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Abstract

Image segmentation has been, and still is, an important research area in Computer Vision, and hundreds of seg-

mentation algorithms have been proposed in the last 30 years. However, elementary segmentation techniques based on

either boundary or region information often fail to produce accurate segmentation results on their own. In the last few

years, there has therefore been a trend towards algorithms that take advantage of their complementary nature. This

paper reviews various segmentation proposals that integrate edge and region information and highlights different

strategies and methods for fusing such information. The key objective is to point out the advantages and disadvantages

of the various approaches, as well as to comment upon new and interesting ideas that perhaps have not been properly

exploited.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the first and most important operations

in image analysis and Computer Vision is seg-
mentation (Rosenfeld and Kak, 1982; Haralick

and Shapiro, 1992/1993). The aim of image seg-

mentation is the domain-independent partition of

the image into a set of regions, which are visually

distinct and uniform with respect to certain prop-

erties, such as grey level, texture or colour. Ap-

plications range from industrial quality control to

medicine, robot navigation, geophysical explora-

tion, and military applications. In all these areas,
the quality of the end result depends largely on the

quality of the segmentation.

The problem of segmentation has been, and still

is, an important research field, and many segmen-

tation methods have been proposed in the litera-

ture (see the surveys: Riseman and Arbib, 1977;

Zucker, 1977; Fu and Mui, 1981; Haralick and

Shapiro, 1985; Nevatia, 1986; Pal and Pal, 1993).
Many segmentation methods are based on two

basic properties of pixels in relation to their local

neighbourhood: discontinuity and similarity. Pixel
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discontinuity gives rise to boundary-based meth-

ods, whereas pixel similarity gives rise to region-

based methods.

Unfortunately, both boundary-based and re-

gion-based techniques often fail to produce accu-

rate segmentation, although the locations where
each method fails are not necessarily identical. In

boundary-based methods, if an image is noisy or if

its attributes differ by only a small amount be-

tween regions (and this occurs very commonly in

natural scenarios), edge detection may result in

spurious and broken edges. This is mainly due to

the fact that they rely entirely on the local infor-

mation available in the image; very few pixels are
used to detect the desired features. Edge linking

techniques can be employed to bridge short gaps in

such a region boundary, although this is generally

considered a very difficult task. Region-based

methods always provide closed contour regions

and make use of relatively large neighbourhoods

in order to obtain sufficient information to decide

whether or not a pixel should be aggregated into a
region. Consequently, the region approach tends

to sacrifice resolution and detail in the image to

gain a sample large enough for the calculation of

useful statistics for local properties. This can result

in segmentation errors at the boundaries of the

regions, and in a failure to distinguish regions that

would be small in comparison with the block size

used. Furthermore reasonable initial seed points
and stopping criteria are often difficult to choose

in the absence of a priori information. Finally, as

Salotti and Garbay (1992) noted, both approaches

sometimes suffer from a lack of information due to

the fact that they rely on the use of ill-defined hard

thresholds that may lead to wrong decisions.

It is often difficult to obtain satisfactory results

when using only one of these methods in the seg-
mentation of complex pictures such as outdoor

and natural images, which involve additional dif-

ficulties due to effects such as shading, highlights,

non-uniform illumination or texture. By using the

complementary nature of edge-based and region-

based information, it is possible to reduce the

problems that arise in each individual method. The

trend towards integrating several techniques seems
to be the best way forward. The difficulty lies in the

fact that even though the two approaches yield

complementary information, they involve con-

flicting and incommensurate objectives. Thus, as

previously observed by Pavlidis and Liow (1990),

while integration has long been a desirable goal,

achieving this is not an easy task.

In recent years, numerous techniques for inte-
grating region and boundary information have

been proposed. One of the main features of these

proposals is the timing of the integration: embed-

ded in the region detection, or after both processes

are completed (Falah et al., 1994).

• Embedded integration can be described as inte-

gration through the definition of new para-
meters or a new decision criterion for the

segmentation. In the most common strategy,

the edge information is extracted first, and this

information is then used within the segmenta-

tion algorithm, which is mainly based on re-

gions. A basic scheme of this method is shown

in Fig. 1a. The additional information contrib-

uted by edge detection can be used to define
new parameters or new decision criteria. For ex-

ample, edge information can be used to define

the seed points from which regions are grown.

The aim of this integration strategy is to use

boundary information as the means of avoiding

many of the common problems of region-based

techniques. However, we will mention later,

there is a current trend which carries out the in-
tegration in reverse; i.e. by using region infor-

mation within the boundary finding process.

• Post-processing integration is performed after

both boundary-based and region-based tech-

niques have been used to process the image.

Edge and region information are extracted inde-

pendently as a preliminary step, as shown in Fig.

1b. An a posteriori fusion process then tries to
exploit the dual information in order to modify,

or refine, the initial segmentation obtained by a

single technique. The aim of this strategy is to

improve the initial results and to produce a

more accurate segmentation.

Although many studies have been published on

image segmentation, none of them focuses specif-
ically on the integration of region and boundary

information, which is the aim of this paper, in
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which we will discuss the most significant seg-

mentation techniques developed in recent years.

We give a description of several key techniques

that we have classified as embedded or post-

processing. Among the embedded methods, we
distinguish between those that use boundary

information for seed placement purposes, and

those that use this information to establish an

appropriate decision criterion. Among the post-

processing methods, we distinguish between three

different approaches: over-segmentation, bound-

ary refinement, and selection–evaluation. We dis-

cuss each one of these techniques in depth, as well
as emphasizing aspects related to the implemen-

tation of the methods in some cases (region

growing or split-and-merge), or the use of fuzzy

logic, which has been considered in a number of

proposals.

