective means of comparing two histograms. It has been shown to be a very robust measure for
color and texture discrimination [23]. Given normalized histograms' ���� and'���� define

���� �
�

�

��
���

�'����	 '�����
�

'���� 
 '����

where it is understood that any term in the sum for which' ���� � � and'���� � � is replaced by zero.

We can then define the similarity between the pair of histograms as� �� � (��
�

����. Since this kernel is positive definite
(see Appendix B) one can employ the one-shot Nystr¨om method to find groups of similar histograms.

An example of Nystr¨om-NCut on a color image of a tiger using��� samples is shown in Figure 5.1. In this example, we
computed a local color histogram inside a�� � box around each pixel using the color quantization scheme of [22].

Figure 7 shows the results of applying Nystr¨om-NCut to texture based segmentation, again using��� samples. In this
case, each pixel in the image is associated with the nearest element in a small alphabet of prototypical linear filter responses
using vector-quantitization (see Malik et al. [17]). Histograms of these “texton labels” are computed over an� � � pixel
window and compared again with�� distances.

5.2 Spatio-Temporal Segmentation

One method for combining both static image cues and motion information present in a video sequence is to consider the
set of images as a space-time volume and attempt to partition this volume into regions that are coherent with respect to the
various grouping cues. The insight of considering a video signal as three dimensional for purposes of analysis goes back to
Adelson and Bergen [2] and Baker et al. [6] and is supported by evidence from psychophysics [15]. Unified treatment of
the spatial and temporal domains is also appealing as it could solve some of the well known problems in grouping schemes
based on motion alone (e.g. layered motion models [31, 29]). For example, color or brightness cues can help to segment
untextured regions for which the motion cues are ambiguous and contour cues can impose sharp boundaries where optical
flow algorithms tend to drag along bits of background regions.

The successes of pairwise grouping have been slow to carry over to the case of spatiotemporal data.2 Indeed, the
conclusions of a recent panel discussion on spatiotemporal grouping [7] are that approaches in which the image sequence
is treated as a multidimensional volume in�� �� ) hold the greatest promise, but that efforts along these lines have been
hampered largely by computational demands. The Nystr¨om approximation has the potential to ameliorate this computational
burden, thus making it feasible to extend the ideas of powerful pairwise grouping methods to the domain of video.

We provide two examples of video segmentation using our algorithm. Each of the results shown make use of 100 samples
drawn at random from the first, middle and last frame in the sequence. Figure 8 shows the performance of our algorithm on the
flower garden sequence. A proper treatment would require dealing with the texture in the flowerbed and the illusory contours
that define the tree trunk. However, the discontinuities in local color and motion alone are enough to yield a fairly satisfying
segmentation. Figure 9 demonstrates segmentation of a relatively uncluttered scene. Processing the entire sequence as a
volume automatically provides correspondences between segments in each frame. We note that using motion alone would
tend to track the shadows and specularities present on the background and fail to find the sharp boundaries around the body.
On a���MHz Pentium III processor, segmenting a���� ���� � voxel sequence takes less than 1 minute in MATLAB.

2Some preliminary steps in this direction were made by [27].
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6 Conclusion

In this paper we have presented a technique for the approximate solution of spectral partitioning for image and video segmen-
tation based on the Nystr¨om extension. The technique is simple to implement, computationally efficient, numerically stable,
and leverages the intuition that the number of groups in an image is generally much smaller than the number of pixels. Our
experimental studies on grouping using the cues of texture, color, and optical flow demonstrate that roughly 100 randomly
chosen samples are sufficient to capture the salient groups in typical natural images.
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A Proof of One-Shot Method

Suppose that we have

� �

�


��

�

���
 ��

and we want to show that W can be diagonalized so that

� � � 	� �

where

� �

�


��

�

�����	����

To see this, we consider

� �

�


��

�

���
 ��

�

��


��

�

�����	����

	
	


	������
�����
 ��

�
� � 	� �

The above holds for any diagonal	 and unitary� . We wish to determine what they are.
Now we require

� � � ��

�


	������
�����
 ��

��� 

��

�

�����	����

	

By multiplying from the left by�	��� and from the right by	����� , we have

�	�� � 
�����
 ��

�


��

�

����

� 


�������
����

�
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B Proof of positive definiteness of�	�
�
��

We now prove that(��
�

�� is positive definite (as conjectured by [9]). We begin by considering the� �
�� term by itself. Noting

that�'����	 '�����
� � �'���� 
 '�����

� 	 �'����'����, we can rewrite���� as

���� � �	 �

��
���

'����'����

'���� 
 '����

We wish to show that the matrix* with entries given by

*�� � �

��
���

'����'����

'���� 
 '����

is positive definite. Consider the quadratic form+�*+ for an arbitrary finite nonzero vector+:

+�*+ �

��
�����

+�+�*��

� �
��
���

��
�����

+�+�
'����'����

'���� 
 '����

� �

��
���

��
�����

+�+�'����'����

� �

�

��������� �����dx

� �

��
���

��
�����

� �

�

+�'�����
������

�

� +�'�����
������

�

� dx

� �

��
���

� �

�

�
��
���

+�'�����
������

�

�


�� ��
���

+�'�����
�� ����

�

�

�
�dx

� �

��
���

� �

�

�
��
���

+�'�����
������

�

�


�

dx

, �

Thus* is positive definite.
Returning now to(��

�

�� , we note that it can be written as a positive constant times(��� . Since the exponential of a positive
definite function is also positive definite [4], we have established that(��

