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Abstract

This paper shows a relationship between two di�erent approximation techniques: the

Support Vector Machines (SVM), proposed by V. Vapnik (1995), and a sparse ap-
proximation scheme that resembles the Basis Pursuit De-Noising algorithm (Chen,

1995; Chen, Donoho and Saunders, 1995). SVM is a technique which can be derived
from the Structural Risk Minimization Principle (Vapnik, 1982) and can be used
to estimate the parameters of several di�erent approximation schemes, including Ra-
dial Basis Functions, algebraic/trigonometric polynomials, B-splines, and some forms
of Multilayer Perceptrons. Basis Pursuit De-Noising is a sparse approximation tech-

nique, in which a function is reconstructed by using a small number of basis functions
chosen from a large set (the dictionary). We show that, if the data are noiseless, the
modi�ed version of Basis Pursuit De-Noising proposed in this paper is equivalent to
SVM in the following sense: if applied to the same data set the two techniques give
the same solution, which is obtained by solving the same quadratic programming

problem. In the appendix we also present a derivation of the SVM technique in the
framework of regularization theory, rather than statistical learning theory, establish-
ing a connection between SVM, sparse approximation and regularization theory.

1This paper appeared in Neural Computation, 10:6, pp. 1455{1480, 1998.



1 Introduction

In recent years there has been an increasing interest in approximation techniques that use the

concept of sparsity to perform some form of model selection. By sparsity we mean, in very

general terms, a constraint that enforces the number of building blocks of the model to be small.

Sparse approximation often appears in conjunction with the use of overcomplete or redundant

representations, in which a signal is approximated as a linear superposition of basis functions

taken from a large dictionary (Chen, 1995; Chen, Donoho and Saunders, 1995; Olshausen and

Field, 1996; Daubechies, 1992; Mallat and Zhang, 1993; Coifman and Wickerhauser, 1992). In

this case sparsity is used as a criterion to choose between di�erent approximating functions

with the same reconstruction error, favoring the one with the least number of coe�cients. The

concept of sparsity has also been used in linear regression, as an alternative to subset selection,

in order to produce linear models that use a small number of variables and therefore have greater

interpretability (Tibshirani, 1994; Breiman, 1993).
In this paper we discuss the relationship between an approximation technique based on the
principle of sparsity and the Support Vector Machines (SVM) technique recently proposed by

Vapnik (Vapnik, 1995; Vapnik, Golowich and Smola, 1997; Cortes and Vapnik, 1995; Boser,
Guyon and Vapnik, 1992). SVM is a classi�cation/approximation technique derived by V. Vapnik
in the framework of Structural RiskMinimization, which aims at building \parsimonious" models,
in the sense of VC-dimension. Sparse approximation technique are also \parsimonious", in the
sense that they try to minimize the number of parameters of the model, so it is not surprising

that some connections between SVM and sparse approximation exist. What is more surprising
and less obvious is that SVM and a speci�c model of sparse approximation, which is a modi�ed
version of the Basis Pursuit De-Noising algorithm (Chen, 1995; Chen, Donoho and Saunders,
1995), are actually equivalent, in the case of noiseless data. By equivalent we mean the following:
if applied to the same data set they give the same solution, which is obtained by solving the

same quadratic programming problem. While the equivalence between sparse approximation and
SVM for noiseless data is the main point of the paper, we also include a derivation of the SVM
which is di�erent from the one given by V. Vapnik, and that �ts very well in the framework of
regularization theory, the same one which is used to derive techniques like splines or Radial Basis
Functions.
The plan of the paper is as follows: in section 2 we introduce the technique of SVM in the

framework of regularization theory (the mathematical details can be found in appendix B).

Section 3 introduces the notion of sparsity and presents an exact and approximate formulation
of the problem. In section 4 we present a sparse approximation model, which is similar in spirit

to the Basis Pursuit De-Noising technique of Chen, Donoho and Saunders (1995), and show
that, in the case of noiseless data, it is equivalent to SVM. Section 5 concludes the paper and

contains a series of remarks and observations. Appendix A contains some background material on

Reproducing Kernel Hilbert Spaces, which are heavily used in this paper. Appendix B contains
an explicit derivation of the SVM technique in the framework of regularization theory, and
appendix C addresses the case in which data are noisy.
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2 From Regularization Theory to Support Vector Ma-

chines

In this section we briey sketch the ideas behind the Support Vector Machines (SVM) for regres-

sion, and refer the reader to (Vapnik, 1995) and (Vapnik, Golowich and Smola, 1997) for a full

description of the technique. The reader should be warned that the way the theory is presented

here is slightly di�erent from the way it is derived in Vapnik's work. In this paper we will take a

viewpoint which is closer to classical regularization theory (Tikhonov and Arsenin, 1977; Moro-

zov, 1984; Bertero, 1986; Wahba, 1975, 1979, 1990), which might be more familiar to the reader,

rather than the theory of uniform convergence in probability developed by Vapnik (Vapnik, 1982;

Vapnik, 1995). A similar approach is described in (Smola and Sch�olkopf, 1998), although with

a di�erent formalism. In this section and in the following ones we will need some basic notions

about Reproducing Kernel Hilbert Spaces (RKHS). For simplicity of exposition we put all the

technical material about RKHS in appendix (A). Since the RKHS theory is very well developed
we do not include many important mathematical technicalities (like the convergence of certain

series, or the issue of semi-RKHS), because the goal here is just to provide the reader with a
basic understanding of an already existing technique. The rigorous mathematical apparatus that
we use can be mostly found in chapter 1 of the book of G. Wahba (1990) .

