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Abstract. Image registration is the process of establishing a common geometric reference frame between two or
more image data sets possibly taken at different times. In this paper we present a method for computing elastic
registration and warping maps based on the Monge–Kantorovich theory of optimal mass transport. This mass
transport method has a number of important characteristics. First, it is parameter free. Moreover, it utilizes all of
the grayscale data in both images, places the two images on equal footing and is symmetrical: the optimal mapping
from image A to image B being the inverse of the optimal mapping from B to A. The method does not require that
landmarks be specified, and the minimizer of the distance functional involved is unique; there are no other local
minimizers. Finally, optimal transport naturally takes into account changes in density that result from changes in
area or volume. Although the optimal transport method is certainly not appropriate for all registration and warping
problems, this mass preservation property makes the Monge–Kantorovich approach quite useful for an interesting
class of warping problems, as we show in this paper. Our method for finding the registration mapping is based on
a partial differential equation approach to the minimization of the L2 Kantorovich–Wasserstein or “Earth Mover’s
Distance” under a mass preservation constraint. We show how this approach leads to practical algorithms, and
demonstrate our method with a number of examples, including those from the medical field. We also extend this
method to take into account changes in intensity, and show that it is well suited for applications such as image
morphing.
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1. Introduction

1.1. Image Registration

Image registration and warping are key challenges that
must be addressed for a number of practical imaging
problems. Registration is the process of establishing
a common geometric reference frame between two or
more image data sets. In the context of medical imag-
ing, registration allows for the incorporation of pre-
operative image information in a surgical setting to im-
prove image-guided surgery and therapy. It also aids in
diagnosis by allowing the concurrent use of informa-
tion from multiple data sets, possibly taken at different
times using different modalities and patient positions.

Registration processes proceed in several steps. Typ-
ically, a measure of similarity between the data sets
is established, so that one can quantify how close an
image is from another after transformations are ap-
plied. Such a measure may include the similarity be-
tween pixel intensity values, as well as the proxim-
ity of predefined image features such as implanted
fiducials, anatomical landmarks, surface contours, and
ridge lines. Next, the transformation that maximizes
the similarity between the transformed images is found.
Often this transformation is given as the solution of an
optimization problem where the transformations to be
considered are constrained to be of a predetermined
class. Finally, once an optimal transformation is ob-
tained, it is used to fuse the image data sets.

Registration has an extensive literature devoted to
it with numerous approaches ranging from statistical
to computational fluid dynamics to various types of
warping methodologies. See Toga (1999) for a num-
ber of recent papers on the subject as well as an ex-
tensive set of references. We only review some of the
more relevant ones here. Our method is in the class of
warping strategies based on continuum and fluid me-
chanics, in which one tries to use properties of elastic
materials to determine the deformation. One defines
a (typically quadratic) cost functional that penalizes
the mismatch between the deforming template and tar-
get (Christensen et al., 1993, 1996; Miller et al.; Bro-
Nielsen and Gramkow, 1996; Thirion, 1995). In this
sense, our method is closest to the registration philoso-
phy of these works. In fact, the optimal warping map of
the L2 Monge-Kantorovich may be regarded as the ve-
locity vector field which minimizes a standard energy
integral subject to the Euler continuity (mass preserva-
tion) equation (Benamou and Brenier, 2000). For the

exact statement, see Section 3.6 below. In particular,
in the fluid mechanics framework, this means that the
optimal Monge–Kantorovich solution is given as a po-
tential flow.

1.2. Optimal Transport

The method described in this paper is designed for elas-
tic registration, and is based on an optimization prob-
lem built around the L2 Kantorovich–Wasserstein dis-
tance taken as the similarity measure. The constraint
which we put on the transformations considered is
that they obey a mass preservation property. Thus,
we will be matching mass densities in this method,
which may be thought of as weighted areas in 2D
or weighted volumes in 3D. Optimal mass transport
problems of this sort were first formulated by Gas-
par Monge in 1781, and concerned finding the optimal
way, in the sense of minimal transportation cost, of
moving a pile of soil from one site to another. Thus
the Kantorovich–Wasserstein distance is also com-
monly referred to as the “Earth Mover’s Distance.” The
problem was given a modern formulation in the work
of Kantorovich (1948), and so is now known as the
Monge–Kantorovich problem.

Our interest in the Monge–Kantorovich problem
originally arose from our work in medical applications.
The problem occurs in medical imaging, for example,
in functional MR, where one may want to compare the
degree of activity in various features deforming over
time, and obtain a corresponding elastic registration
map. A special case of this problem occurs in any ap-
plication where volume or area preserving mappings
are considered. For example, as we will show in Sec-
tion 4, our method provides a means to obtain regu-
lar area-preserving surface diffeomorphisms. We have
found this technique useful for applications such as
brain surface and colon surface flattening (Angenent
et al., 1999b; Haker et al., 2000). However, our opti-
mal transport method may not be suitable under some
circumstances when the mass preservation assumption
is likely to be invalid, such as the matching of two dif-
ferent perspective projections of a spatial object, or the
registration of MRI images to PET with image intensity
treated as a mass density.

Optimal transport methods have appeared in econo-
metrics, fluid dynamics, automatic control, transporta-
tion, statistical physics, shape optimization, expert
systems, and meteorology (Rachev and Rüschendorf,
1998). They also naturally fit into certain problems in
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computer vision. In particular, for the general track-
ing problem, a robust and reliable object and shape
recognition system is of major importance. A key way
to carry this out is via template matching, which is
the matching of some object to another within a given
catalogue of objects. Typically, the match will not be
exact and hence some shape metric is necessary to mea-
sure the “goodness of fit” or similarity between objects
(Haralick and Shapiro, 1992; Fry, 1993).