The paper is structured as follows: Section 1 is

concluded by related work, Section 2 defines and

classifies the different approaches to the embedded
integration, while Section 3 analyses the proposals

for the post-processing strategy. Section 4 sum-

marizes the advantages and disadvantages of the

various approaches. Finally, the results of our

study are summarized in Section 5.

1.1. Related work

A brief mention of the integration of region and

boundary information for segmentation can be

found in the introductory sections of several pa-

pers. For instance, Pavlidis and Liow (1990) in-

troduce some earlier papers that emphasise the

integration of such information. In 1994, Falah

et al. (1994) identified two basic strategies for

achieving the integration of dual information,
boundaries and regions. The first strategy (post-

processing) is described as the use of edge infor-

mation to control or refine a region segmentation

process. The other alternative (embedded) is to

integrate edge detection and region extraction

within the same process. The classification pro-

posed by Falah, Bolon and Cocquerez has been

adopted and discussed in this paper. Lemoigne
and Tilton (1995) thinking about data fusion in

general, identified two levels of fusion: pixel and

symbol. A pixel-level integration between edges

and regions assumes that the decision regarding

integration is made individually for each pixel,

while the symbol-level integration is performed on

the basis of selected features, thereby simplifying

the problem. Furthermore, they discuss embedded
and post-processing strategies and present impor-

tant arguments concerning the supposed superi-

ority of the post-processing strategy. They argue

that a posteriori fusion provides a more general

approach because, for the initial task, it can em-

ploy any type of boundary and region segmenta-

tion. A different point of view of integration of

edge and region information for segmentation
proposals consists of using dynamic contours

(snakes). Chan et al. (1996) review different ap-

proaches, pointing out that integration is the way

Fig. 1. Schemes of region and boundary integration strategies according to the timing of the integration: (a) Embedded integration and

(b) post-processing integration.
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to decrease the limitations of traditional deform-

able contours.

2. Embedded integration

The embedded integration strategy usually

consists of using previously extracted edge infor-

mation, within a region segmentation algorithm. It

is well known that in most of the region-based

segmentation algorithms, the manner in which

initial regions are formed and the criteria for

growing them are set a priori. Hence, the resulting

segmentation will inevitably depend on the choice
of initial region growth points (Kittler and Illing-

worth, 1985), while the region’s shape will depend

on the particular growth chosen (Kohler, 1981).

Some proposals try to use boundary information

in order to avoid these problems. According to the

way in which this information is used, it is possible

to distinguish two trends:

(1) Control of decision criterion: edge information

is included in the definition of the decision cri-

terion which controls the growth of the region.

(2) Seed placement guidance: edge information is

used as a guide in order to decide which is

the most suitable position to place the seed

(or seeds) of the region-growing process.

2.1. Control of decision criterion

The most common way to perform integration

in the embedded strategy consists of incorporating

edge information into the growing criterion of a

region-based segmentation algorithm. The edge

information is thus included in the definition of the

decision criterion that controls the growth of the
region.

Region growing and split-and-merge are the

typical region-based segmentation algorithms. Al-

though both share the essential concept of homo-

geneity, the way they carry out the segmentation

process is truly different in terms of the decisions

taken. For this reason, and in order to facilitate

analysis of this approach, we shall discuss inte-
gration into these two types of algorithms in two

separate subsections.

2.1.1. Integration in split-and-merge algorithms

Typical split-and-merge techniques (Fukada,

1980; Chen and Pavlidis, 1980) consist of two basic

steps. First, the whole image is considered as one

region. If this region does not satisfy a homoge-
neity criterion the region is split into four quad-

rants (sub-regions) and each quadrant is tested in

the same way until every square region created in

this way contains homogeneous pixels. Secondly,

all adjacent regions with similar attributes may be

merged according to other (or the same) criteria.

The homogeneity criterion is generally based on

the chromatic features analysis of the region.
When the intensity of the region’s pixels has a

sufficiently small standard deviation, the region is

considered homogeneous. Moreover, the integra-

tion of edge information allows a new criterion to

be defined: a region is considered homogeneous

when it is totally free of contours. This concept can

then substitute or be added to the traditional ho-

mogeneity criterion.
Bonnin et al. (1989) proposed a split-and-merge

algorithm controlled by edge detection. The ho-

mogeneity criterion is fulfilled when there is no

edge point in the region and the homogeneity in-

tensity constraints are satisfied. This basic idea was

also proposed in the work of Buvry et al. (1994),

which incorporates a rule-based system in order to

improve initial segmentation. Later, Buvry et al.
(1997) reviewed their own work, and proposed a

hierarchical region detection algorithm for ste-

reovision applications.

Healey (1992) presented an algorithm for seg-

menting images of 3-D scenes, which uses the ab-

sence of edge pixels in the region as a homogeneity

criterion. Furthermore, he considers the effects of

edge detection mistakes (false positive and false
negative) on the segmentation algorithm, and gives

evidence that false negatives have more serious

consequences, so the edge detector threshold

should be set low enough to minimize their oc-

currence.

Other proposals include those by Bertolino and

Montanvert (1996), an enrichment of segmentation

by means of irregular pyramidal structure using
edge information, or the algorithm described by

Gevers and Smeulders (1997), which extends the

possibilities of this integration, using edge infor-
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mation to decide how the partition of the region

should be made or, in other words, where to split

the region.