2.1 Support Vector Machines

The problem we want to solve is the following: we are given a data set D = f(xi; yi)g
l
i=1, obtained

by sampling, with noise, some unknown function f(x) and we are asked to recover the function
f , or an approximation of it, from the data D. We assume that the function f underlying the
data can be represented as:

f(x) =
1X
n=1

cn�n(x) + b (1)

where f�n(x)g
1
n=1 is a set of given, linearly independent basis functions, and cn and b are pa-

rameters to be estimated from the data. Notice that if one of the basis functions �n is constant
then the term b is not necessary. The problem of recovering the coe�cients cn and b from the
data set D is clearly ill-posed, since it has an in�nite number of solutions. In order to make

this problem well-posed we follow the approach of regularization theory (Tikhonov and Arsenin,

1977; Morozov, 1984; Bertero, 1986; Wahba, 1975, 1990) and impose an additional smoothness
constraint on the solution of the approximation problem. Therefore we choose as a solution the

function that solves the following variational problem:

min
f2H

H[f ] = C
lX

i=1

V (yi � f(xi)) +
1

2
�[f ] (2)

where V (x) is some error cost function that is used to measure the interpolation error (for
example V (x) = x2), C is a positive number, �[f ] is a smoothness functional and H is the set of

functions over which the smoothness functional �[f ] is well de�ned. The �rst term is enforcing
closeness to the data, and the second smoothness, while C controls the tradeo� between these

two terms. A large class of smoothness functionals, de�ned over elements of the form (1), can

be de�ned as follows:
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�[f ] =
1X
n=1

c2n
�n

(3)

where f�ng
1
n=1 is a decreasing, positive sequence.

That eq. (3) actually de�nes a smoothness functional can be seen in the following:

Example: Let us consider a one-dimensional case in which x 2 [0; 2�], and let us choose

�n(x) = einx, so that the cn are the Fourier coe�cients of the function f . Since the sequence

f�ng
1
n=1 is decreasing, the constraint that �[f ] <1 is a constraint on the rate of convergence to

zero of the Fourier coe�cients cn, which is well known to control the di�erentiability properties

of f . Functions for which �[f ] is small have limited high frequency content, and therefore do

not oscillate much, so that �[f ] is a measure of smoothness. More examples can be found in

appendix A.

When the smoothness functional has the form (3) it is easy to prove (appendix B) that, inde-

pendently on the form of the error function V , the solution of the variational problem (2) has
always the form:

f(x) =
lX

i=1

aiK(x;xi) + b (4)

where we have de�ned the (symmetric) kernel function K as:

K(x;y) =
1X
n=1

�n�n(x)�n(y) (5)

The kernelK can be seen as the kernel of a Reproducing Kernel Hilbert Space (RKHS), a concept
that will be used in section (4). Details about RKHS and examples of kernels can be found in
appendix A and in (Girosi, 1997).
If the cost function V is quadratic the unknown coe�cients in (4) can be found by solving a
linear system. When the kernel K is a radially symmetric function eq. (4) describe a Radial
Basis Functions approximation scheme, which is closely related to smoothing splines, and when

K is of the form K(x�y) eq. (4) is a Regularization Network (Girosi, Jones and Poggio, 1995).

When the cost function V is not quadratic anymore the solution of the variational problem (2)
has still the form (4) (Smola and Sch�olkopf, 1998; Girosi, Poggio and Caprile, 1991), but the
coe�cients ai cannot be found anymore by solving a linear system. V. Vapnik (1995) proposed

to use a particularly interesting form for the function V , which he calls the �-insensitive cost

function, which we plot in �gure (1):

V (x) = jxj� �

(
0 if jxj < �

jxj � � otherwise:
(6)

The �-insensitive cost function is similar to some of the functions used in robust statistics (Huber,

1981), which are known to provide robustness against outliers. However the function (6) is not

only a robust cost function, but also assigns zero cost to errors which are smaller then �. In other

words, according to the cost function jxj� any function that comes closer than � to the data points
is a perfect interpolant. In a sense, the parameter � represents, therefore, the resolution at which

we want to look at the data. When the �-insensitive cost function is used in conjunction with

the variational approach of (2), one obtains the approximation scheme known as SVM, which

has the form
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Figure 1: Vapnik's �-insensitive cost function V (x) = jxj�.
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f(x; �; ��) =
lX

i=1

(��i � �i)K(x;xi) + b; (7)

where ��i and �i are some positive coe�cients which solve the following Quadratic Programming

(QP) problem:

min
�;��

R(��; �) = �
lX

i=1

(��i + �i)�
lX

i=1

yi(�
�
i � �i) +

1

2

lX
i;j=1

(��i � �i)(�
�
j � �j)K(xi;xj); (8)

subject to the constraints

0 � ��;� � CPl
i=1(�

�
i � �i) = 0

�i�
�
i = 0 8i = 1; : : : ; l

(9)

Notice that the parameter b does not appear in the QP problem, and we show in appendix (B)
that it is determined from the knowledge of � and ��. It is important to notice that it is possible
to prove that the last of the constraints above (�i�

�
i = 0) is automatically satis�ed by the solution

and it could be dropped from the formulation. We include this constraint just because it will be
useful in section 4.
Due to the nature of this quadratic programming problem, only a number of coe�cients ��i ��i

will be di�erent from zero, and the input data points xi associated to them are called support
vectors. The number of support vectors depends on both C and �. The parameter C weighs the

data term in functional (2) with respect to the smoothness term, and in regularization theory is
known to be related to the amount of the noise in the data. If there is no noise in the data the
optimal value for C is in�nity, which forces the data term to be zero. In this case SVM will �nd,
among all the functions which have interpolation errors smaller than �, the one that minimizes
the smoothness functional �[f ]. The parameters C and � are two free parameters of the theory,

and their choice is left to the user, as well as the choice of the kernel K, which determines the
smoothness properties of the solution and should reect prior knowledge on the data. For certain
choices of K some well known approximation schemes are recovered, as shown in table (1). We

refer the reader to the book of Vapnik (1995) for more details about SVM, and for the original
derivation of the technique.