The optimal transport problem has also been stud-
ied within the context of certain imaging applica-
tions, in particular for content-based image retrieval
(Rubner, 1999; Rubner et al., 1998; Levina and Bickel,
2001). In this work, pixels in an image are divided
into several bins (called “signatures”) according to
their positions in color and/or spatial locations. The
Earth Mover’s Distance (EMD) is calculated between
the signatures of two images and then used for image
retrieval. However, this EMD method does not give a
warped grid or displacement defined at every pixel loca-
tion, which is essential for image registration and image
morphing.

Using the Kantorovich–Wasserstein distance for im-
age registration and warping has a number of advan-
tages. It is parameter free. It utilizes all of the grayscale
data in both images, and places the two images on equal
footing. It is thus symmetrical, the optimal mapping
from image A to image B being the inverse of the op-
timal mapping from B to A. It is not necessary for
using an extra constraint to guarantee the symmetrical
property, as in Christensen and Johnson (2001). It does
not require that landmarks be specified. The minimizer
of the distance functional involved is unique; there are
no other local minimizers. Finally, it is specifically de-
signed to take into account changes in density that re-
sult from changes in area or volume. This last point
is essential for some applications. As an example, we
show in Section 4 how the method can be used to derive
regular area-preserving surface diffeomorphisms from
conformal mappings.

One of the key contributions of this paper is the in-
troduction of an efficient partial differential equation
approach for the computation of this metric and the
warping map. Our solution of the problem allows one
to compute the optimal warp from a rather simple first
order partial differential equation, in contrast to higher
order methods presented in such works as (Christensen
et al., 1993, 1996) and to computationally complex
discrete methods based on linear programming. This
makes for ease of implementation and speed described

below in Section 4. We give a precise formulation of the
Monge–Kantorovich problem below (see Section 2),
and then develop our algorithm. The key idea is to
find the optimal mapping via the equivalent problem
of finding the polar factorization of a mass preserving
mapping (Gangbo, 1994; McCann, 2001). It will turn
out that this may be done via a natural gradient descent
technique. The details are given in Section 3. We illus-
trate our results on some synthetic densities and on real
imagery in Section 4.

A comparison term can be added to the functional
to penalize the change of intensity. The new functional
is suitable for applications such as image morphing
where fade in and fade out effects are undesired. A
corresponding gradient descent technique is given in
Section 3 and two examples based on real imagery are
shown in Section 4. Finally, we note that our methods
may be rigorously justified; see Angenent et al. (2003)
for the mathematical details.

2. Formulation of the Problem

The following notation will be used throughout the
paper:

µ0 density map in domain �0, which is positive
everywhere.

µ1 density map in domain �1, which is positive
everywhere.

I0 image intensity on �0.
I1 image intensity on �1.
u0 initial mapping function from (�0, µ0) to (�1,

µ1)
u u = u0 ◦ s−1 MP mapping function at given

time t ; for simplicity we usually omit t .
ũ ũ = u0 ◦ s̃−1 optimal mapping function, which

is u at time t → ∞.
s MP mapping from (�0, µ0) to (�0, µ0). The

inverse function is denoted s−1.
s̃ MP mapping from (�0, µ0) to (�0, µ0) at t → ∞.
w scalar field.
χ divergence-free vector field, such that u = ∇w+

χ .
ζ divergence-free vector field.

We now give a modern formulation of the Monge–
Kantorovich problem. Let �0 and �1 be two
subdomains of Rd , with smooth boundaries, each with
a positive density function, µ0 and µ1, respectively.
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We assume

∫
�0

µ0 =
∫

�1

µ1 (1)

so that the same total mass is associated with �0 and
�1. Here, and elsewhere in this paper where appropri-
ate, we use the simplified notation

∫
�

f :=
∫

�

f (x) dx, (2)

where dx is the standard Lebesgue measure on the do-
main �.

We consider diffeomorphisms ũ from �0 to �1

which map one density to the other in the sense that

µ0 = |Dũ| µ1 ◦ ũ, (3)

which we will call the mass preservation (MP) prop-
erty, and write ũ ∈ MP. Equation (3) is called the
Jacobian equation. Here |Dũ| denotes the determinant
of the Jacobian map Dũ. In particular, Eq. (3) implies,
for example, that if a small region in �0 is mapped
to a larger region in �1, then there must be a corre-
sponding decrease in density in order for the mass to
be preserved. A mapping ũ that satisfies this property
may thus be thought of as defining a redistribution of
a mass of material from one distribution µ0 to another
distribution µ1.

There may be many such mappings, and we want to
pick out an optimal one in some sense. Accordingly,
we define the L p Kantorovich–Wasserstein metric as
follows:

d p
p (µ0, µ1) := inf

ũ∈M P

∫
‖ũ(x) − x‖pµ0(x) dx . (4)

An optimal MP map, when it exists, is an MP map
which minimizes this integral. This functional is seen
to place a penalty on the distance the map ũ moves
each bit of material, weighted by the material’s mass.
Hence, the Kantorovich–Wasserstein metric defines the
distance between two mass densities, by computing the
“cheapest” way to transport the mass from one domain
to the other with respect to (4).