2.1.2. Integration in region growing algorithms

Region growing algorithms are based on the
growth of a region whenever its interior is homo-

geneous according to certain features, such as in-

tensity, colour or texture. This definition is broad

enough to allow different variants to be analysed:

(1) Region growing: this embraces the traditional

implementation of region growing based on

the growth of a region by adding similar neigh-
bours.

(2) Watershed: a watershed algorithm effects the

growth by simulating a flooding process,

which progressively covers the region.

(3) Active region model (ARM): considered to be a

fusion of region growing with the techniques

of active contour models (ACMs).

2.1.2.1. Region growing. Region growing (Zucker,

1976; Adams and Bischof, 1994) is one of the most

simple and popular algorithms for region-based

segmentation. Typically, the first step is choosing a

starting point or seed pixel. The region then grows

by adding neighbouring pixels that are similar,

according to a certain homogeneity criterion, in-

creasing the size of the region step-by-step. So, the
homogeneity criterion has the function of deter-

mining whether or not a pixel belongs to the

growing region.

The decision to merge is generally based only on

the contrast between the current pixel and the re-

gion. However, it is not easy to decide when this

difference is small (or large) enough to make a de-

cision. The edge map provides an additional crite-
rion in decisions. A scheme of this approach is

shown in Fig. 2. The technique consists of deter-

mining whether or not the pixel under scrutiny is

a contour pixel. Finding a contour means that the

growth process has reached the boundary of the

region. The pixel must therefore not be aggregated

and the growth of the region finishes.

Xiaohan et al. (1992) proposed a homogeneity
criterion consisting of the weighted sum of the

contrast between the region and the pixel, and the

value of the modulus of the gradient of the pixel. A

low value of this function indicates the pixel’s

suitability for aggregation to the region. A similar

proposal was suggested by Falah et al. (1994),

where at each iteration, only pixels having low

gradient values (below a certain threshold) are
aggregated to the growing region. On the other

hand, Gambotto (1993) suggested using edge in-

formation to stop the growing process. His pro-

posal assumes that the gradient takes a high value

over a large part of the region boundary. The it-

erative growing process is thus continued until the

maximum of the average gradient computed over

the region boundary is detected.
The role of fuzzy logic: The fuzzy rule-based

homogeneity criterion offers several advantages

compared to ordinary feature aggregation meth-

ods and is worth mentioning. It does not take long

to develop because a set of tools and methodolo-

gies already exists, and it is easy to modify or ex-

tend the system to meet the specific requirements

of a certain application. Furthermore, it does not
require a full knowledge of the process and can be

understood intuitively because of its human-like

semantics. It is also possible to include such lin-

guistic concepts as shape, size and color, which are

difficult to handle using most other mathematical

methods.

Steudel and Glesner (1999), in a highly impor-

tant work, carried out segmentation on the basis
of a region-growing algorithm that uses a fuzzy

Fig. 2. A scheme of the control of decision criterion approach

of the embedded integration strategy. Edge information is used

in the decisions taken concerning the growth of the region.

X. Mu~nnoz et al. / Pattern Recognition Letters 24 (2003) 375–392 379



rule-based system for the evaluation of the ho-

mogeneity criterion. The proposed homogeneity

criterion is composed of a set of four fuzzy rules

referring to the contrast, gradient, size and shape

of regions. A similar method was proposed by

Krishnan et al. (1994), who applied the integration
of a fuzzy rule-based region growing and a fuzzy

rule-based edge detection to colonoscopic images

in order to identify closed-boundaries of intestinal

lumen, in the diagnosis of colon abnormalities.

The role of fuzzy logic in segmentation tech-

niques is becoming more important (Lambert and

Carron, 1999; Pham and Prince, 1999) and inte-

gration techniques are the main stream of this
tendency. This is mainly because these two meth-

ods (region and boundary based) are developed

from complementary approaches and do not share

a common measure. Hence, fuzzy logic offers the

possibility of solving this problem, as it is espe-

cially suited for carrying out the fusion of diverse

information (Moghaddamzadeh and Bourbakis,

1997; Kong and Kosko, 1992).

2.1.2.2. Watershed. Another algorithm based on

the growth of the region from a seed pixel is the

watershed transformation. Various definitions of

watershed have been proposed in the literature for

both digital and continuous spaces (Meyer and

Beucher, 1990; Vincent and Soille, 1991). The

typical watershed algorithm simulates a flooding
process. An image is identified with a topograph-

ical surface in which the altitude of every point is

generally equal to the gradient value of the cor-

responding pixel. Holes are then pierced in all re-

gional minima of the relief (connected plateaus of

constant altitude from which it is impossible to

reach a location at lower altitude without having

to climb). Sinking the whole surface slowly into a
lake, water springs through the holes and pro-

gressively immerses the adjacent walls. To prevent

intermingling of streams of water coming from

different holes, a constraint is set up at the meeting

points. Once the relief is completely covered by

water, the set of obstacles depicts the watershed

image (Bieniek and Moga, 2000).

Although watershed is usually considered as a
region-based approach, De Smet et al. (1999)

pointed out that the watershed transformation has

proven to be a powerful basic segmentation tool

that can hold the attributed properties of both

edge detection and region growing techniques.