Kernel Function Approximation Scheme

K(x;y) = exp(�kx� yk2) Gaussian RBF

K(x;y) = (1 + x � y)d Polynomial of degree d

K(x;y) = tanh(x � y� �) (only for some values of �)

Multi Layer Perceptron

K(x; y) = B2n(x� y) B-splines

K(x; y) = sin(d+1=2)(x�y)

sin
(x�y)

2

Trigonometric polynomial of degree d

Table 1: Some possible kernel functions and the type of decision surface they de�ne. The last

two kernels are one-dimensional: multidimensional kernels can be built by tensor products of
one-dimensional ones. The functions Bn are piecewise polynomials of degree n, whose exact

de�nition can be found in (Schumaker, 1981)
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3 Sparse Approximation

In recent years there has been a growing interest in approximating functions using linear su-

perpositions of basis functions selected from a large, redundant set of basis functions, called

dictionary. It is not the purpose of this paper to discuss the motivations that lead to this ap-

proach, and refer the reader to (Chen, 1995; Chen, Donoho and Saunders, 1995; Olshausen and

Field, 1996; Harpur and Prager, 1996; Daubechies, 1992; Mallat and Zhang, 1993; Coifman and

Wickerhauser, 1992) for further details. A common aspects of these technique is that one seeks

an approximating function of the form:

f(x;a) =
nX
i=1

ai'i(x) (10)

where ' � f'i(x)g
n
i=1 is a �xed set of basis functions that we will call dictionary. If n is very

large (possibly in�nite) and ' is not an orthonormal basis (for example it could be a frame, or

just a redundant, �nite set of basis functions) it is possible that many di�erent sets of coe�cients
will achieve the same error on a given data set. A sparse approximation scheme looks, among all
the approximating functions that achieve the same error, for the one with the smallest number
of non-zero coe�cients. The sparsity of an approximation scheme can also be invoked whenever
the number of basis functions initially available is considered, for whatever reasons, too large
(this situation arises often in Radial Basis Functions applied to a very large data set).

More formally we say that an approximating function of the form (10) is sparse if the coe�cients
have been chosen so that they minimize the following cost function:

E[a; �] = kf(x)�
nX
i=1

�iai'i(x)k
2
L2
+ �(

nX
i=1

�i)
p (11)

where f�ig
n
i=1 is a set of binary variables, with values in f0; 1g ,k � kL2 is the usual L2 norm, and

p is a positive number that we set to one unless otherwise stated. It is clear that, since the L0

norm of a vector counts the number of elements of that vector which are di�erent from zero, the
cost function above can be replaced by the cost function:

E[a] = kf(x)�
nX
i=1

ai'i(x)k
2
L2
+ �kakpL0

(12)

The problem of minimizing such a cost function, however, is extremely di�cult because it in-

volves a combinatorial aspect, and it will be impossible to solve in practical cases. In order to
circumvent this problem, approximated versions of the cost function above have been proposed.

For example, in (Chen, 1995; Chen, Donoho and Saunders, 1995) the authors use the L1 norm
as an approximation of the L0, obtaining an approximation scheme that they call Basis Pursuit

De-Noising. In related work, Olshausen and Field (1996) enforce sparsity by considering the
following cost function:

E[a] = kf(x)�
nX
i=1

ai'i(x)k
2
L2
+ �

nX
j=1

S(aj) (13)

where the function S was chosen in such a way to approximately penalize the number of non-zero

coe�cients. Examples of some the choices considered by Olshausen and Field (1996) are reported

in table (2).
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S(x)

jxj

� exp(�x2)

log(1 + x2)

Table 2: Some choices for the penalty function S in eq. (13) considered by Olshausen and Field

(1996).

In the case in which S(x) = jxj, that is the Basis Pursuit De-Noising case, it is simple to see

how the cost function (13) is an approximated version of the one in (11). In order to see this,

let us allow the variables �i to assume values in f�1; 0; 1g, so that the cost function (11) can be

rewritten as

E[a; �] = kf(x)�
nX
i=1

�iai'i(x)k
2
L2
+ �

nX
i=1

j�ij : (14)

If we now let the variables �i assume values over the all real line, and assuming that the coe�cients
ai are bounded, it is clear that the coe�cients ai are redundant, and can be dropped from the
cost function. Renaming the variables �i as ai, we then have that the approximated cost function

is

E[a] = kf(x)�
nX
i=1

ai'i(x)k
2
L2
+ �kakL1 ; (15)

which is the one proposed in the Basis Pursuit De-Noising method of Chen, Donoho and Saunders
(1995).

4 An Equivalence Between Support Vector Machines

and Sparse Coding

The approximation scheme proposed by Chen, Donoho and Saunders, (1995) has the form de-

scribed by eq. (10), where the coe�cients are found by minimizing the cost function (15). We
now make the following choice for the basis functions 'i:

'i(x) = K(x;xi) 8i = 1; : : : ; l

where K(x;y) is the reproducing kernel of a Reproducing Kernel Hilbert Space (RKHS) H (see

appendix A) and f(xi; yi)g
l
i=1 is a data set which has been obtained by sampling, in absence

of noise, the target function f . We make the explicit assumption that the target function f

belongs to the RKHS H. The reader unfamiliar with RKHS can think of H as a space of smooth

functions, for example functions which are square integrable and whose derivatives up to a certain
order are also square integrable. The norm kfk2H in this Hilbert space can be thought as a linear

combination of the L2 norm of the function and the L2 norm of its derivatives (the speci�c degree

of smoothness and the linear combination depends on the speci�c kernel K). It follows from eq.