The case p = 2 has been extensively studied and
will be the one used in this paper for registration and
image morphing. The L2 Monge–Kantorovich prob-
lem has been studied in statistics, functional analysis,
and the atmospheric sciences; see Cullen and Purser

(1984), and Benamou and Brenier (2000) and the refer-
ences therein. A fundamental theoretical result (Knott
and Smith, 1984; Brenier, 1991; Gangbo and McCann,
1996), is that there is a unique optimal ũ ∈ M P trans-
porting µ0 to µ1, and that this ũ is characterized as the
gradient of a convex function w, i.e., ũ = ∇w. Note
that from Eq. (3), we have that w satisfies the Monge–
Ampère equation

|Hw| µ1 ◦ (∇w) = µ0, (5)

where |Hw| denotes the determinant of the Hessian
Hw of w.

In some applications of image registration and image
morphing, large intensity discrepancy between corre-
sponding pixels is not desirable. Hence, we can fur-
ther add a comparison term penalizing the changing of
intensity. Our extended energy function will have the
following form:

M := C(I0, I1, u) + α2
∫

‖ũ(x) − x‖pµ0(x) dx, (6)

where C stands for any comparison term, for example
squared error, normalized correlation or mutual infor-
mation. Although the optimal mapping ũ for this func-
tional is no longer the gradient of a convex function, it
can still be solved using the iterative method we present
here for optimal mass transport problems.

3. Algorithms for Computing
the Transport Map

There have been a number of algorithms considered
for computing an optimal transport map. For exam-
ple, methods have been proposed based on linear pro-
gramming (Rachev and Rüschendorf, 1998), and on
Lagrangian mechanics closely related to ideas from
the study of fluid dynamics (Benamou and Brenier,
2000). A clever geometric method has been formu-
lated by Cullen and Purser (1984). Other interesting
discrete computational techniques have also been pro-
posed (Kaijser, 1998) and applied to images. An excel-
lent summary of the recent research on this topic may
be also found (Ambrosio, 2000).

One common method is to reduce the L2 optimal
transport to a linear programming problem. Thus one
can approximate the densities µ0 and µ1 as sums of
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delta functions, such as

µ0(x) =
N∑

i=1

δ(x − xi ), µ1(x) =
N∑

i=1

δ(x − yi ), (7)

for 2N given points x1, . . . , xN , y1, . . . , yN ∈ Rd . The
L2 Kantorovich distance may then be taken to be

d2
2 (µ0, µ1) = min

ρ

N∑
i, j=1

‖xi − y j‖2ρi j (8)

where ρ denotes any N × N doubly-stochastic ma-
trix, i.e., a matrix with non-negative entries and row
and column sums equal to 1. In the special case where
ρ is restricted to be a permutation matrix σ , this for-
mulation becomes a standard discrete point matching
problem. A fundamental difficulty with this approach
is that even in the 2D case, for a 256 × 256 image we
may have 2562 × 2562 for the dimensions of ρ, and
the linear programming problem can get to be quite
unwieldy (Kaijser, 1998). Remarkably, our approach
can be understood as the continuous limit of discrete
point matching, as the number of points N goes to
infinity.

3.1. Polar Factorization and Rearrangement Maps

In this section, we will employ a natural solution to
the optimal transport problem based on the equiva-
lent problem of polar factorization; see Brenier (1991),
Gangbo (1994) and McCann (2001) and the references
therein. We will work with the general case of subdo-
mains in Rd , and point out some simplifications that
are possible for the R2 case.

Let �0, �1 ⊂ Rd be convex subdomains with
smooth boundaries, with corresponding positive den-
sity functions µ0 and µ1 satisfying

∫
�0

µ0 = ∫
�1

µ1 (if
not, we can always perform a normalization to make
them equal). Let u : (�0, µ0) → (�1, µ1) be an ini-
tial diffeomorphic mapping with the mass preserving
(MP) property. Then according to the generalized re-
sults of Brenier (1991) and Gangbo (1994), u has a
unique decomposition of the form

u = (∇w) ◦ s, (9)

where w is a convex function and s is an MP mapping
s: (�0, µ0) → (�0, µ0). This is the polar factoriza-
tion of u with respect to µ0. In Gangbo (1994), just

the case of area preservation is considered, i.e., µ0 is
assumed constant, but the general case goes through as
well.

We will find the polar factorization of the MP map-
ping u, according to the following strategy. We con-
sider the family of MP mappings of the form ũ =
u ◦ s−1 as s varies over diffeomorphic MP mappings
from (�0, µ0) to itself. If we consider ũ as a vector
field, we can always find a function w and another vec-
tor field χ, with div(χ ) = 0, such that

ũ = ∇w + χ, (10)

i.e., we can decompose ũ into the sum of a curl-free
and a divergence-free vector field (Strang, 1986). Thus,
what we try to do is find a mapping s which will yield
a ũ without any curl, that is, such that ũ = ∇w. Once
such an s is found, we will have u = ũ ◦ s = (∇w) ◦ s
and so we will have found the polar factorization (9) of
our given function u.

