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This article presents applications of
entropic spanning graphs to im-
aging and feature clustering ap-
plications. Entropic spanning

graphs span a set of feature vectors in such a
way that the normalized spanning length of
the graph converges to the entropy of the fea-
ture distribution as the number of random
feature vectors increases. This property
makes these graphs naturally suited to appli-
cations where entropy and information di-
vergence are used as discriminants: texture
classification, feature clustering, image in-
dexing, and image registration. Among
other areas, these problems arise in geo-
graphical information systems, digital librar-
ies, medical information processing, video
indexing, multisensor fusion, and con-
tent-based retrieval.

Introduction
Let X be an image, and let independent iden-
tically distributed (i.i.d.) d-dimensional fea-
ture vectors Z Z n1 , ,K be extracted from this
image. Examples of such a feature vector are
the position and orientation of a randomly
chosen edge, a vector of samples in a textured
region, or the output vector of a spatial pre-
diction filter. Such features can be used for
registering two images to each other, texture
classification and segmentation, or con-
tent-based image retrieval. The basic objec-
tive of these applications can be reduced to
assessing characteristics of the distribution of
the feature vectors. For example, the mutual
information method of image registration
[53] searches through a number of coordi-
nate transformations to find the one that
minimizes the entropy of the joint feature
distribution of the two images. Similarly,
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many image retrieval algorithms search through a data-
base of images to find the homologous image whose fea-
ture distribution is closest to that of the query image
where closeness is measured in terms of minimum infor-
mation divergence [50], [47], [11]. This article discusses
minimal graph methods for estimating entropy and di-
vergence measures associated with a set of feature vectors.
Specifically, we focus on a class of graphs which span the
set of feature vectors and as a byproduct produces a con-
sistent estimator of feature entropy and divergence. We
call such graphs entropic spanning graphs.

Here the relevant notion of entropy is theα-entropy of
the feature probability density f , also known as Rényi en-
tropy, which for probability densities is defined as [45]

H f f z dzα
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for α ∈( , )0 1 . The α-entropy converges to the Shannon en-
tropy −∫ f z f z dz( )ln ( ) as α→ 1. A related quantity is the
α-divergence between two feature densities f1 and f 0 of
order α ∈( , )0 1 [45], [10], [3]
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D f fα ( || )1 0 is a measure of similarity or closeness of f1
and f 0 in the sense that D f fα ( || )1 0 0≥ with equality iff
f f1 0= almost everywhere (a.e.). When α→ 1 the α-di-
vergence converges to the Kullback-Leibler divergence
KL( || ) ( )ln( ( ) / ( ))f f f z f z f z dz1 0 0 0 1=∫Z . On the other
hand, D f f1 2 1 0/ ( || ) is the Hellinger affinity between f1
and f 0 [6]. The Hellinger affinity is related to the
Hellinger distance which is commonly used to measure
differences between two probability densities [26], [31].

Nonparametric estimation of Shannon entropy has
been of interest to many in nonparametric statistics, pat-
tern recognition, model identification, image registra-
tion, and other areas [15], [28], [1], [52], [5], [53], [12].
The estimation ofα-entropy arises as a step towards Shan-
non entropy estimation, e.g., Mokkadem [37] con-
structed a nonparametric estimate of the Shannon
entropy from a convergent sequence of α-entropy esti-
mates. However, as we will see, estimation of the α-en-
tropy is of interest in its own right. The problem arises in
vector quantization where Rényi entropy is related to as-
ymptotic quantizer distortion via the Panter-Dite factor
and Bennett’s integral [14], [39]. The α-entropy
parameterizes the Chernoff exponent governing the min-
imum probability of error in binary detection problems
[27], [9]. It also has been used for image registration
from multiple modalities via theα-Jensen difference [33],
[32], [16]. The most natural entropy estimation method
is to substitute a nonparametric density estimator $f into
the expression for entropy. This method has been widely
applied to estimation of the Shannon entropy and is
called “plug-in” estimation in [5]. Other methods of
Shannon entropy estimation discussed in [5] include

sample spacing estimators, restricted to d =1, and esti-
mates based on nearest neighbor distances.

Divergence, Entropy, and Indexing
Let X 0 be a reference image, called the query, and con-
sider a database X i , i K=1, ,K of images to be indexed
relative to the query. Let Z in ={ ,..., }Z Zi in1 be n feature
vectors of dimension dextracted from X i . We assume that
image X i ’s feature vectors are i.i.d. with Zi1 following
probability density f zi ( ). Throughout we will also as-
sume that densities are supported on the unit cube [ , ]0 1 d

in d-dimensions. Under this statistical framework the
similarity between images X X i0 , is reduced to similarity
between feature densities f z f zi0 ( ), ( ).