(10) that our approximating function is:

f�(x) � f(x;a) =
lX

i=1

aiK(x;xi) (16)
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This model is similar to the one of SVM (eq. 7), except for the constant b, and if K(x;y) =

G(kx � yk), where G is a positive de�nite function, it corresponds to a classical Radial Basis

Functions approximation scheme (Micchelli, 1986; Moody and Darken, 1989; Powell, 1992).

While Chen et al., in their Basis Pursuit De-Noising method, measure the reconstruction error

with an L2 criterion, we measure it by the true distance, in the H norm, between the target

function f and the approximating function f�. This measure of distance, which is common in

approximation theory, is better motivated than the L2 norm because it not only enforces closeness

between the target and the model, but also between their derivatives, since k � kH is a measure

of smoothness. We therefore look for the set of coe�cients a that minimize the following cost

function:

E[a] =
1

2
kf(x)�

lX
i=1

aiK(x;xi)k
2
H + �kakL1 (17)

where k � kH is the standard norm in H. We consider this to be a modi�ed version of the Basis
Pursuit De-Noising technique of Chen (1995) and Chen, Donoho and Saunders (1995).
Notice that it looks from eq. (17) that the cost function E cannot be computed because it
requires the knowledge of f (in the �rst term). This would be true if we had k � kL2 instead of
k � kH in eq. (17), and it would force us to consider the approximation:

kf(x)� f�(x)k2L2
�

1

l

lX
i=1

(yi � f�(xi))
2 (18)

However, because we used the norm k � kH, we will see in the following that (surprisingly) no
approximation is required, and the expression (17) can be computed exactly, up to a constant

(which is obviously irrelevant for the minimization process).
For simplicity we assume that the target function f has zero mean in H, which means that its
projection on the constant function g(x) = 1 is zero:

< f; 1 >H= 0

Notice that we are not assuming that the function g(x) = 1 belongs to H, but simply that the
functions that we consider, including the reproducing kernel K, have a �nite projection on it. In

particular we normalize K in such a way that < 1;K(x;y) >H= 1. We impose one additional

constraints on this problem:

� We want to guarantee that the approximating function f� has also zero mean in H:

< f�; 1 >H= 0 (19)

Substituting eq. (16) in eq. (19), and using the fact that K has mean equal to 1, we see that
this constraint implies that:

lX
i=1

ai = 0 : (20)

We can now expand the cost function E of equation (17) as
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E[a] =
1

2
kfk2H �

lX
i=1

ai < f(x);K(x;xi) >H +
1

2

lX
i;j=1

aiaj < K(x;xi);K(x;xj) >H +�
lX

i=1

jaij

Using the reproducing property of the kernel K we have:

< f(x);K(x;xi) >H= f(xi) � yi (21)

< K(x;xi);K(x;xj) >H= K(xi;xj) (22)

Notice that in eq. (21) we explicitly used the assumption that the data are noiseless, so that we

know the value yi of the target function f at the data points xi. We can now rewrite the cost

functions as:

E[a] =
1

2
kfk2H �

lX
i=1

aiyi +
1

2

lX
i;j=1

aiajK(xi;xj) + �
lX

i=1

jaij (23)

We now notice that the L1 norm of a (the term with the absolute value in the previous equation),
can be rewritten more easily by decomposing the vector a in its \positive" and \negative" parts

as follows:

a = a+ � a� a+;a� � 0; a+i a
�
i = 0 8i = 1; : : : ; l:

Using this decomposition we have

kakL1 =
lX

i=1

(a+i + a�i ) : (24)

Disregarding the constant term in kfk2H and taking in account the constraint (20), we conclude
that the minimization problem we are trying to solve is equivalent to the following quadratic

programming (QP) minimization problem:

Problem 4.1 Solve:

min
a+
i
;a�
i

2
4� lX

i=1

(a+i � a�i )yi +
1

2

lX
i;j=1

(a+i � a�i )(a
+
j � a�j )K(xi;xj) + �

lX
i=1

(a+i + a�i )

3
5 (25)

subject to the constraints:

a+;a� � 0Pl
i=1(a

+
i � a�i ) = 0

a+i a
�
i = 0 8i = 1; : : : ; l

(26)

If we now rename the coe�cients as follows:

a+i ) ��i
a�i ) �i

we notice that the QP problem de�ned by equations (25) and (26) is the same QP problem that

we need to solve for training a SVM with kernel K (see eq. 8 and 9) in the case in which the
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data are noiseless. In fact, as we argued in section 2.1, the parameter C of a SVM should be set

to in�nity when the data are noiseless. Since the QP problem above is the same QP problem of

SVM, we can use the fact that the constraint �i�
�
i = 0 is automatically satis�ed by the SVM

solution (see appendix B) to infer that the constraint a+i a
�
i = 0 is also automatically satis�ed in

the problem above, so that it does not have to be included in the QP problem. Notice also that

the constant term b which appears in (7) does not appear in our solution. We argue in appendix

B that for most commonly used kernelsK this term is not needed, because it is already implicitly

included in the model. We can now make the following:

Statement 4.1 When the data are noiseless, the modi�ed version of Basis Pursuit De-Noising

of eq. (17), with the additional constraint (19), gives the same solution of SVM, and the solution

is obtained by solving the same QP problem of SVM.