Now, here is the key point. As we discussed
above, the unique optimal solution of the L2 Monge–
Kantorovich problem has the form ũ = ∇w, and so
the problem of finding the polar factorization of u and
finding the optimal Monge–Kantorovich mapping ũ are
equivalent. The mathematical details describing this
connection may be found in Ambrosio (2000), Gangbo
and McCann (1996) and Brenier (1991). In essence, to
solve the Monge–Kantorovich problem we create a re-
arrangement of an initial vector field u0 using a map
s, so that the resulting vector field ũ = u0 ◦ s−1 has no
curl. The mapping s is the continuous analogue of the
permutation σ in the discrete point matching formu-
lation of the Monge–Kantorovich problem described
above. By construction, the resulting ũ : �0 → �1

is a mass preserving mapping of the form ũ = ∇w,
with w convex since ũ is a diffeomorphism. Unique-
ness follows from the theory of the Monge–Ampère
Eq. (5) (see Taylor, 1996, p. 251). We can now give the
technical details of our construction.

3.2. Finding an Initial Mapping

We will now propose an explicit algorithm to solve the
Monge–Kantorovich problem. We will try to do this
by finding an initial MP mapping u0 = (a(x), b(x, y))
and then minimizing over ũ = u0 ◦ s−1 by varying s
over MP mappings from �0 to �0, starting with s equal
to the identity map. The initial mapping can be found
in general domains using a method of Moser (1965)
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and Dacorogna and Moser (1990), or for simpler do-
mains using the following algorithm. For simplicity,
we work in R2 and assume �0 = �1 = [0, 1]2, the
generalization to higher dimensions being straightfor-
ward. The idea of this construction is that we solve
a family of one-dimensional mass transport problems.
In one-dimension, the optimal transport map can be
found by simple quadrature. We first transport mass
along lines parallel to the x-axis, and then afterward
transport mass along lines parallel to the y-axis.

Accordingly, we define a function a = a(x) implic-
itly by the equation
∫ a(x)

0

∫ 1

0
µ1(η, y) dy dη =

∫ x

0

∫ 1

0
µ0(η, y) dy dη

(11)

which gives by differentiation with respect to x

a′(x)
∫ 1

0
µ1(a(x), y) dy =

∫ 1

0
µ0(x, y) dy. (12)

We may now define a function b = b(x, y) implicitly
by the equation

a′(x)
∫ b(x,y)

0
µ1(a(x), ρ) dρ =

∫ y

0
µ0(x, ρ) dρ, (13)

and set u0(x, y) = (a(x), b(x, y)). Since ay = 0,
|Du| = ax by, and differentiating (13) with respect to
y we find

a′(x) by(x, y) µ1(a(x), b(x, y)) = µ0(x, y)

|Du| µ1 ◦ u = µ0,

which is the MP property we need. In practice, a and
b can be found with simple numerical integration tech-
niques. Given our assumption that µ0 and µ1 are posi-
tive everywhere, a(x) is well-defined and strictly mono-
tone increasing by (11). The function b(x, y) is also
well-defined and strictly monotone increasing with re-
spect to y, by (13) and the fact that a′(x) is always
positive. Hence, there is no space folding problem, i.e.
the mapping is bijective.

3.3. Removing the Curl

Once an initial MP u0 is found, we need to apply the
process which will remove its curl. A simple calcu-
lation verifies that the composition of two mass pre-
serving (MP) mappings is an MP mapping, and the

inverse of an MP mapping is an MP mapping. Since u0

is MP, while ũ = u0 ◦ s̃−1 we see that ũ is an MP map-
ping if and only if s̃ is an MP map, that is, if and only
if

µ0 = |Ds̃| µ0 ◦ s̃. (14)

The same argument applies to s also.
Next, rather than working with s directly, we solve

the polar factorization problem via gradient descent.
We should note that the algorithm described below con-
verges to a global optimum (Angenent et al., 2003).
Accordingly, we will assume that s is a function of
time, and then determine what st := d

dt s should be to
decrease the L2 Monge–Kantorovich functional. This
will give us an evolution equation for s and in turn an
equation for ut as well, the latter being the most impor-
tant for implementation. In what follows the t subscript
denotes differentiation with respect to time t , while the
D, ∇ and div refer to spatial derivatives.

One can easily show (see the Appendix below for
details) that st and ũt should have the following forms
in order to preserve the MP property:

st =
(

1

µ0
ζ

)
◦ s, (15)

ut = − 1

µ0
Du ζ, (16)

for some vector field ζ on �0, with div(ζ ) = 0 and
〈ζ, 
n〉 = 0 on ∂�0, 
n being the normal to the bound-
ary of �0. This last condition ensures that s remains a
mapping from �0 to itself, by preventing the flow of s,
given by (15), from crossing the boundary of �0. This
also means that the range of u = u0 ◦ s−1 is always
u(�0) = �1.

Consider now the problem of minimizing the
Monge–Kantorovich functional:

M =
∫

�0

‖u − x‖2µ0 (17)

By taking the derivative with respect to time t , we
have (see the Appendix for details)

−1

2
Mt =

∫
�0

〈u, µ0(st ◦ s−1)〉 (18)

where s is the MP mapping such that u = u0 ◦ s−1.
Referring to (15), we can rewrite µ0(st ◦ s−1) as
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ζ , with ζ divergence free, so that:

−1

2
Mt =

∫
�0

〈u, ζ 〉. (19)

Now decomposing u as u = ∇w + χ, (Helmholtz
decomposition) we have

−1

2
Mt =

∫
�0

〈∇w + χ, ζ 〉 (20)

=
∫

�0

〈χ, ζ 〉, (21)

by the divergence theorem. Thus, in order to decrease
M , we can take ζ = χ with corresponding formulas
(15)–(16) for st and ut , provided that we have div(χ ) =
0 and 〈χ, 
n〉 = 0 on ∂�0. Thus the remaining task is
to decompose u as u = ∇w + χ.