Divergence Index
The ordered sequence of increasingα-divergence measures
D f f D f fi iKα α( || ) ( || ),

1 0 0≤ ≤L induces an indexing,
which we call the “true divergence-indexing,” of the im-
ages

X X D f f D f fi j i jp ⇔ <α α( || ) ( || )0 0 .

Special cases of the indexing problem are the following.
� 1) Content-based retrieval [51], [47], [11]: the query is
an image and the database consists of images which may
“contain” the object in the sense that the object may only
be found as a scaled, rotated or ortho-projected version of
the query in the database. An invariant feature set is very
important for this application.
� 2) Image registration [53], [41], [40], [38]: the data-
base consists of K copies of Z0 which are rotated, trans-
lated, and possibly locally deformed. The indexing finds
the pose/orientation in the database closest to that of the
query. An invariant feature set is not desirable in this ap-
plication. When the feature vector Zi is defined as the set
of pixel pair gray levels associated with each pair of im-
ages X Xi , 0 and the mutual information criterion is ap-
plied to the pixel pair histogram one obtains an analog to
the method of Viola and Wells [53]. The mutual infor-
mation (MI) criterion is equivalent to the KL divergence
between the joint distribution of the pixel-pair gray levels
and the product of the marginal feature distributions.
� 3) Target detection [29], [42], [49]: the query is the
distribution of the observations and the database is parti-
tioned into of a family of densities f f Zi i= ( | )θ part of
which corresponds to the “target-absent” hypothesis and
the rest to “target-present.” Target detection is declared if
the closest density in the database is in the latter set.

As an illustrative example consider the case where f 0
and f1 are multivariate Gaussian densities. The KL di-
vergence for such a Gaussian feature model was
adopted in [48] and [47]. Let f x f x0 0 0( ) ( ; , )= µ Λ and
f x f x1 1 1( ) ( ; , )= µ Λ be d-dimensional Gaussian densi-
ties with mean vectors µ µ0 1, and nonsingular
covariance matrices Λ Λ0 1, . For this model the unnor-
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malized α-divergence D f f D f fu
α
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order α is given by [19]
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where ∆µ µ µ= −1 0 and | |A denotes the determinant of
square matrix A. The divergence consists of two terms A
and B. A is equal to zero when Λ Λ0 1= , and B is equal to
zero when µ µ0 1= . Term A is the log of the ratio of the
determinants of the geometric mean and the arithmetic
means of Λ1 and Λ0 with mean weights α and1− α. Term
B is the quadratic difference of mean vectors normalized
by the arithmetic mean of Λ1 and Λ0 with mean weightsα
and 1− α.

Choice of α-Parameter
Theα-divergence is directly related to the exponential rate
of decay of the Bayes-optimal binary hypothesis test be-
tween two densities f 0 and f1 [19]. Specifically, given an
i.i.d. sample Z n nZ Z={ , , }1 K , the Chernoff bound as-
serts that the probability of error P ne ( ) of the optimal
Bayes test of H 0 : Zi has density f z0 ( ) versus H1 : Zi has
density f z1 ( ), then

lim inf sup
n en

P n D f f
→ ∞ ∈

= − −1 1
0 1

1 0ln ( ) ( ) ( || )
[ , ]α

αα .
(4)

The quantity on the right in (4) is called the Chernoff expo-
nent which is the asymptotically optimal rate of exponential
decay of the error probability for testing H 0 versus H1 . For
indexing applications this relation suggests that the maxi-
mizing α in (4) is an optimal value, and using it makes the
α-divergence indexing measure the most relevant to feature
classification. It can be shown that the maximizing value ap-
proaches α =1 2/ when f1 is close to f 0 [19].