Nevertheless, the performance of a watershed-

based image segmentation method depends largely

on the algorithm used to compute the gradient.
With a conventional gradient operator, watershed

transformation produces an over-segmented re-

sult, with many irrelevant regions. A region merg-

ing algorithm must then be employed to merge

these irrelevant regions, which requires a long

computational time. Hence, recent studies focus

on improving the gradient image in order to per-

form the watershed transformation. Wang (1997)
proposed a multi-scale gradient algorithm based

on morphological operators for watershed-based

image segmentation, which has the goal of in-

creasing the gradient value for blurred edges above

those caused by noise and quantization error.

Recently, Weickert (2001) studied the use of par-

tial differential equations (PDEs) for preprocessing

the image before segmentation. These PDE-based
regularization techniques lead to simplified images

where noise and unimportant fine-scale details

have been removed.

2.1.2.3. Active region model. ACMs have emerged

as an effective mechanism for segmenting and

tracking object boundaries in images or image se-

quences. Central to the implementation of any
ACM is the minimization of a function that de-

scribes the energy of the contour. This energy

functional typically has two components: internal

energy, which applies shape constraints to the

model, and external energy, derived from the data

to which the model is being applied. Since the

original formulation in (Kass et al., 1987), many

variations and improvements have been suggested.
However, ACMs in general are sensitive to initial

conditions.

Recently, some algorithms which combine the

techniques of ACMs and region growing (Alex-

ander and Buxton, 1997) have been developed.

The external part of the ACM energy functional is

replaced by a term derived from local region in-

formation. Points on the contour are allowed to
expand or contract according to the match be-

tween local region information and a global model
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of the region derived from the initial configura-

tion. The resulting ARM retains the desirable

features of both techniques. The regularity of the

contour can be controlled by the shape constraints

in the energy functional. In addition, by examining

local region information, boundary points are able

to traverse large homogeneous areas of the image,
providing the initial configuration with robustness.

As shown in (Chakraborty et al., 1994) this inte-

gration could be considered as the incorporation

of the region information into the boundary find-

ing process using an active contour model (a

scheme of this co-operation is shown in Fig. 3).

The origin of region-based energy functionals

can be found in global optimization approaches
based on energy functions. In these approaches to

segmentation, an energy functional includes the

desired properties of the resulting segmentation,

such as smoothness within homogeneous regions

and the preservation of boundaries between ho-

mogeneous regions. The minimum energy the

functional can attain, given the observation, is

chosen as the solution. However, it is often diffi-
cult to find their minima. Mumford and Shah

(1985, 1989) and Shah et al. (1996) propose a

piecewise constant energy, in which three things

are kept as small as possible: (i) the difference be-

tween the image I and its simplified noiseless ver-

sion J, (ii) the gradient of J where it is smooth and

(iii) the length of the curve where J has disconti-

nuities. This proposal has had a major influence on
subsequent works on ARMs such as the ‘‘region

competition’’ algorithm of Zhu and Yuille (1996),

which incorporates a statistical criterion into the

ideas discussed by Mumford and Shah.

The ‘‘anticipating snake’’ of Ronfard (1994),

the ‘‘statistical snake’’ of Ivins and Porrill (Ivins

and Porrill, 1995; Ivins, 1996), or the most recent

proposal by Chesnaud et al. (1999) are other good

examples of ARMs.

Moreover, there is a recent trend which com-
bines the region information inside the active

contour and the boundary information on the

contour to define the energy functional. Hence,

boundary and region information are cooperating

in a coupled active contour model. The exemplary

work on this approach is by Paragios and Deriche

(1999a), where the texture segmentation is ob-

tained by unifying region and boundary-based
information as an improved Geodesic Active

Contour Model (originally proposed by Caselles

et al. (1997)). Initially, an off-line step is performed

that creates multi-component probabilistic texture

descriptors for the given set of texture patterns.

The segmentation problem is then stated under an

improved geodesic active contour model that aims

to find the minimal length geodesic curve that best
preserves high boundary probabilities, and creates

regions that have maximum a posteriori segmen-

tation probability with respect to the associated

texture hypothesis. This proposal was used sub-

sequently by the same authors to address the

problem of tracking several non-rigid objects over

a sequence of frames acquired from a static ob-

server (Paragios and Deriche, 1999b). Moreover,
its use has been analysed by Will et al. (2000) to

further enhance the results of a proposed texture

edge detector, which can generate precise maps of

highly significant edge-probabilities for the ARM

to produce satisfactory results.

Finally, we want to mention the work of Cha-

kraborty, Duncan et al., which has undergone

constant evolution in recent years, with the con-
tinuous flow of new ideas and updating of the

techniques used, opening up new ways to perform

the integration. In their last proposal (Chakrabory

and Duncan, 1999), they suggest a method for

integrating region segmentation and active con-

tours using game theory in an effort to form a

unified approach. The novelty of the method is

that this is a bi-directional framework, whereby
the results of both computational modules are

improved through mutual information sharing.

Fig. 3. Embedded integration by the ARM. Edge detection by

the active contour model is influenced by the region informa-

tion.
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Hence, both processes (edge and region detection)

use the information from the co-operative process

and the integration carried out is embedded in

both segmentation techniques at the same time.

The proposed algorithm consists of allowing the

region and boundary modules to assume the roles
of individual players who are trying to optimize

their individual cost functions within a game-

theory framework. The flow of information is re-

stricted to passing only the results of the decisions

among the modules. Thus, for any module, the

results of the decisions of the other modules are

used as priors, and players try to minimize their

cost functions at each turn.