As expected, the solution of the Basis Pursuit De-Noising is such that only a subset of the data
points in eq. (16) has non-zero coe�cients, the so-called support vectors. The number of support

vectors, that is the degree of sparsity, is controlled by the parameter �, which is the only free
parameter of this theory.

5 Conclusions and remarks

In this paper we showed that, in the case of noiseless data, SVM can be derived without using any
result from VC theory, but simply enforcing a sparsity constraint in an approximation scheme of
the form

f(x;a) =
lX

i=1

aiK(x;xi)

together with the constraint that, assuming that the target function has zero mean, the approxi-
mating function should also have zero mean. This makes a connection between a technique such
as SVM, which is derived in the framework of Structural Risk Minimization, and Basis Pursuit

De-Noising, a technique which has been proposed starting from the principle of sparsity. Some

observations are in order:

� This result shows that SVM provide an interesting solution to an old-standing problem: the
choice of the centers for Radial Basis Functions. If the number of data points is very large

we do not want to place one basis function at every data point, but rather at a (small)

number of other locations, called \centers". The choice of the centers is often done by

randomly choosing a subset of the data points. SVM provides a subset of the data points

(the support vectors) which is \optimal" in the sense of the trade-o� between interpolation
error and number of basis functions (measured in the L1 norm). SVM can be therefore seen
as a \sparse" Radial Basis Functions in the case in which the kernel is radially symmetric.

� One can regard this result as an additional motivation to consider sparsity as an \interest-
ing" constraint. In fact, we have shown here that, under certain conditions, sparsity leads

to SVM, which is related to the Structural Risk Minimization principle, and is extremely

well motivated in the theory of uniform convergence in probability.
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� The result holds because in both this and Vapnik's formulation the cost function contains

both an \L2-type" and an \L1-type" norm. However, the Support Vector method has an

\L1-type" norm in the error term, and an L2 norm in the \regularization" term, while the

cost function (17) we consider has an \L2-type" norm in the error term and an L1 norm in

the \regularization" term.

� This results holds due to the existence of the reproducing property of the RKHS. If the

norm k � kH were replaced by the standard L2 norm or any other Sobolev norm the cost

function would contain the scalar product in L2 between the unknown function f and the

kernel K(x;xi), and the cost function could not be computed. If we replace the RKHS

norm with the training error on a data set f(xi; yi)g
l
i=1 (as in Basis Pursuit De-Noising) the

cost function could be computed, but it would lead to a di�erent QP problem. Notice that

the cost function contains the actual distance between the approximating and the unknown

function, which is exactly the quantity that we want to minimize.

� As a side e�ect, this paper provides a derivation of the SVM algorithm in the framework
of regularization theory (see appendix B). The advantage of this formulation is that it is
particularly simple to state, and it is easily related to other well known techniques, such
as smoothing splines and Radial Basis Functions. The disadvantage is that it hides the
connection between SVM and the theory of VC bounds, and does not make clear what

induction principle is being used. When the output of the target function is restricted to
be 1 or -1, that is we consider a classi�cation problem, Vapnik shows that SVM minimize
an upper bound on the generalization error, rather than minimizing the training error
within a �xed architecture. Although this is rigorously proved only in the classi�cation
case, this is a very important property, that makes SVM extremely well founded from the

mathematical point of view. This motivation, however, is missing when the regularization
theory approach is used to derive SVM.

� The equivalence between SVM and sparsity has only been shown in the case of noiseless

data. In order to maintain the equivalence in the case of noisy data, one should prove that
the presence of noise in the problem (17) leads to the additional constraint ��;� � C as
in SVM, where C is some parameter inversely related to the amount of noise. In appendix
C we sketch a tentative solution to this problem. This solution, however, is not very

satisfactory because is purely formal, and it does not explain what assumptions are made

on the noise in order to maintain the equivalence.

Acknowledgments I would like to thank T. Poggio and A. Verri for their useful comments and B.

Olshausen for the long discussions on sparse approximation.

A Reproducing Kernel Hilbert Spaces

In this paper, a Reproducing Kernel Hilbert Space (RKHS) (Aronszajn, 1950) is de�ned a Hilbert
space of functions de�ned over some domain 
 � Rd with the property that, for each x 2 
, the

evaluation functionals Fx de�ned as

Fx[f ] = f(x) 8f 2 H
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are linear, bounded functionals. It can be proved that to each RKHS H it corresponds a positive

de�nite function K(x;y), which is called the reproducing kernel of H. The kernel of H has the

following reproducing property:

f(x) =< f(y);K(y;x) >H 8f 2 H (27)

where < �; � >H denotes the scalar product in H. The function K acts in a similar way to

the delta function in L2, although L2 is not a RKHS (its elements are not necessarily de�ned

pointwise). Here we sketch a way to construct a RKHS, which is relevant to our paper. The

mathematical details (such the convergence or not of certain series) can be found in the theory of

integral equations (Hochstadt, 1973; Cochran, 1972; Courant and Hilbert, 1962), which is very

well established, so we do not discuss them here. In the following we assume that 
 = [0; 1]d for

simplicity. The main ideas will carry over to the case 
 = Rd, although with some modi�cations,

as we will see in section (A.2).