Entropy Index
An alternative index function is based on the so-called
Jensen entropy difference. This index function was inde-
pendently proposed by Ma [32] and He et al. [16] for image
registration problems. It was proposed earlier by Michel et
al. in [35] for classifying time frequency distribution im-
ages. Let f 0 and f1 be two densities and β ∈[ , ]0 1 be a mix-
ture parameter. The α-Jensen difference is the difference
between the α-entropies of the mixture f f f= + −β β0 11( )
and the mixture of the α-entropies of f 0 and f1 [3]:

∆H f f
H f f H f H f

α

α α α

β
β β β β

( , , )
( ( ) ) [ ( ) ( ) ( )]
0 1

0 1 0 11 1
=

+ − − + − ,

(5)

whereα ∈( , )0 1 . As theα-entropy H fα ( ) is strictly concave
in f Jensen’s inequality asserts that ∆H f fα β( , , )0 1 0≥
with equality iff f f0 1= (a.e).

The α-Jensen difference can be motivated as an index
function as follows. Assume that two sets of labeled fea-
ture vectors Z0 0 1 0

= ={ } , ,Z i i nK
and Z1 1 1 1

= ={ } , ,Z i i nK
are

extracted from images X 0 and X1 , respectively, and as-
sume that each of these sets consists of independent real-
izations from densities f 0 and f1 . Define the union
Z Z Z= ∪0 1 containing n n n= +0 1 unlabeled feature
vectors. Any consistent entropy estimator constructed on
the unlabeled Zi s will converge to H f fα β β( ( ) )0 11+ − as
n→ ∞ where β = → ∞lim /n n n0 .

For some indexing problems the marginal entropies
{ ( )}H f i i

K
α =1 over the database are all identical so that the

indexing function { ( ( ) )}H f f i i
K

α β β0 11+ − = is equivalent
to { ( , , )}�H f f i i

K
α β 0 1= .

Comparisons of α-Jensen Difference
and α-Divergence
There are several interesting properties of D f fα ( || )1 0 and
�H f fα β( , , )0 1 which are discussed in [19].
� For f1 close to f 0 the discrimination capability of the
α-divergence D f fα ( || )1 0 is locally independent ofα while
that of the α-Jensen difference �H f fα β( , , )0 1 depends
on α.
� When α approaches zero, tail differences between the
two densities f 0 and f1 become most influential.
� When α approaches one, central differences between
the two densities become highly pronounced in
∆H f fα β( , , )0 1 . Therefore, if the feature densities differ in
regions where there is much mass one should choose α
close to one to ensure locally optimum discrimination.
� ∆H f fα β( , , )0 1 has maximal discriminative capability
when β =1 2/ , i.e., when the two images yield the same
number of feature vectors.

Entropic Spanning Graphs
The aforementioned ideal indexing scheme is of course
unimplementable since one never knows the underlying
feature densities exactly. Implementation thus requires es-
timation of the entropy or divergence. Most current
nonparametric entropy and divergence estimation tech-
niques are based on estimation of the density function fol-
lowed by substitution of these estimates into the entropy
or divergence functionals (1) and (2). The reader is re-
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ferred to [5] for a comprehensive overview of previous
work in nonparametric estimation of Shannon entropy.
The main difficulties of nonparametric plug-in methods
are due to the infinite dimension of the spaces in which
the unconstrained densities lie; specifically, density esti-
mator performance is poor without stringent smoothness
conditions; no unbiased density estimators generally ex-
ist; density estimators have high variance and are sensitive
to outliers; and the high dimensional integration required
to evaluate the entropy might be difficult.

The problems with plug-in methods can be summa-
rized by this basic observation: on the one hand
parameterizing the scalar entropy functional with an infi-
nite dimensional density function is a costly
over-parameterization, while on the other hand artificially

enforcing lower dimensional density parameterizations
can produce significant bias in the estimates. This observa-
tion has motivated us to develop direct methods which ac-
curately estimate the entropy without the need for
performing artificial low dimensional parameterizations
or nonparametric density estimation [21]-[23]. These
methods are based on constructing minimal graphs span-
ning the feature vectors in the feature space. The overall
length of these minimal graphs can be used to construct a
strongly consistent estimator of entropy for densities with-
out singular (dirac delta) components. In particular, let
Z n nZ Z={ , , }1 K and define

L en e
e

( ) min ||Z
T

=
∈ ∑ γ , (6)

the overall length of a graph spanning n i.i.d. vectors Zi in
R d each with density f . Here the power weighting
γ ∈( , )0 d is real, e are edges in a graph connecting pairs of
Zi ’s,||e denotes Euclidean (l2 ) norm of the edge, and the
minimization is over some suitable subsets T , e.g., span-
ning trees, of the( )n2 edges of the complete graph. Exam-
ples include the minimal spanning tree (MST), Steiner
tree (ST), minimal matching bipartite graph, and travel-
ing salesman problem (TSP). The asymptotic behavior of
L n( )Z over random points Z n has been studied for over
half a decade [4], [46].