2.2. Seed placement guidance

One of the aspects that has a major influence on

the result of a region-based segmentation is the

placement of initial seed points. However, the

typical region growing algorithm chooses them

randomly or by using a set a priori direction of the
image scan. In order to take a more reasonable

decision, edge information can be used to decide

the best position to place the seed.

It is generally accepted that the growth of a

region has to start from within that region (see

Benois and Barba (1992), Sinclair (1999)). The

interior of the region is a representative zone and

enables a correct sample of the region’s charac-
teristics to be obtained. The boundaries between

regions must be avoided when choosing the seeds

because they are unstable zones and not suitable

for obtaining information about the region as a

whole. This approach therefore uses the edge in-

formation to place the seeds in the interior of the

regions. The seeds are launched in placements

which are free of contours and, in some proposals,
as far as possible from them. A scheme of this

integration strategy is shown in Fig. 4.

Edge information can also be used to establish a

specific order for the processes of growing. As is

well known, one of the disadvantages of the region

growing and merging processes is their inherently

sequential nature. Hence, the final segmentation

results depend on the order in which regions are
grown or merged. Edge-based segmentation en-

ables this order to be decided, in some cases by

simulating the order in which humans separate

segments from each other in an image (from large

to small) (Moghaddamzadeh and Bourbakis,

1997), or in other proposals, by giving the same
opportunities of growing to all the regions (Cuf�ıı
et al., 2000).

3. Post-processing integration

In contrast to the works analyzed so far, which

follow an embedded strategy, post-processing
strategies carry out a posteriori integration, i.e.

after the segmentation of the image by region-

based and boundary-based algorithms. Region

and edge information is extracted in a preliminary

step, and then the two are integrated. Post-pro-

cessing integration is based on fusing results from

single segmentation methods, attempting to com-

bine the map of regions (generally with thick and
inaccurate boundaries) and the map of edge out-

puts (generally with fine and sharp lines, but dis-

located) with the aim of providing an accurate and

meaningful segmentation. We have identified three

different approaches for performing these tasks:

(1) Over-segmentation: this approach consists of

using a segmentation method with parameters
fixed specifically to obtain an over-segmented

result. Additional information from other seg-

mentation techniques is then used to eliminate

Fig. 4. A scheme of the seed placement guidance approach of

the embedded integration strategy. Edge information enhances

decisions regarding the most suitable position for the starting

seed point of the region detection.
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false boundaries that do not correspond with

regions.

(2) Boundary refinement: this approach considers

the region segmentation result as an initial ap-

proach, with well-defined regions, but with in-
accurate boundaries. Information from edge

detection is used to refine region boundaries

and to obtain a more precise result.

(3) Selection–evaluation: in this approach, edge in-

formation is used to evaluate the quality of dif-

ferent region-based segmentation results, with

the aim of choosing the best. This third set

of techniques deals with the difficulty of estab-
lishing adequate stopping criteria and thresh-

olds in region segmentation.

3.1. Over-segmentation

This approach emerged as a result of the diffi-

culty in establishing an adequate homogeneity

criterion for region growing. As Pavlidis and Liow
(1990) suggested, the major reason that region

growing produces false boundaries is that the

definition of region uniformity is too strict, such

as when they insist on approximately constant

brightness while in reality, brightness may vary

linearly within a region. It is very difficult to find

uniformity criteria that exactly match these re-

quirements and do not generate false boundaries.
They concluded that the results could be signifi-

cantly improved by checking all the region

boundaries that qualify as edges rather than at-

tempting to fine tune the uniformity criteria.

The over-segmentation method begins by ob-

taining an over-segmented result, which is

achieved by setting the parameters of the algo-

rithm properly. This result is then compared with
the result from the dual approach: each boundary

is checked to find out if it is consistent in both

results. When this correspondence does not exist,

the boundary is considered false and is removed.

In the end, only real boundaries are preserved. A

basic scheme clarifying the ideas of this strategy is

shown in Fig. 5.

The most common technique consists of ob-
taining the over-segmented result using a region-

based algorithm. Every initial boundary is checked

by analysing its coherence with the edge map,

where real boundaries must have high gradient

values, while false boundaries have low values. An

example of this method is the one proposed by

Monga et al. (Gagalowicz and Monga, 1986;
Wrobel and Monga, 1987), where two adjacent

regions are merged if the average gradient on their

boundary is lower than a fixed threshold. A similar

work was presented by Pavlidis and Liow (1990),

who include a criterion in the merging decision in

order to eliminate the false boundaries that have

resulted from the data structure used.

The technique can also be applied by starting
from an over-segmented result obtained from a

boundary-based approach (Philipp and Zampe-

roni, 1996; FjØrtoft et al., 1997). Region infor-

mation then allows true and false contours to be

distinguished. The boundaries are checked by an-

alyzing the chromatic and textural characteristic

on both sides of the contour. A real boundary

borders on two regions, so it has different char-
acteristics on each side. A good example of this

is provided by Philipp and Zamperoni (1996),

who suggest starting with a high-resolution edge

Fig. 5. A scheme of the over-segmentation approach to the

post-processing integration strategy. The parameters of the

region detection method are set to obtain an over-segmented

result. Edge information is then used to eliminate false bound-

aries. This scheme can also be used starting from an over-seg-

mented edge-based result, and using region information to

distinguish between true and false boundaries.
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extractor, and then, according to the texture

characteristics of the extracted regions, deciding

whether to suppress or prolong a boundary.