Let us assume that we �nd a sequence of positive numbers �n and linearly independent functions
�n(x) such that they de�ne a function K(x;y) in the following way2:

K(x;y) �
1X
n=1

�n�n(x)�n(y) (28)

where the series is well de�ned (for example it converges uniformly). A simple calculation shows
that the function K de�ned in eq. (28) is positive semi-de�nite. Let us now take as Hilbert

space the set of functions of the form

f(x) =
1X
n=1

cn�n(x) (29)

in which the scalar product is de�ned as:

<
1X
n=1

cn�n(x);
1X
n=1

dn�n(x) >H�
1X
n=1

cndn

�n
(30)

Assuming that all the evaluation functionals are bounded, it is now easy to check that such an
Hilbert space is a RKHS with reproducing kernel given by K(x;y). In fact we have

< f(x);K(x;y) >H=
1X
n=1

cn�n�n(y)

�n
=

1X
n=1

cn�n(y) = f(y):

We conclude that it is possible to construct a RKHS whenever a function K of the form (28) is
available. The norm in this RKHS has the form:

kfk2H =
1X
n=1

c2n
�n

(31)

It is well known that expressions of the form (28) actually abound. In fact, it follows from

Mercer's theorem (Hochstadt, 1973) that any function K(x;y) which is the kernel of a positive

operator3 in L2(
) has an expansion of the form (28), in which the �i and the �i are respectively,

2When working with complex functions �n(x) this formula should be replaced with K(x;y) �P
1

n=1
�n�n(x)�

�

n
(y)

3We remind the reader that positive operators in L2 are self-adjoint operators such that < Kf; f > � 0 for

all f 2 L2.
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the orthogonal eigenfunctions and the positive eigenvalues of the operator corresponding toK. In

(Stewart, 1976) it is reported that the positivity of the operator associated to K is equivalent to

the statement that the kernelK is positive de�nite, that is the matrixKij = K(xi;xj) is positive

de�nite for all choices of distinct points xi. Notice that a kernel K could have an expansion of

the form (28) in which the �n are not necessarily its eigenfunctions.

The case in which 
 = Rd is similar, with the di�erence that the eigenvalues may assume any

positive value, so that there will be a non-countable set of orthogonal eigenfunctions. In the

following section we provide a number of examples of these di�erent situations, that also show

why the norm jfk2H can be seen as a smoothness functional.

A.1 Examples: RKHS over [0; 2�]

Here we present a simple way to construct meaningful RKHS of functions of one variable over

[0; 2�]. In the following all the normalization factors will be set to 1 for simplicity.
Let us consider any function K(x) which is continuous, symmetric, periodic, and whose Fourier
coe�cients �n are positive. Such a function can be expanded in a uniformly convergent Fourier
series:

K(x) =
1X
n=0

�n cos(nx) : (32)

An example of such a function is

K(x) = 1 +
1X
n=1

hn cos(nx) ==
1

2�

1� h2

1� 2h cos(x) + h2

where h 2 (0; 1).
It is easy to check that, if (32) holds, then we have:

K(x� y) = 1 +
1X
n=1

�n sin(nx) sin(ny) +
1X
n=1

�n cos(nx) cos(ny) (33)

which is of the form (28) in which the set of orthogonal functions �n has the form:

f�i(x)g
1
i=0 � (1; sin(x); cos(x); sin(2x); cos(2x); : : : ; sin(nx); cos(nx); : : :) :

Therefore, given any function K which is continuous, periodic and symmetric we can then de�ne

a RKHS H over [0; 2�] by de�ning a scalar product of the form:

< f; g >H�
1X
n=0

f cng
c
n + f sng

s
n

�n

where we use the following symbols for the Fourier coe�cients of a function f :

f cn �< f; cos(nx) > ; f sn �< f; sin(nx) >

The functions in H are therefore functions in L2([0; 2�]) whose Fourier coe�cients satisfy the
following constraint:

kfk2H =
1X
n=0

(f cn)
2 + (f sn)

2

�n
< +1 (34)

13



Since the sequence �n is decreasing, the constraint that the norm (34) has to be �nite can be seen

as a constraint on the rate of decrease to zero of the Fourier coe�cients of the function f , which

is known to be related to the smoothness properties of f . Therefore, choosing di�erent kernels

K is equivalent to choose RKHS of functions with di�erent smoothness properties, and the norm

(34) can be used as the smoothness functional �[f ] in the regularization approach sketched in

section 2. The relationship between the kernelK and the smoothness properties of the functions

in the corresponding RKHS will become more clear in the next section, where we discuss the

extension of this approach to the in�nite domain 
 = Rd.

A.2 Examples: RKHS over Rd

When the domain 
 over which we wish to de�ne a RKHS becomes the whole space Rd most of

the results of the previous section still apply, with the di�erence that the spectrum of K becomes

(usually) the whole positive axis, and it is not countable anymore.
For translation invariant kernels, that is positive de�nite functions of the form K(x � y), the

following decomposition holds:

K(x� y) =
Z
Rd

ds ~K(s)eis�xe�is�y (35)

Equation (35)is the analog of (28) over an in�nite domain, and one can go from the case of
bounded 
 to the case of 
 = Rd by the following substitutions:

n ) s

�n ) ~K(s)
�n(x) ) eis�xP1

n=1 )
R
Rd ds

We conclude then that any positive de�nite function of the form K(x�y) de�nes a RKHS over

Rd by de�ning a scalar product of the form

< f; g >H�
Z

ds
~f (s)~g�(s)
~K(s)

(36)

The reproducing property of K is easily veri�ed:

< f(x);K(x� y) >=
Z

ds
~f(s) ~K(s)e�iy�s

~K(s)
= f(y)

and the RKHS becomes simply the subspace of L2(R
d) of the functions such that

kfk2H =
Z

ds
j ~f(s)j2

~K(s)
< +1 (37)