In Fig. 1 the MST is illustrated for two sets of ran-
domly generated points in the plane, one uniformly dis-
tributed (a) and the other distributed with a more
concentrated separable triangular density. The MST is de-
fined as the minimum length graph spanning the n
points. The MST length L Ln n= ( )Z is plotted as a func-
tion of n in Fig. 2 for the case of uniformly and
nonuniformly distributed points and for γ =1. It is intu-
itive that the length of the MST spanning the more con-
centrated nonuniform set of points increases at a slower
rate than does the MST spanning the uniformly distrib-
uted points. This fact motivated the application of the
MST as a way to test for randomness of a set of points
[24]. What is more surprising is that normalizing by n
and taking the logarithm of these length functions pro-
duces sequences that converge (within a constant factor)
to theα-entropies withα =1 2/ , as illustrated in Fig. 2(b).
Furthermore, by changing the value of γ in (6) one can
change the convergent limit to the α-entropy for
α γ= −( ) /d d, γ ∈( , )0 d . Graphs for which the normalized
log-length converges (a.s.) within a constant to an α-en-
tropy for some α ∈( , )0 1 will be called entropic spanning
graphs. In Fig. 2 the upper and lower horizontal lines cor-
respond to known bounds [54] on β γL, .

We showed [23] that when a graph is “quasi-additive”
[54] in d-dimensional feature space, d ≥2, the graph is an
entropic spanning graph. Specifically

$ ( ) [ln ( ) / ln ],H L nn n Lα
α

γα
βZ Z=

−
−1

1
(7)
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� 1. (a) A random set of n =128 uniformly distributed points in
[ , ]01 2 and the MST spanning these points. (b) A random set of
n =128 points with separable triangular density and the MST
spanning these points.

� 2. Length functions (a) Ln of MST and (b) MST divided by n

as function of n for the uniform and separable triangular dis-
tributed points in Fig. 1.



is an asymptotically unbiased and almost surely consistent
estimator of the α-entropy of f where α γ= −( ) /d d and
β γL, is a constant bias correction depending on the graph
minimization criterion, e.g., MST, ST, or TSP, but inde-
pendent of f . The estimator $ ( )H nα Z is also consistent
when the power exponent function||e γ in (6) is replaced
by a positive function g e(||) which locally behaves as||e γ

as||e → 0 [46]. The fact that (7) holds for any quasi-addi-
tive graph construction opens many different possibilities
for consistent graph-based entropy estimation algo-
rithms. However, among the currently known quasi-ad-
ditive algorithms the MST is the fastest (with polynomial
run time) and as such we have adopted it for all of the en-
tropy estimation applications discussed here.

As contrasted with density plug-in techniques,
graph-based entropy estimators enjoy the following
properties: they can have faster asymptotic convergence
rates, especially for nonsmooth densities and for high di-
mensional feature spaces [20]; they completely bypass
the complication of choosing and fine tuning parameters
such as histogram bin size, density kernel width, com-
plexity, and adaptation speed; theα parameter in theα-en-
tropy function is varied by varying the interpoint distance
measure used to compute the weight of the minimal
graph. On the other hand, the need for combinatorial op-
timization is a bottleneck for large numbers of feature
samples. This has motivated the development of greedy
minimal graph approximations that preserve advantages
such as robustness against outliers as discussed below.

Extension to Divergence Estimation
We showed in [22] how an entropic spanning graph esti-
mation procedure can be extended to information diver-
gence estimation by a method of measure transformation.
Assume that f 0 dominates f1 (a density h dominates den-
sity g if whenever h z( )=0then g z( )=0) and rewrite the di-
vergence in (2) as ( ( ) / ( )) ( )f z f z f z dz1 0 0∫ α . The basic idea
is to apply a transformation of coordinates to the feature
vectors which uniformizes the reference density f 0 . We il-
lustrate the idea behind this technique for scalar z. Assume
that Z n are n i.i.d. data points generated from density
f z1 ( ). Apply the coordinate transformation y g z= ( ) to
each point inZ n where g is an invertible function such that
dy f z dz= 0 ( ) . This produces a new set of points Y n in the
transformed coordinates. By standard Jacobian formulas
for change of variable of integration, the divergence inte-
gral becomes ( ( ))h y dyα∫ , where h y f z dy dz( ) ( ) / [ / ]= 1 is
the induced density of Y n . Thus the length L n( )Y of the
MST constructed on the transformed random variablesY n

can be used in place of the length L n( )Z in (7) to give a
consistent estimate of the divergence (2) of f1 relative to a
known reference f 0 :