3.2. Boundary refinement

As we have already mentioned, region-based

segmentation detects true regions very well, al-

though, as is well known, the resultant sensitivity

to noise causes the boundary of the extracted re-

gion to be highly irregular. This approach, which

we have called boundary refinement, considers

region-based segmentation as an initial approxi-

mation to segmentation. Typically, a region-
growing procedure is used to obtain an initial

estimate of a target region, which is then combined

with salient edge information to achieve a more

accurate representation of the target boundary. As

in the over-segmentation proposals, edge infor-

mation enables an initial result to be refined. Ex-

amples of this strategy are the works of Haddon

and Boyce (1990), Chu and Aggarwal (1993) and
Nair and Aggarwal (1996), or the most recent by

Sato et al. (2000).

Nevertheless, we will consider two basic tech-

niques used to refine the boundary of the regions:

(1) Multiresolution: this technique is based on

analysis at different scales. A coarse initial seg-

mentation is refined by increasing the resolu-
tion.

(2) Boundary refinement by snakes: this involves

the integration of region information with dy-

namic contours, particularly snakes. The re-

gion boundary is refined by minimizing the

energy of the snake.

3.2.1. Multiresolution

The multiresolution approach is a promising

strategy for refining the boundary. The image is

analyzed at different scales, using a pyramid or

quadtree structure. The algorithm consists of an

upward path which has the effect of smoothing or

increasing class resolution, at the expense of a re-

duction in spatial resolution, and a downward

path which attempts to regain the lost spatial
resolution, while preserving the newly won class

resolution. This multiresolution structure is then

used, according to a coarse-to-fine strategy which

assumes the invariance of region properties over a

range of scales: those nodes in an estimate con-

sidered to be interior in a region are given the same

class as their ‘‘fathers’’ at lower resolution. Spe-

cifically, a boundary region is defined at the
coarsest level and then the candidate boundary is

further refined at successively finer levels. As a

result, the boundaries of the full image size are

produced at the finest resolution. The scale-space

model is also adopted by the edge-focusing ap-

proach to edge detection (Bergholm, 1987), where

the edges are detected at a coarse scale and pro-

gressively refined through the examination of
smaller scales. Starting with an edge map at a

heavily smoothed scale eliminates the influence of

noise on a gradient based detector. Good local-

ization is also achieved by propagating edges from

their initial rough location to their true location in

the original unblurred image.

A key work in multiresolution strategy was

developed by Spann and Wilson. Their strategy
(Spann and Wilson, 1985) employs a quadtree

method using classification at the top level of the

tree, followed by boundary refinement. A non-

parametric clustering algorithm (Spann and Wil-

son, 1990) is used to perform classification at the

top level, yielding to an initial boundary, followed

by downward boundary estimation to refine the

result. A generalization of this work was applied to
texture segmentation in (Wilson and Spann, 1988).

Hsu et al. (2000) described a texture segmenta-

tion algorithm, which uses a co-operative algo-

rithm within the multiresolution Fourier transform

(MFT) framework. The magnitude spectrum of the

MFT is employed as feature space in which the

texture boundaries are detected by means of

the combination of boundary information and re-
gion properties. This information is propagated

down to the next resolution in a multiresolution

framework, whereby both the required boundary

and region information are used successively until

the finest spatial resolution is reached.

3.2.2. Boundary refinement by snakes

The snake method is known to solve bound-
ary refinement problems by locating the object

boundary from an initial plan. However, snakes
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do not try to solve the entire problem of finding

salient image contours. The high grey-level gradi-

ent of the image may be due to object boundaries

as well as noise and object textures, and the opti-

mization functions may therefore have many local

optima. Consequently, active contours are, in
general, sensitive to initial conditions and they are

only truly effective when the initial position of the

contour in the image is sufficiently close to the real

boundary. For this reason, active contours rely on

other mechanisms to place them somewhere near

the desired contour. In early works on dynamic

contours, an expert was responsible for putting the

snake close to an intended contour, and minimiz-
ing its energy carried it the rest of the way.

However, region segmentation could be the

solution to the problem of where to initialize

snakes. Proposals concerning integrated methods

consist of using the region segmentation result as

the initial contour of the snake. Here, the seg-

mentation process is typically divided into two

steps (see Fig. 6). First, a region growing with a

seed point in the target region is performed, and its

corresponding output is used for the initial con-

tour of the dynamic contour model. Secondly, the

initial contour is modified on the basis of energy

minimization.

Various works combining region detection and
dynamic contours can be found in the literature

(Chan et al., 1996; V�eerard et al., 1996; Jang et al.,

1997). Curiously, the results of all these techniques

have been shown on magnetic resonance imaging

(MRI) images, but this is not merely a coincidence.

Accurate segmentation is critical for diagnosis in

medical images, but in MRI images, it is very

difficult to extract the contour that exactly matches
the target region. Integrated methods seem to be a

valid solution for achieving an accurate and con-

sistent detection.

3.3. Selection–evaluation

In the absence of object or scene models or

ground truth data, it is critical to have a criterion
that enables the quality of a segmentation to be

evaluated. Many proposals have used edge in-

formation to define an evaluation function that

qualifies the quality of a region-based segmen-

tation. The purpose is to achieve different results

by changing parameters and thresholds in a re-

gion segmentation algorithm, and then to use the

evaluation function to choose the best result. The
basic scheme of this approach is shown in Fig. 7.

This strategy provides a solution to the traditional

problems of region segmentation, such as defining

an adequate stopping criterion or setting appro-

priate thresholds.