�

�� is positive definite. �
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Figure 1: Flowchart of sampling and matrix completion. At left a synthetic image is shown consisting of three regions
and some additive noise. The dense� � � affinity matrix� , where� is the number of pixels, is shown at top, middle,
with entries��� given by similarity in brightness and position. The entries are ordered so that the pixels in the occluded
dark gray square come first, the pixels in the light gray rectangle come next, followed by the pixels from the background.
From this dense matrix, one can obtain at great computational expense the exact three leading eigenvectors, denoted� .
The eigenvectors are illustrated via their outer product with themselves�� �� � in order to illustrate their piecewise constant
behavior within the three ranges corresponding to the pixels within each group. The approximate solution based on the
Nyström extension is shown in the lower pathway. Using only those pixels marked by dots on the input image, compute a
narrow strip of the full� matrix, shown at bottom middle. Each row contains the affinities from a sample point to the entire
image. The Nystr¨om extension allows one to then directly approximate the leading eigenvectors, as shown at bottom right.

d1 = sum([A;B’],1);
d2 = sum(B,1) + sum(B’,1)*pinv(A)*B;
dhat = sqrt(1./[d1 d2])’;
A = A.*(dhat(1:n)*dhat(1:n)’);
B = B.*(dhat(1:n)*dhat(n+(1:m))’);
Asi=sqrtm(pinv(A));
Q=A+Asi*B*B’*Asi;
[U,L,T]=svd(Q);
V=[A;B’]*Asi*U*pinv(sqrt(L));
for i = 2:nvec+1

E(:,i-1) = V(:,i)./V(:,1);
E(:,i-1) = E(:,i-1)/sqrt(1-L(i,i));

end

Figure 2: Example MATLAB code for finding the firstnvec embedding vectors of the normalized affinity matrix given
unnormalized submatricesA of sizen�n andB of sizen�m. This code uses the “one-shot” technique and so is only
applicable to positive definite affinities.
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LANCZOS RANDOM: Fisher separation vs. problem difficulty
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Figure 3: A study of embedding quality versus number of samples for different approximations. The input stimulus is shown
in (a) and a typical embedding given by the 2nd eigenvector of the normalized affinity matrix is shown in (b). The ordering
is such that the clump contains points 1-50 and the annulus contains points 51-150. In (c) we show the value of# that
optimizes the Fisher separation versus the distance" between the clump and the annulus. The Fisher separation versus
problem difficulty for varying numbers of samples is shown in (d), (e) and (f). (d) gives results for sorted Lanczos, (e) for
random Lanczos and (f) for Nystr¨om. The corresponding curve for the dense problem is shown by the dashed line on each
plot. Each point on each curve represents 200 random trials. Each solid curve gives the result for a particular number of
samples, ranging from 10 to 150; the Fisher separation increases monotonically with the number of samples.
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Figure 4: Running times for approximations vs. number of samples at different levels of problem difficulty. (a) shows the
sparse sorted Lanczos, (b) shows the randomly sparsified Lanczos method and (c) shows the Nystr¨om method. The timing
for the dense solver is shown by the dotted lines. The timing results are forsvd andsvds as implemented by MATLAB.
The key thing to notice is that sparse solver performance varies widely with the difficulty (eigenstructure) of the matrix in
question. Data here is shown for annulus/clump stimuli consisting of��� points with timings averaged over��� trials.
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Figure 5: A cross-validation study of embedding repeatability vs. samples for the Nystr¨om approximation based on a set of
300 Corel images of natural scenes, each of size���� ���. The curve illustrates the agreement in the leading 4 eigenvectors
between different random samples of size� ranging from�� to ���. A norm of� indicates perfect agreement. Error bars
show the standard deviation over��� comparisons made between�� random samplings. These results show that very good
agreement in the approximate leading eigenvectors is attained across different random subsets of samples whose size is less
than�� of total image pixels.
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Figure 6: Segmentation of tiger image based on Gaussian weighted� �-distance between local color histograms. The image
size is���� ��� and the histogram window size is� � �. Color quantization was performed as in [22] with 8 bins. Since
the(��

�

�� kernel is positive definite, we can use the one-shot method of [11]. (a) Original image (b) Nystr¨om-NCut leading
eigenvectors using��� random samples. Eigenvector images are sorted by eigenvalue. (c) Segment-label image obtained via
�-means clustering on the eigenvectors as described in [11].
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(a) (b)

Figure 7: Segmentation of texture using the Gaussian weighted� �-distance between local texton histograms. Images in the
left column are given as input. Eigenvectors are computed using��� random samples and the leading vectors clustered using
�-means.
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Figure 8: The Flower Garden Sequence: Each column represents our segmentation of a frame from the sequence of four
images shown in the top row. Each row shows slices through a space-time segment. It’s important to note that the algorithm
provides segment correspondence between frames automatically. The image dimensions are���� �� pixels.
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Figure 9: The Leap: The original frames (���� �� pixels) are shown in the left column. Each column shows slices through
a space-time segment.
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