$ ( || ) [ln ( ) / ln ],D f f L nn Lα
α

γα
β1 0

1
1

=
−

−Y .
(8)

An example of this procedure is shown in Fig. 3 for a
two-dimensional (2-D) separable triangular reference
density f 0 over [ , ]0 1 2 which in this case equals the actual
marginal density f1 of the observed i.i.d. pointsZ n . Thus
for this example the true divergence is zero. We mean
f z z z0 1 22 4 1 2 2 4 1 2( ) ( | / |)( | / |)= − − − − , z z z= ( , )1 2
when we say triangular density. A random sample of
n =100 points was generated from f1 . The uniformizing
transformation in this case is separable too, with each
component transformation equal to the marginal cumu-
lative density function F z x dx

z
( ) ( | / |)= − −∫ 2 4 1 2

0
of the

one-dimensional (1-D) triangular density. We investi-
gated both exact uniformizing transformations and esti-
mated transformations using estimates of the one
dimensional component density functions. The trans-
formed sample is essentially uniform both for the exact
and the estimated transformations. Therefore, as n→ ∞,
it is expected that L nn( ) /Y α will converge toβ γL, and the
estimated divergence (8) will converge to zero as desired.

Robustifying Entropic Spanning Graphs
In many practical problems occasional spurrious feature
vectors may appear due to noise, false alarms, or small un-
important shifts and deformations during the image for-
mation process. In such situations we are interested in
robust entropy or divergence estimators which are resis-
tant to these spurrious outliers. This problem is related to
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� 3. (a) A sample from a separable triangular pdf over the unit
square. (b) A vector field indicating the action of the exact
separable inverse transformation of coordinates on each
sample point in top right. (C) Same sample points as in
(a) after applying transformation indicated in (b). (d) Same
as (c) except that estimated transformation of coordinates
was implemented using k-nearest-neighbor density estima-
tors for each of the marginals.



robust clustering for which it is common to adopt a finite
mixture model to capture the incidence of points arising
from different distributions [34]. For our case the appro-
priate mixture model is the so-called epsilon-contami-
nated model [25]

f z g z h z( ) ( ) ( ) ( )= − +1 ε ε , (9)

where ε ∈[ , ]0 1 , h is an unwanted outlier density, and g is
the underlying density of interest. When n points are real-
ized from the model (9) an average of k n= −( )1 ε of these
points follow the distribution g while the remaining
n k n− = ε are outliers generated from h. Therefore ε corre-
sponds to the proportion ( ) /n k n− of outliers one might
expect in a large sample from density f . It is assumed that
ε is small but unknown. The target density g is also as-
sumed unknown while the outlier density h is known and
has the same support [ , ]0 1 2 as that of g.

Under the model (9) an outlier resistant entropic span-
ning graph was proposed in [23] which identifies and
eliminates the outlier points. First, using the measure
transformation method discussed in the previous section,
we transform the coordinates of the sample Z n such that
h z( ) is converted to a uniform distribution over [ , ]0 1 d .
This transformed sample is denoted Y n and follows a
standard mixture model (9) with uniform contaminating
density h. Second, iterating over k n n= −, ,1 K, we con-
struct entropic spanning graphs over each of the ( )nk
k-point subsetsY n k, ofY n . For each value k, there will be a
graph of minimum length among these( )nk graphs. This
minimal graph spans a set of pointsY n k,

* which are “maxi-
mally clustered” among all k-point subsets. The n k−
points eliminated from the span of this minimal graph are
thus identified as outliers.

We illustrate this procedure in Fig. 4 for 100 realiza-
tions from a mixture density with an annular component
g and a uniform component h. Here ε =05. corresponding
to 50 realizations from each of the distributions. The an-
nular density g has the form