Gradient Descent: Rd :

We let w be a solution of the Neumann-type boundary
problem


w = div(u) (22)

〈∇w, 
n〉 = 〈u, 
n〉 on ∂�0, (23)

and set χ = u − ∇w. It is then easily seen that χ

satisfies the necessary requirements. Thus, by (16), we
have the following evolution equation for u:

ut = − 1

µ0
Du (u − ∇
−1 div(u)). (24)

where we have used 
−1 div(u) to signify the solution
w to (22). This is a first order non-local scheme for ut if
we count 
−1 as minus 2 derivatives. Note that this flow
is consistent with respect to the Monge–Kantorovich
theory in the following sense. If ũ is the optimal MP
mapping, then it is given as ũ = ∇w, in which case
ũ −∇
−1 div(ũ) = ∇w −∇
−1 div(∇w) = 0 so that
by (24), ũt = 0 and the process has achieved steady
state.

Gradient Descent: R2:

The situation is somewhat simpler in the R2 case, due
to the fact that a divergence free vector field χ can in
general be written simply as χ = ∇⊥h for some scalar
function h, where ⊥ represents rotation by 90 degrees,
so that ∇⊥h = (−hy, hx ). In this case (21) becomes

−1

2
Mt =

∫
�0

〈∇⊥ f, ∇⊥h〉 =
∫

�0

〈∇ f, ∇h〉 (25)

where the decomposition of ũ is u = ∇w + ∇⊥ f, and
we can take h = f. The function f can be found by
solving the Dirichlet-type boundary problem


 f = − div(u⊥), (26)

f = 0 on ∂�0, (27)

which gives us the evolution equation

ut = 1

µ0
Du ∇⊥
−1 div(u⊥). (28)

We may also derive a second order local evolu-
tion equation for u. For example, in the R2 case (see
Angenent et al. (2003) for generalizations), we use the
divergence theorem with (25) to get

ut = − 1

µ0
Du ∇⊥ div(u⊥), (29)

where appropriate handling of the evolution at the
boundary, as described in Section 4, is required.

3.4. Adding a Comparison Term

The L2 Monge–Kantorovich metric has a penalty only
on the “effort” required to move the mass from one
configuration into another. For problems of image reg-
istration and image morphing where it is assumed that
objects undergo changes in size but not intensity, a
mapping that maps a small high-intensity region into
a large low-intensity region is not desired. Hence, we
allow for the addition of a comparison term to the en-
ergy function penalizing change of intensity. The idea
is to minimize a functional of the following form over
mass-preserving mappings u : �0 → �1:

Mα[u] :=
∫

(I1 ◦ u − I0)2 dx

+ α2
∫

‖u(x) − x‖2µ0 dx, (30)

for a fixedα ∈ R.Here the first term controls the “good-
ness of fit” between the (intensity) images I0 : �0 → R
and I1 : �1 → R, and the second Monge-Kantorovich
term controls the the warping of the map. The function
µ0 is the mass density of the source image defined on
�0, and could be the same as I0 or a smoothed version
of I0. It could also be any scalar field that is appro-
priate for the underlying physical model. Similarly, µ1

is assumed to be the mass density of the target image
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defined on �1. By adjusting α, a tradeoff between min-
imal mass transportation and minimal intensity change
is achieved.

Taking the derivative of (30) respective to time t , we
find

−d Ma

dt
=

∫ {〈
1

µ2
0

(I1 ◦ u − I0)2∇µ0

+ 2

µ0
(I1 ◦ u − I0)∇ I0

+ 2α2 u, µ0
∂s

∂t
◦ (s)−1

〉}
dx (31)

Let us denote the left hand term of the inner product
by P . As with u above, P can be decomposed into
a curl-free term and a divergence-free term as P =
∇w + χ , and the updating of u can be expressed as

ut = − 1

µ0
Du χ (32)

or in the R2 case, it can be written as

ut = 1

µ0
Du ∇⊥
−1 div(P⊥) (33)

for the non-local flow, and

ut = − 1

µ0
Du ∇⊥ div(P⊥) (34)

for the local flow.

3.5. Methods

In this subsection we will outline the numerical de-
tails for finding the optimal mass preserve mapping.
We limit ourselves here for simplicity to the 2D case,
the higher dimensional cases being a straightforward
generalization

(1) Construct an initial MP mapping u0 as described
in Section 3.2;

(2) Calculate P, the left hand term in the inner product
in (18) or (31). Specifically, take P = u for the pure
optimal mass transport problem as in Section 3.3,
and

P = 1

µ2
0

(I1 ◦ u − I0)2∇µ0

+ 2

µ0
(I1 ◦ u − I0)∇ I0 + 2α2 u

for the functional with the additional comparison
term as in Section 3.4;

(3) Decompose P into a curl-free term ∇w and a
divergence-free term χ as P = ∇+χ . For the non-
local flow, this involves solving Poisson’s equation
with appropriate boundary conditions;

(4) Update u according to (16): ut = − 1
µ0

Du χ . In
the 2D case this becomes

ut = 1

µ0
Du∇⊥
−1div(P⊥)

for the nonlocal flow,

or

ut = − 1

µ0
Du ∇⊥div(P⊥) for the local flow;

(5) Go to step (2).