The evaluation function measures the quality of

a region-based segmentation according to its con-

sistency with the edge map. The best region seg-
mentation is the one where the region boundaries

correspond most closely to the contours.

Fua and Hanson (1987) developed a pioneering

proposal in which high-level domain knowledge

and edge-based techniques were used to select the

best segmentation from a series of region-based

segmented images. However, the majority of

methods based on the selection approach have
been developed in the last five years. Example al-

gorithms have been suggested in the works of

Fig. 6. A scheme of the boundary refinement approach of the

post-processing strategy. Information from edge detection is

used to refine the inaccurate boundaries obtained from the re-

gion detection. This process is generally carried out by placing

a snake over the region. The energy minimization process then

permits a precise boundary to be obtained.
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Lemoigne and Tilton (1995), Hojjatoleslami and

Kittler (1998), Siebert (1997) and Revol-Muller

et al. (2000).

4. Summary

We have reviewed various segmentation pro-

posals which integrate edge and region informa-

tion and identified the various strategies and

methods used to fuse such information. The aim of
this summary is to point out the features and the

essential differences of these approaches, as well as

to discuss some questions that perhaps have not

been properly considered.

Table 1 summarizes the different ways in which

the integration of edge and region information is

performed. The first column distinguishes the

strategy according to the timing of the fusion:
embedded or post-processing. The second column

gives a name to the approach. The next two col-

umns describe the problem that the approach tries

to solve and a description of the objective. Finally,

the last column summarizes the procedure used to

perform the segmentation task.

As described in Section 1, embedded and post-

processing integration use different principles to

perform the task of segmentation. Embedded in-

tegration is based on the design of a complex, or a

superior, algorithm which uses region and edge

information to avoid errors in segmentation. On
the other hand, the post-processing strategy ac-

cepts faults in the elemental segmentation algo-

rithms, but a posteriori integration module tries to

correct them. The key features that characterize

and contrast the two strategies are:

• single algorithm and avoidance of errors (em-

bedded integration)
• multiple algorithms and correction of errors

(post-processing integration).

These two essential characteristics mean that

these strategies produce notable differences. The

first aspect to analyze is the complexity of both

strategies. Embedded integration produces, in

general, a more complex algorithm because it at-
tempts not to commit errors or take wrong deci-

sions. The post-processing strategy can be viewed

as the set of many simple algorithms working in

parallel which produce many wrong segmenta-

tion results. These errors are solved by a poste-

riori fusion module that works on these results.

Post-processing complexity is therefore lower

because the quantity of information to process
decreases, as only the results are taken into con-

sideration.

Another aspect worth analyzing is the inde-

pendence of these integration strategies with re-

spect to their implementation in the segmentation

algorithm. The embedded strategy is strongly de-

pendent, because it typically implies the design of a

new algorithm, which incorporates the integration.
Hence, any change in the integration procedure

will imply the modification of the algorithm. On

the other hand, the post-processing strategy gives

rise to a more general approach because it is in-

dependent of the choice of algorithms for image

segmentation. The fusion of the information only

takes into account the results of the segmenta-

tion algorithms, so the way they are obtained is
not important, and it is possible to use any estab-

lished algorithms. Some researchers (Lemoigne

Fig. 7. A scheme of the selection–evaluation approach of the

post-processing integration strategy. The edge information is

used to evaluate the quality of a segmentation in order to

choose the best segmentation from a set of region-based results.
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and Tilton, 1995) indicate that post-processing
integration can also be viewed in a general data

management framework, where all incoming data

is processed on-line upon acquisition, producing

basic features such as edges and regions.

However, we need to point out that the post-

processing strategy is not 100% independent, and

this, in fact, is its weak point. It is true that it is

independent in terms of the chosen method, but
obviously if the results achieved by these algo-

rithms are very poor, post-processing fails. It is

undeniable that a posteriori fusion needs to work

on a relatively good set of segmentation results.

Final segmentation will therefore inevitably de-

pend, to a greater or lesser extent, on the initial

results of the segmentation. An initial fault, e.g.,

the inappropriate selection of seeds in a region-

growing algorithm, will be carried over into the
entire segmentation process. A posteriori integra-

tion of edge information may not be able to

overcome an error of this magnitude.

4.1. Open questions

Having reviewed the different proposals, we

think that some questions still deserve special at-
tention. First, there are important questions re-

lated to the evaluation of the approaches, since

there is no common framework (nor generally

accepted methodology) for evaluating segmenta-

tion. Secondly, there are certain tasks that are in-

cluded in many of the reviewed proposals, such as

contour or texture extraction, which are by

themselves significant research topics.

Table 1

Summary of approaches to image segmentation integrating region and boundary information

Integration Approach Problem to solve Objective Procedure

Embedded Control of decision

criterion

The shape of the obtained

region depends on the

growth criterion chosen.

To include edge informa-

tion, with or without color

information, and to decide

about the homogeneity of

a region.

A region is not homoge-

neous when there are edges

inside. For this reason, a

region cannot grow

beyond an edge.

Seed placement guid-

ance

The resulting region-based

segmentation inevitably

depends on the choice of

the region’s initial growth

points.

Choosing reasonable

starting points for region-

based segmentation.

Edge information is used

to choose a seed (or seeds)

inside the region to start

the growth.

Post-processing Over-segmentation Uniformity criteria are too

strict and generate false

boundaries in segmenta-

tion.

To remove false bound-

aries that do not coincide

with additional informa-

tion.

Thresholds are set to ob-

tain an initial over-seg-

mented result. Next,

boundaries that do not

exist (according to seg-

mentation from a comple-

mentary approach) are

removed.