g z ce z( ) exp (|| [ . , . ]|| . )= − − −





1
2

225 04 04 025 2

where c is a normalizing constant and|| ||z z z2
1
2

2
2= + is

the magnitude squared of z z z= ( , )1 2 . The constant con-
tours of this density are circles for which the maximum
contour is a circle of radius 0.25 and center [0.4, 0.4] and
the other contours specify an annulus. Our objective is to
estimate the α-entropy of the annular density g from the
100 realizations from f . For this purpose we adopted the
k-point MST (k-MST) as our entropic spanning graph al-
gorithm. In terms of estimating this entropy, the standard
MST (spanning all 100 points) is extremely sensitive to
the 50 outliers which dominate the MST length function.
Hence the k-MST is implemented to isolate the points
from g from the outliers. The four panels in Fig. 4 illus-
trate the k-MST for several values of k. It is evident from
the figure that as the number of points eliminated by the
k-MST increases from 1 to 2 to 38 the k-MST rejects an in-
creasing number of outliers from the contaminating den-
sity. Indeed for the case of k =62 (38 outliers rejected) the
k-MST appears to have almost completely recovered the
MST for the annular distribution f1 . However, as the
number of rejected points increases beyond 38 to 75 the
k-MST begins eliminating points which come from the
desired annular distribution. The key to a practical k-MST
robustification algorithm will be accurate detection of the
correct number of points to reject.

As the number k of points retained increases, the se-
quence of MST lengths L L Ln n n n n k( ), ( ), , ( ),

*
,

*
,

*Y Y Y
n −1 K is

monotone increasing and evolves a curve over k. As k ap-
proaches n the curve can be expected to increase more
rapidly as more of the isolated “outlier” points are succes-
sively included in the MST. As these points will tend to
come from the uniform distribution the average rate of
increase for large k is constant. We would like to select k in
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� 4. k-MST for 100 points realized from an ε-mixture of 2-D annulus
density g and a uniform outlier density h (ε =1 2/ ). Points arising
from the annulus density tend to cluster in a ring while uniform
points are more widely dispersed over the unit square. Initially, as
the number of points included in the k-MST graph decreases, a
greater and greater number of outlier points are rejected. When
k = 62 (38 rejected points) the k-MST graph has sucessfully clus-
tered the annular points recovering the ring Gestalt.

The α-divergence is directly
related to the exponential rate
of decay of the Bayes-optimal
binary hypothesis test between
two densities f0 and f1.



the k-MST so to eliminate as many of the uniform outlier
points while eliminating as few of the other points from
density g as possible. If the parameter ε were known a
value k n≈ ε could be chosen a priori. Otherwise, a k stop-
ping rule can be implemented which is based on detecting
the knee in the curve L n k( ),

*Y . Fig. 5 shows this curve for
the example shown in Fig. 4. The knee detection algo-
rithm is motivated as follows. As k decreases from n to
one, more and more points are pruned from the k-MST.
When the number of points retained falls below a critical
threshold, points from the more concentrated g distribu-
tion start to be eliminated and the slope of the curve
abruptly decreases.

Once the knee khas been identified the length L n k( ),
*Y

0

can be used for robust estimation of the α-entropy of or-
der α, where as usual α γ= − ∈( ) / ( , )d d 0 1 is specified by
the dimension d ≥2 and the weight exponent γ ∈( , )0 d . In
[23] we established a.s. convergence of this estimate
when a greedy approximation to k-point minimal
entropic graph is implemented. The Huber-Hampel in-
fluence function of this robust procedure was also investi-
gated in [23].

Computational Issues
The computational complexity of minimal graph algo-
rithms depends on the implementation but is generally
superlinear in the number n of vertices [8]. Minimal span-
ning trees and k-means algorithms are of lowest
complexitity (complexity O n n( log )2 or less) among the
many entropic spanning graph algorithms one might
consider. We have implemented both sequential sin-
gle-processor MSTs and parallel multiprocessor MSTs.
While our experience has been limited to parallelization
over (TCP/IP) networked workstations, we have found
that parallel MST implementations, such as that pro-
posed in [7], are stymied by high interprocessor commu-
nications overhead. There are principally two sequential
implementations of the MST: Kruskal’s “growing a forest
of trees” algorithm [30] and Prim’s “growing a single
tree” algorithm [43]. Both algorithms are greedy and
sucessively add a single edge to the graph until all points
are spanned without any cycles. Using general-purpose
versions of these MST algorithms computation time be-
comes prohibitive for more than a few thousand points.
An accelerated kruskal-type of MST algorithm, only ap-
plicable to Euclidean vertices, has been developed by us
[17], [18] which can compute a MST approximation for
several hundred thousand points in a few seconds (C code
running on a 900 MHz PC under Linux).