The optimal map is obtained as t → ∞. In practice,
the procedure iterates until the mean absolute curl is
sufficiently small (in the case of no comparison term)
or the energy is decreasing sufficiently slowly (in the
case with the extra comparison term). We use standard
techniques to solve the local and nonlocal flows. In par-
ticular we use an upwinding scheme when computing
Du, and Matlab’s Poisson equation solver, which uses
sine transforms to invert the Laplacian on a rectangular
grid. The time step dt can be chosen to be less than

min
x,i

∣∣∣∣ 1

µ0
(∇⊥
−1 div(P⊥))i

∣∣∣∣
−1

for the nonlocal flow, where the subscript i stands for
the component of the vector. Standard centered differ-
ences were used for the other spatial derivatives. Once
we numerically solve for the right hand side of (24),
(28), (29), (33) or (34), we use the result to update u.

More details of the numerical implementation for solv-
ing the equations are given below in Section 4. The
complexity of the method during each iteration scales
as N log2 N where N is the number of pixels in the
image, due to the use of sine transforms.

3.6. Defining the Warping Map

Typically in elastic registration, one wants to see an
explicit warping which smoothly deforms one image
into the other. This can easily be done using the solution
of the Monge–Kantorovich problem. Thus, we assume
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now that we have applied our gradient descent process
as described above and that it has converged to the
Monge–Kantorovich mapping ũM K .

Following the work of Benamou and Brenier (2000)
(see also Gangbo and McCann, 1996), we consider the
following related problem:

inf
∫ ∫ 1

0
µ(t, x)‖v(t, x)‖2 dt dx (35)

over all time varying densities µ and velocity fields v

satisfying

∂µ

∂t
+ div(µv) = 0, (36)

µ(0, ·) = µ0, µ(1, ·) = µ1. (37)

It is shown in Benamou and Brenier (2000) that this
infimum is attained for some µmin and vmin, and that
it is equal to the L2 Kantorovich–Wasserstein distance
between µ0 and µ1. Further, the flow X = X (x, t)
corresponding to the minimizing velocity field vmin via

X (x, 0) = x, Xt = vmin ◦ X (38)

is given simply as

X (x, t) = x + t (ũM K (x) − x). (39)

Note that when t = 0, X is the identity map and when
t = 1, it is the solution ũM K to the Monge–Kantorovich
problem. This analysis provides appropriate justifica-
tion for using (39) to define our continuous warping
map X between the densities µ0 and µ1. See McCann
(1997) for applications and a detailed analysis of the
properties of this displacement interpolation. Other in-
terpolation schemes could also be used, such as the one
proposed in Hinterberger and Scherzer (2001).

4. Implementation and Examples

We illustrate our methods with the following examples.
The first is the mapping of one synthetic density onto
another. Figure 1 shows a mass distribution µ0 on �0,
with dark regions representing little mass, lighter re-
gions representing more. Similarly, Fig. 2 indicates the
density µ1 on �1. Figure 3 represents the initial map-
ping u0, which was obtained by the method described
in Section 3. The shading in this figure represents the

Figure 1. Density µ0 on �0.

Figure 2. Density µ1 on �1.

Figure 3. Initial mass—preserving mapping from �0 to �1.
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Figure 4. Final Monge–Kantorovich mapping from �0 to �1.

Jacobian of u0. Figure 4 shows the optimal Monge–
Kantorovich mapping ũM K , obtained using the non-
local first order flow given in Eq. (28). One can see
that the effect of removing the curl is to straighten out
the grid lines somewhat. On a Sun Ultra10, this pro-
cess took just a few seconds. Similarly, Figs. 5 through
9 show the result of applying our process to a pair
of “cloud” densities. Figure 10 give the corresponding
warped grid of the deformation.

In Fig. 11 we show an image morphing example of
a flame sequence taken from the Artbeats Digital Film
Library. Note that only the first and last images are

Figure 5. Cloud, time t = 0.00.

Figure 6. Cloud, time t = 0.25.

Figure 7. Cloud, time t = 0.50.

Figure 8. Cloud, time t = 0.75.
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Figure 9. Cloud, time t = 1.00.

Figure 10. Deformation grid for cloud images.

Figure 11. Flame interpolation: t = 0.00, 0.25, 0.50, 0.75 and 1.00 respectively.

given, and the three middle images are generated us-
ing our process. The corresponding deformation grid is
shown in Fig. 12. In this example, as well as in the cloud
example, an intensity comparison term was applied to
reduce undesired fade in and fade out effects. In these
two examples, the deformed grids were calculated from
gray scale images and densities were normalized be-
fore finding the initial MP mapping. We should point
out that by adding the intensity comparison term, there
was some curl left in the resulting mapping. Hence,
there is a trade-off between the remaining curl and the
resulting fade in and fade out effects.

The final example shows an application of our
method to the problem of constructing area preserving
surface warpings. In particular, we consider the prob-
lem of brain flattening, i.e., mapping part of the surface
of the brain onto a portion of the plane. We show a por-
tion of the brain white matter surface obtained from
the segmentation of a volumetric magnetic resonance
imaging scan in Fig. 13.

The image on the left of Fig. 14 shows the flattened
white matter surface obtained using a conformal flat-
tening technique (Angenent et al., 1999b). It is well
known that a surface of non-zero Gaussian curvature
can not be flattened by any means without some met-
ric distortion. The conformal mapping is an attempt
to preserve the appearance of the surface after flat-
tening through the preservation of angles. However,
in some applications it is desirable to be able to pre-
serve areas instead of angles, so that the sizes of surface
structures are accurately represented in the plane. The
Monge–Kantorovich approach allows us to find such
an area-correct flattening. Specifically, once we have
conformally flattened the surface, we define a “pseudo”
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Figure 12. Deformation grid for flame images.