Functionals of the form (37) are known to be smoothness functionals. In fact, the rate of decrease

to zero of the Fourier transform of the kernel will control the smoothness property of the function

in the RKHS. Consider for example, in one dimension, the kernel K(x) = e�jxj, whose Fourier
Transform is ~K(s) = (1 + s2)�1. The RKHS associated to this kernel contain functions such

kfk2H =
Z

ds
j ~f(s)j2

(1 + s2)�1
= kfk2L2

+ kf 0k2L2
<1

14



This is the well known Sobolev space W 1
2 , where we denote by Wm

2 the set of functions whose

derivatives up to order m are in L2 (Yosida, 1974). Notice that the norm induced by the scalar

product (36) is the smoothness functional considered by Girosi, Jones and Poggio (1995) in their

approach to regularization theory for function approximation. This is not surprising, since RKHS

have been known to play a central role in spline theory (Wahba, 1990). Notice also that in spline

theory one actually deals with semi-RKHS, in which the norm k � kH has been substituted with a

semi-norm. Semi-RKHS share most of the properties of RKHS, but their theory becomes a little

more complicated because of the null space of the semi-norm, which has to be taken in account.

Details about semi-RKHS can be found in (Wahba, 1990).

B Derivation of the SVM Algorithm

B.1 Generalities on Regularization Theory

Let us look more closely at the solution of the variational problem (2):

min
f2H

H[f ] = C
lX

i=1

V (yi � f(xi)) +
1

2
�[f ]

We assume that H is a RKHS with kernel K and that the smoothness functional �[f ] is:

�[f ] = kfk2H

This is equivalent to assume that the functions in H have a unique expansion of the form:

f(x) =
1X
n=1

cn�n(x)

and that their norm is:

kfk2H =
1X
n=1

c2n
�n

In this derivation we do not have the coe�cient b which appears in (1), since we argued before

that if one of the �i is constant, which is usually the case, this term is not necessary.

We can think of the functional H[f ] as a function of the coe�cients cn. In order to minimize
H[f ] we take its derivative with respect to cn and set it equal to zero, obtaining the following:

� C
lX

i=1

V 0(yi � f(xi))�n(xi) +
cn

�n
= 0 (38)

Let us now de�ne the following set of unknowns:

ai � CV 0(yi � f(xi))

Using eq. (38) we can express the coe�cients cn as a function of the ai:

cn = �n

lX
i=1

ai�n(xi)

The solution of the variational problem has therefore the form:
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f(x) =
1X
n=1

cn�n(x) =
1X
n=1

lX
i=1

ai�n�n(xi)�n(x) =
lX

i=1

aiK(x;xi) (39)

where we have used the expansion (28). This shows that, independently of the form of V , the

solution of the regularization functional (2) is always a linear superposition of kernel functions,

one for each data point. The cost function V a�ects the computation of the coe�cients ai. In

fact, plugging eq. (39) back in the de�nition of the ai we obtain the following set of equations

for the coe�cients ai:

ai = CV 0

0
@yi � lX

j=1

Kijaj

1
A ; i = 1; : : : ; l

where we have de�ned Kij = K(xi;xj). In the case in which V (x) = x2 we obtain the standard

regularization theory solution (see Girosi, Jones and Poggio, 1995 for an alternative derivation):

(K + I) a = y

where we have de�ned  � 1

C
.

B.2 The SVM algorithm in the Regularization Theory Framework

Following Vapnik (1995) we now consider the case of the �-insensitive cost function V (x) = jxj�.

In this case the approach sketched above is problematic because V is not di�erentiable at x = �

(although it still makes sense everywhere else). In order to make our notation consistent with
Vapnik's one, we have to modify slightly the model proposed in the previous section. Vapnik
explicitly takes into account an o�set in the model, so that equation (1) is replaced by

f(x) =
1X
n=1

cn�n(x) + b (40)

The smoothness functional remains unchanged (so that the smoothness does not depend on b):

�[f ] =
1X
n=1

c2n
�n

Also, we scale the functional in (2) of a factor 1

2�
� C, obtaining the following variational

problem:

min
f2H

H[f ] = C
lX

i=1

jyi � f(xi)j� +
1

2
�[f ]

Since it is di�cult to deal with the function V (x) = jxj�, the problem above is replaced by the
following equivalent4 problem, in which an additional set of variables is introduced:

min
f2H

H[f ] = C
lX

i=1

(�i + ��i ) +
1

2
�[f ] (41)

subject to

4By equivalent we mean that the function that minimizes the two functionals is the same
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f(xi)� yi � �+ �i i = 1; : : : ; l

yi � f(xi) � �+ ��i i = 1; : : : ; l

�i � 0 i = 1; : : : ; l

��i � 0 i = 1; : : : ; l

(42)

The equivalence of the variational problem is established just noticing that in the problem above

a (linear) penalty is paid only when the absolute value of the interpolation error exceeds �,

which correspond to Vapnik's �-insensitive cost function. Notice that when one of the two top

constraints is satis�ed with some non-zero �i (or �
�
i ), the other is automatically satis�ed with a

zero value for ��i (or �i). In order to solve the constrained minimization problem above we use

the technique of Lagrange multipliers. The Lagrangian corresponding to the problem above is:

L(f; �; ��;�;��; r; r�) = C
lX

i=1

(�i + ��i ) +
1

2
�[f ] +

lX
i=1

��i (yi � f(xi)� �� ��i ) +

+
lX

i=1

�i(f(xi)� yi � �� �i)�
lX

i=1

(ri�i + r�i �
�
i ) (43)

where �;��; r; r� are positive Lagrange multipliers. The solution of the constrained variational
problem above is now obtained by minimizing the Lagrangian (43) with respect to f (that is
with respect to the cn and to b), � and �� and maximizing (in the positive quadrant) with respect

to �;��; r; r�. Since the minimization step is now unconstrained, we set to zero the derivatives
with respect to cn, b, � and ��, obtaining:

@L

@cn
= 0 ) cn = �n

lX
i=1

(��i � �i)�n(xi)

@L

@b
= 0 )

lX
i=1

(��i � �i) = 0

@L

@�n
= 0 ) rn = C � �n

@L

@��n
= 0 ) r�n = C � ��n

Substituting the expression for the coe�cients cn in the model (40) we then conclude that the

solution of the problem (41) is a function of the form

f(x) =
lX

i=1

(��i � �i)K(x;xi) + b (44)

Substituting eq. (44) in the Lagrangian, we obtain an expression that should now be maximized

(in the positive quadrant) with respect to�;��; r; r�, with the additional constraints listed above.