The k-MST discussed previously arises in many combi-
natorial optimization problems; see references in [23] for a
partial list. Its computational complexity is exponential,
which necessitates implementation of approximate
schemes [2], [13], [44]. The greedy approximation used
in [23] involves the partitioning heuristic used by [44]:
dissect the support of the density f , assumed to be [ , ]0 1 d ,
into a set of m d cells of equal volumes1/ m d ; rank the cells

in increasing order of numbers of points contained; start-
ing with the highest ranked cell and continuing down the
list compute the minimal spanning graphs in each cell until
at least k points are covered. Stitching together these small
graphs gives a graph which is an approximation to the
k-minimal graph. The computational advantage of the
greedy algorithm comes from its divide-and-conquer
multiresolution structure: it only requires solving the diffi-
cult nonlinear minimal graph construction on cells con-
taining smaller numbers of points. When k n= this greedy
approximation reduces to a partitioning approximation to
the full minimal graph spanning all of the n points. By se-
lecting the “progressive-resolution parameter” m as a func-
tion m n( ) of n we obtain an adaptive multiresolution
approximation to the k-MST.

Applications
We have implemented entropic spanning graph estima-
tors in several application areas including: image registra-
tion of ultrasound scans [38], extraction of time-
frequency skeletons from the time-frequency plane [36],
robust clustering [21], pattern classification [22], and
geo-registration [33]. Due to space limitations we only
discuss two of these applications here.

Robust Clustering and Classification
Here we apply the k-MST to robustly cluster and classify a
triangular versus uniform density. There were 256 sam-
ples simulated from a uniform-triangular mixture density
f g h= − +( )1 ε ε where g =1 is a uniform density and h is
the separable triangular shaped product density both sup-
ported on the unit square. Note that, unlike the previous
annular-uniform mixture example, the “outlier” distribu-
tion h has lower entropy than the target distribution g
which makes the problem of clustering the realizations
from g more challenging.

The α-divergence D f hα ( , ) was estimated by $ ( )H nα Y
for α =1 2/ (γ =1) using the MST estimator. Y n was ob-
tained by applying the “uniformizing” coordinate transfor-
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� 5. (a) k-MST curve for 2-D annulus density with addition of
uniform “outliers” has a knee in the vicinity of k = 68. This knee
can be detected using residual analysis from a linear regres-
sion line fitted to the left-most part of the curve. (b) Error resid-
ual of linear regression line.



mation to Z n used earlier. In a first sequence of
experiments the estimate $ ( )H nα Y was thresholded to de-
cide between the hypotheses H 0 0:ε = versus H1 0:ε ≠ .
Simulations were performed to generate the receiver oper-
ating characteristic (ROC) curves indicated in Fig. 6 for
various values of ε. Note that, as expected, in each case the
detection performance improves as the difference, indexed
by ε, between the assumed H 0 and H1 densities increases.

In a second sequence of experiments we selected two
realizations of the uniform-triangular mixture model for
the value ε =01. . The k-MST procedure (k n=09. ) was im-
plemented on Y n as a robust algorithm to cluster data
points from the uniform density. The cluster of points are
defined as those points connected by the k-MST graph.
The k-MST length can thus be used as a robust estimate
$ ( ),H n kα Y of the uncontaminated divergence D g hα ( , ).

Fig. 7 illustrates the effectiveness of this clustering
method: within the cluster defined by the vertices of the
k-MST the proportion of contaminating points from h
has dropped from the original 10% to less than 4%.

Geo-Registration Application
Multisensor image registration problems can be cast as
specific cases of a more general sensor registration prob-
lem in which the imaging sensors jointly observe 2-D
projections of a common three-dimensional (3-D) ob-
ject. The challenges presented in multisensor image regis-
tration are severalfold. Differences between sensor
viewpoints and imaging modality can cause unknown rel-
ative geometric distortions and missing pixels between
image pairs. Differences in illumination and environmen-
tal conditions introduce further complications. Existence
of such differences between images to be registered re-
quires that the registration algorithms be robust to noise
and other small pertubations in intensity values.

One approach to solving the multisensor image regis-
tration problem is to first geo-register the images to a com-
mon terrain model and then to refine the registration by
working with the geo-registered images. In this geo-regis-
tration application, a digital elevation model (DEM) of a
terrain patch (terrain height map) plays the role of the im-
age database and the image indexing problem is that of se-
lecting the sensor and environmental parameters (pointing
angle, latitude and longitude, sun-angle, etc.) that yield the
best match between the reference sensor image and a mod-
eled or rendered version of the DEM. (DEM stores the ter-
rain height information in a three dimensional array where
each element of the array consists of the locations (x and y
coordinates) and the height of the terrain at that location.)
Database images are generated from the DEM by render-
ing a sensor’s view of the model at a variety of look angles
and possibly under different illumination conditions.