Figure 13. Prtion of the segmented brain white matter surface.
Points are colored according to mean curvature with lighter colored
points having curvature.

Figure 14. Conformal (left) and area corrected (right) flattenings. The shading scheme is the same as in Fig. 13.

density µ0 to be the Jacobian of the inverse of the
flattening map, and set µ1 to a constant. The Monge–
Kantorovich optimal mapping is then area-corrected by
(3). The image on the right indicates the area-corrected
flattening obtained via the Monge–Kantorovich ap-
proach. The resulting map took just a few minutes to
calculate. Although corrected for area, surface struc-
tures are still clearly discernible. The curl-free nature
of the Monge–Kantorovich mapping avoids distortion
effects often associated with area preserving maps. We
have used a brain surface here, but the method can be
applied to any surface, e.g., to the colon surface as part
of a virtual colonoscopy or virtual pathology technique.

We have also successfully implemented the second
order local flow as Eq. (29), with similar results. In
this case, we require that a periodic boundary condi-
tion be enforced, specifically that ũ(x) − x be periodic
on the square image domain. We also used a standard
upwinding scheme when calculating Dũ. While it may
seem that this local flow should provide a faster method
than the non-local flow (28), in practice this does not
seem to be the case. Even though the non-local method
requires that the Laplacian be inverted during each it-
eration, the problem has been set up to allow the use
of fast numerical solvers which use FFT-type methods
and operate on rectangular grids (Press et al., 1992).
We have used the Matlab solver here, which uses sine
transforms followed by the solution of a tri-diagonal
system. Moreover, we have found that the functional
is decreased substantially more during each iteration
of the non-local method, using the maximum temporal
step size allowed for stability in each case.

In general, the target domain �1 need not be rectan-
gular when using the non-local method. However, we
note that if the periodic boundary condition described
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above is used, then the Laplacian in (28) can be in-
verted using the FFT alone, without the need to solve
a subsequent matrix system. For the warps shown, this
reduced the processing time by 1/3.

5. Conclusion and Future Work

In this paper, we presented a natural method for finding
registration mappings based on the classical problem
of optimal mass transportation. We showed that for
an L2 version of the problem, one can derive easily-
implementable gradient descent equations. Although
applied here to the Monge–Kantorovich problem, the
method used to enforce the mass preservation con-
straint is general and has other applications. In particu-
lar, we are currently working on using such constraints
while minimizing standard Dirichlet-type energy func-
tionals.

In particular, the concept of a harmonic mapping,
defined as a minimizer of the Dirichlet integral, can be
combined with a mass preservation constraint to obtain
a new approach to mass-preserving diffeomorphisms
(Angenent et al., 1999a). We state the results for Eu-
clidean space even though they apply more generally
to Riemannian surfaces. As above, let �0, �1 ⊂ R2

be subdomains equipped with positive densities µ0 and
µ1, respectively, and consider the minimization of the
Dirichlet integral over all MP maps:

min
u ∈ M P

∫
�0

‖Du‖ 2. (40)

A minimizer (when it exists) is called an area-
preserving map of minimal distortion. Non-local and
local gradient descent methods for computing such a
map can be derived in a manner very similar to that de-
scribed above for the Monge–Kantorovich functional
(Angenent et al., 1999a). These methods have applica-
tions to brain surface flattening and virtual colonoscopy
as described in Angenent et al. (1999b) and Haker et al.
(2000). The numerical procedure and applications will
be presented in a future paper. Future work will also in-
clude the use of Monge–Kantorovich type functionals
as a regularizer in standard problems from computer
vision such as optical flow.

Appendix

In this section we give some mathematical details omit-
ted in the main part of the paper. It will mainly focus

on the proof of the properties of MP mapping and the
deduction of our gradient descent method. Full details
of the mathematics underlying our methodology (in-
cluding convergence to thee optimal solution) may be
found in Angenent et al. (2003).

A.1. Optimal Mass Preserve Mapping
is Symmetrical

The optimal mass preserve mapping places the two im-
ages on equal footing and is symmetrical: the optimal
mass preserve mapping from (�0, µ0) to (�1, µ1) is
the inverse of the optimal mapping from (�1, µ1) to
(�0, µ0).

Assume u is a MP mapping from (�0, µ0) to
(�1, µ1) and y = u(x), we have
∫

�0

‖u(x) − x‖pµ0(x) dx

=
∫

�1

‖u ◦ u−1(y) − u−1(y)‖pµ0 ◦ u−1(y) du−1(y)

=
∫

�1

‖y − u−1(y)‖pµ0 ◦ u−1(y)|Du−1(y)| dy

=
∫

�1

‖y − u−1(y)‖pµ1(y) dy,

where we used the MP property of u−1: µ1 =
|Du−1| µ0 ◦ u−1.

Since this holds for any u ∈ M P , we have that

dp(µ0, µ1) = dp(µ1, µ0),

and that if ũM K denotes the optimal mass-preserving
map from �0 to �1 then the optimal from �1 to �0 is
precisely ũ−1

M K .