Noticing that the relationship between rn (r�n) and �n (��n) implies that � � C and �� � C,

and minimizing �L rather than maximizing L, we now obtain the following QP problem:
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Problem B.1

min
�;��

L(�;��) = �
lX

i=1

(��i + �i)�
lX

i=1

yi(�
�
i � �i) +

1

2

lX
i;j=1

(��i � �i)(�
�
j � �j)K(xi;xj);

subject to the constraints

0 � ��;� � C
lX

i=1

(��i � �i) = 0

This is the QP problem that has to be solved in order to compute the SVM solution. It is useful

to write and discuss the Kuhn-Tucker conditions:

�i(f(xi)� yi � �� �i) = 0 i = 1; : : : ; l

��i (yi � f(xi)� �� ��i ) = 0 i = 1; : : : ; l

(C � �i)�i = 0 i = 1; : : : ; l

(C � ��i )�
�
i = 0 i = 1; : : : ; l

The input data points xi for which �i or �
�
i are di�erent from zero are called support vectors.

Few observations are in order:

� The Lagrange multipliers �i and ��i cannot be simultaneously di�erent from zero, so that

the constraint �i�
�
i = 0 holds.

� The support vectors are those data points xi at which the interpolation error is either
greater or equal to �. Points at which the interpolation error is smaller than � are never

support vectors, and do not enter in the determination of the solution. Once they have
been found, they could be removed from the data set, and if the SVM were run again on

the new data set the same solution would be found.

� Any of the support vectors for which 0 < �i < C (and therefore �i = 0) can be used to

compute the parameter b. In fact, in this case it follows from the Kuhn-Tucker conditions
that:

f(xi) =
lX

j=1

�jK(xi;xj) + b = yi + �

(a similar argument holds for the ��i ).

� If � = 0 then all the points become support vectors;
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� Because of the constraint �i�
�
i = 0, de�ning

a = �� ��

and using eq. (24) the QP problem B.1 can be written as follows:

Problem B.2

min
a

E�[a] = �kakL1 � a � y+
1

2
a �Ka

subject to the constraints

�C � ai � C

a � 1 = 0

Important note: Notice that if one the basis functions �i is constant, then the parameter b in
(40) could be omitted. The RKHS described in appendix A all have this property.

C Noisy case: an equivalence?

It is natural to ask whether the result of this paper can be extended to the case of noisy data. I

will sketch here an argument to show that there is still a relationship between SVM and sparse
approximation, when data are noisy, although the relationship is much less clear. In the presence
of additive noise we have

f(xi) = yi + �i ;

where yi are the measured value of f , and �i are random variables with unknown probability

distribution. Substituting yi with yi + �i in eq. (23), disregarding the constant term in kfk2H,

and de�ning

E�[a] = �
lX

i=1

aiyi +
1

2

lX
i;j=1

aiajK(xi;xj) + �
lX

i=1

jaij

we conclude that we need to minimize the following QP problem:

Problem C.1

min
a

[E�[a]� a � �]

subject to the constraint:

a � 1 = 0

where the vector � is unknown.

In order to understand how to deal with the fact that we do not know �, let us consider a di�erent
QP problem:
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Problem C.2

min
a

E�[a]

subject to the constraints:

a � 1 = 0

a � �

a � ��

where the box parameters � and �� are unknown.

We solve problem C.2 using the Lagrange multipliers technique for the inequality constraints,

obtaining the following dual version of problem C.2:

Problem C.3

max
�;�

�

min
a

[E�[a]� a � (� � ��) + � � � � �� � ��]

subject to the constraint:

a � 1 = 0
�;�� � 0

where � and �� are vectors of Lagrange multipliers.

Notice now that the choice of the box parameters � and �� uniquely determines � and ��,
and that setting � = � � ��, problems C.1 and C.3 are identical for what concerns the a

vector: in both cases one needs to solve a QP problem in which a linear term contains unknown
coe�cients. Therefore, solving problem C.1 with unknown � seems to be formally equivalent to

solving problem C.3 with unknown box parameters. This suggests the following argument: 1)
solving C.1 with unknown � is formally equivalent to solving problem C.3 with unknown box
parameters; 2) in absence of any information on the noise, and therefore on the box parameters,
we could set the box parameters to �� = �� = C1 for some unknown C; 3) for �� = �� = C1

problem C.3 becomes the usual QP problem of SVM (problem B.1); 4) therefore, in total absence

of information on the noise, problem C.1 leads to the same QP problem of SVM, making the

equivalence between sparse approximation and SVM complete. However this argument is not

very rigorous, because it does not make clear how the assumptions on � and �� are reected on
the noise vector �. However, the formal similarity of the problems C.3 and C.1 seems to point in

the right direction, and an analysis of the relationship between �, �� and � could lead to useful

insights on the assumptions which are made on the noise in the SVM technique.
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