Fig. 8 shows an edge map extracted from a optical view
of a terrain map (DEM) at viewing angle (290, −20, 130)
as well as the edge map extracted from a reference
electrooptic (EO) image that is to be geo-registered.
Clearly, they are misaligned.
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� 6. (a) A scatterplot of a 256-point sample from the uniform-tri-
angular mixture density with =0.1. Green and red points
mark those realizations from the uniform and triangular densi-
ties, respectively. (b) ROC curves for the -divergence test for
detecting the uniform-triangular mixture density f=(1– )g+ h (
H1) against the triangular hypothesis f=h (H0). Curves are in-
creasing in over the range {0.1,0.3,0.5,0.7,0.9}.

� 7. (a) The scatterplot of Fig. 6 after applying the uniformizing
coordinate transformation. Green and red points mark the
transformed realizations from the uniform and triangular den-
sities, respectively. Superimposed is the k-MST implemented
on the transformed scatterplot calYn with k = 230. (b) The
same as (a) except displayed in the original data domain.

� 8. Misaligned EO and reference images: (a) image at 290,
-20, 130 rotation and (b) reference image.



For matching criterion we imple-
mented the α-Jensen difference ap-
plied to grey level features extracted
from the reference images and candi-
date EO images derived from the
DEM database. The parameterα was
chosen arbitrarily as 0.5, corre-
sponding to a MST construction
minimizing the Euclidean norm in
(6) without any power weighting
(γ =1). For illustration purposes we
selected a very simple set of features
via stratified sampling of the grey
levels with centroid refinements.
This sampling method produces a
set of n three-dimensional feature
vectors Z x y F x yi i i i i= ( , , ( , )) where
F x y( , ) is a sample of the gray level at
planar position x y, and where n is
f ixed in advance. The points
{( , )}x yi i i

n
=1 approximate the cen-

troids of Voronoi cel ls and
{ ( , )}F x yi i i

n
=1 correspond to the set

of n samples of the image from which
we could reconstruct the original im-
age with minimum mean square er-
ror. For more details see [32]. When
the union of features from reference
and target images are rendered as
points in three dimensions we obtain
a point cloud of features over which
the MST can be constructed and the
Jensen difference estimated. Since
n n n1 0= = we have used β =1 2/ in
the Jensen difference (5). One issue
that we have not addressed here is the
validity of the i.i.d. assumption on the
feature vector set Z n acquired for this
example. We believe that this is a good
approximation for our choice of spa-
tially distinct features but this ques-
tion deserves further investigation.

Fig. 9 illustrates the MST-based
registration procedure over the union
of the reference and candidate image
features for misaligned images, while
Fig. 5 shows the same for aligned im-
ages. From Figs. 9(a) and 10(a) we
see that for misaligned images, the
representation points “x” and “o” are
at larger distances, giving corre-
sponding larger MST weight, than
those for aligned images.

We repeat this MST construction
process over the union of reference
features and features derived from
each of the images in the DEM data-
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� 9. MST demonstration for misaligned images: (a) misaligned points and (b) MST
demonstration.

� 10. MST demonstration for aligned images. “x” denotes reference while “o” denotes a
candidate image in the DEM database: (a) aligned points and (b) MST demonstration.

� 11. Scatter plot of MST length for a selection of relative rotation angles between refer-
ence image and target radar image. The MST length surface exhibits a sharp mini-
mum at the correct registration angle.



base. The MST length can then be plotted as a scatterplot
as in Fig. 11. The minimum MST length indicates the
best matching of the EO image and the reference image,
which corresponds to the registered pair.

Conclusion
In this article we have discussed theory and application of
entropic spanning graphs for clustering, imaging, and en-
tropy estimation problems. There are many open prob-
lems in this area that must be addressed. The entropic
spanning graph is not a consistent estimator of entropy
when the underlying density has discrete components,
i.e., f contains dirac delta functions. While worst case
bounds on convergence rates of these estimators are avail-
able, a more complete comparison of plug-in versus
entropic spanning graph estimators of entropy has yet to
be performed. Despite the many open problems, entropic
spanning graph methods are very promising due to their
simplicity relative to other nonparametric techniques for
clustering and feature classification.
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