A.2. Properties of Mass Preserve Mappings

As we have mentioned in Section 3.3, in order to pre-
serve the MP property, the updating of u and s should
have the following forms:

st =
(

1

µ0
ζ

)
◦ s, (41)

ut = − 1

µ0
Du ζ, (42)

Now we will prove this assertion. Since s is MP
mapping from (�0, µ0) to itself, we have that µ0 =
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|Ds| µ0 ◦ s. By differentiating this equation with re-
spect to time, we get

0 = |Ds|t µ0 ◦ s + |Ds| (µ0 ◦ s)t

= |Ds|(div(st ◦ s−1) ◦ s) µ0 ◦ s

+ |Ds|〈(∇µ0) ◦ s, st 〉,
0 = (µ0 div(st ◦ s−1)) ◦ s + 〈(∇µ0) ◦ s, st 〉,
0 = µ0 div(st ◦ s−1) + 〈∇µ0, st ◦ s−1〉

= div(µ0 st ◦ s−1),

Hence st should have the following form

st =
(

1

µ0
ζ

)
◦ s, (43)

for some vector field ζ on �0, with div(ζ ) = 0 and
〈ζ, 
n〉 = 0 on ∂�0, 
n being the normal to the boundary
of �0. Since u and s satisfy u ◦ s = u0, by taking the
derivative of it respective to t , we derive

(Du ◦ s) st + ut ◦ s = 0

ut ◦ s = −(Du ◦ s) st

ut = −Du st ◦ s−1.

By (43) we have

ut = − 1

µ0
Du ζ, (44)

A.3. Gradient Descent Method for Pure
Monge–Kantorovich Problem

Consider now the problem of minimizing the Monge–
Kantorovich functional:

M =
∫

�0

‖u − x‖2µ0 (45)

=
∫

�0

‖u‖2µ0 − 2
∫

�0

〈u, x〉µ0 +
∫

�0

‖x‖2µ0. (46)

The last term is obviously independent of time. Inter-
estingly, so is the first. To see this, we set y = s−1(x),
and using the MP property of s and s−1, we find

µ0(x) dx = µ0 ◦ s(y) ds(y) = µ0 ◦ s(y) | Ds(y) | dy

= µ0(y) dy, (47)

since µ0(y) = µ0 ◦ s(y)|Ds(y)|. Now we have

∫
�0

‖u(x)‖2µ0(x) dx =
∫

�0

‖u0(x) ◦ s−1(x)‖2µ0(x) dx

=
∫

�0

‖u0(y)‖2 µ0(y) dy

which is a constant for all time. Turning now to the mid-
dle term, we do the same trick by setting y = s−1(x).
Now we have

∫
�0

〈u(x), x〉µ0

=
∫

�0

〈u0 ◦ s−1(x), s ◦ s−1(x)〉 µ0(x) dx

=
∫

�0

〈u0(y), s(y)〉 µ0(y) dy,

and taking st = ( 1
µ0

ζ ) ◦ s, we compute

−1

2
Mt =

∫
�0

〈u0(y), st (y)〉 µ0(y) dy

=
∫

�0

〈u ◦ s(y),

(
1

µ0
ζ

)
◦ s(y)〉 µ0(y) dy

=
∫

�0

〈u(x),
1

µ0(x)
ζ (x)〉 µ0(x) dx

=
∫

�0

〈u(x), ζ (x)〉 dx .

Now decomposing u as u = ∇w + χ, we have

−1

2
Mt =

∫
�0

〈∇w + χ, ζ 〉

=
∫

�0

〈∇w, ζ 〉 +
∫

�0

〈χ, ζ 〉

=
∫

�0

(div(wζ ) − w div(ζ )) +
∫

�0

〈χ, ζ 〉

=
∫

∂�0

w 〈ζ, n〉 +
∫

�0

〈χ, ζ 〉

=
∫

�0

〈χ, ζ 〉,

where we’ve used the divergence theorem, div(ζ ) = 0,

and 〈ζ, 
n〉 = 0 on ∂�0. And then we choose ζ = χ for
updating u.
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A.4. Gradient Descent Method for Functional
with Comparison Term

For convenience, we rewrite the our functional for
image interpolation as following,

Mα[u] :=
∫

(I1 ◦ u − I0)2 dx

+ α2
∫

‖u(x) − x‖2µ0 dx, (48)

The derivative of the second part is exactly the same as
we discussed above. Now we focus on the first part:

M1(u) =
∫

(I1 ◦ u − I0)2 dx, (49)

Taking the time derivative of M1 and setting y =
s−1(x), we get

M1 =
∫

(I1 ◦ u(x) − I0(x))2 dx

=
∫ (

1

µ0(x)
(I1 ◦ u(x) − I0(x))2

)
µ0(x) dx

=
∫ (

1

µ0 ◦ s(y)
(I1 ◦ u0(y) − I0 ◦ s(y))2

)

× µ0(y) dy

M1t =
∫ 〈

− 1

µ2
0 ◦ s(y)

(I1 ◦ u0(y)

− I0 ◦ s(y))2∇µ0 ◦ s(y)

− 2

µ0 ◦ s(y)
(I1 ◦ u0(y)

− I0 ◦ s(y))∇ I0 ◦ s(y),
∂st

∂t

〉
µ0(y) dy

−M1t =
∫ 〈

1

µ2
0(x)

(I1 ◦ u(x) − I0(x))2∇µ0(x)

+ 2

µ0(x)
(I1 ◦ u(x) − I0(x))∇ I0(x),

µ0
∂s

∂t
◦ s−1(x)

〉
dx

By setting P = 1
µ2

0
(I1 ◦ u − I0)2∇µ0 + 2

µ0
(I1 ◦ u −

I0)∇ I0 + 2α2 u and decomposing P = ∇w + χ, we
now get the ζ = χ for updating u.
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