Boundary refinement Region-based segmenta-

tion generates erroneous

and highly irregular

boundaries.

To refine the result from

region-based segmentation

using edge information

and arrive at a more accu-

rate representation.

A region-based segmenta-

tion is used to get an initial

estimate of the region.

Next, the optimal bound-

ary that coincides with

edges is searched, generally

using either multiresolu-

tion analysis or snakes.

Selection–evaluation No criterion exists to eval-

uate the quality of a seg-

mentation.

To use edge information to

carry out this evaluation in

order to choose the best

segmentation from a set of

results.

The quality of a region

segmentation is measured

in terms of how the

boundary corresponds

with the edge information.
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(1) Evaluating the different approaches: Actually,

it is not feasible to determine the best approach to

segmentation that integrates boundary and region

information. There are several reasons for this: the

lack of a generally accepted and clear methodol-

ogy for evaluating segmentation algorithms (Pal
and Pal, 1993); the difficulty of obtaining and

ground truthing sufficient real imagery (Vincken

et al., 1997); or the fact that different segmentation

algorithms differ in terms of the properties and

objectives they try to satisfy and the image domain

in which they are working (Haralick and Shapiro,

1985). However, the most important factor is

probably the difficulty in implementing other
people’s algorithms due to the lack of necessary

details (Yu et al., 1994). Obviously, unless a given

segmentation algorithm is specifically implemented

and tried out on the data to hand, it is very diffi-

cult to evaluate from the published results how

well it will work for that data (Fu and Mui, 1981).

As Hoover et al. (1996) indicated the compara-

tive framework is itself a research issue, and al-
though positive steps have been taken, a guiding

philosophy for the design of such a framework is

lacking.

(2) Tasks: The first thing to point out is the high

number of very difficult tasks that are integral

parts of the approaches we have reviewed, for

example edge map extraction or thresholding,

among others, which are themselves significant
research topics. For instance, a serious difficulty

appears when, as is usual, the most significant

edges in the image are required. Extracting these is

not an easy task and the process often includes

many parameters: i.e. an adequate threshold that

will result in a reliable binarization and the sub-

sequent edge map. In this sense, the embedded

proposals that directly use the gradient map as
boundary information have an important advan-

tage. Another question to consider is the lack of

attention that, in general, the reviewed works de-

vote to texture. Without this property, it is not

possible to distinguish whether a high-magnitude

gradient corresponds to a boundary between re-

gions, or to a textured region. Regrettably, texture

is generally forgotten in the different proposals
of embedded integration, with specific exceptions

which have been duly noted. As a consequence,

the algorithms are not adapted to segmenting

heavily textured areas, resulting in an over-seg-

mentation of these regions. Segmentation tech-

niques based on post-processing integration also

suffer from some deficiencies. Those based on an

over-segmented image must solve a non-trivial
problem: What should the threshold be in order to

obtain an over-segmented result? It is well known

that images have different characteristics, so this

threshold cannot be a fixed value. An adequate

threshold for one image may not be effective for

others, and this may lead to an irrecoverable loss

of boundaries. An initial mistake in such an al-

gorithm could be a serious handicap for the a
posteriori fusion, resulting in an under-segmented

result. Moreover, the authenticity of the initial

contours is generally checked under the assump-

tion that real boundaries have high gradients.

However, this assumption is not an indispensable

characteristic of real boundaries and this leads to

one of the most serious difficulties of the seg-

mentation task. As described in Section 3.2, the
aim of the boundary refinement approaches is to

obtain reliable smooth boundaries. In order to

achieve this, cooperation between region-based

segmentation and snakes, which is the commonest

technique, is really a good choice. However, it

should be stressed that the objective of these al-

gorithms is generally to segment not a whole im-

age, but individual objects from an image.
Furthermore, these algorithms have a deficiency

that is shared with the third set of post-processing

methods: their exclusive attention to the bound-

ary. Refining the result is reduced to the region

boundary, so it is not possible to correct any

other mistakes inside the region. The same prob-

lem is found in the selection–evaluation approach,

where the quality measure of a segmentation
based on boundary information is exclusively

based on the external boundary, and not on any

inner contour lines caused by holes. For this rea-

son, the regions extracted might contain holes

that do not appear. In short, all these weak points

of the post-processing integration reaffirm the

previous assertion about the need for good initial

segmentation results and the inability of the post-
processing strategy to correct some initial mis-

takes.
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5. Conclusions and further work

In this paper we have reviewed some key seg-

mentation techniques that integrate region and

boundary information. Special emphasis has been
placed on the strategy used to carry out the inte-

gration process. A classification of cooperative

segmentation techniques has been proposed, and

we have described several algorithms, pointing out

their specific features.

The lack of specific treatment of textured images

has been noted, and it is one of the great problems

of segmentation (Deng et al., 1999). If an image
mainly contains homogeneous color regions, tra-

ditional methods of segmentation working in color

spaces may be sufficient to attain reasonable results.

However, some real images ‘‘suffer’’ from texture,

for example, images corresponding to natural

scenes, which have considerable variety of color and

texture. Texture, therefore, undoubtedly has a

pivotal role to play in image segmentation. How-
ever, there is now some new and promising research

into the integration of color and texture (Mirmehdi

and Petrou, 2000). An attempt to integrate comple-

mentary information from the image may follow; it

seems reasonable to assume that a considerable im-

provement in segmentationwill result from the fusion

of color, texture and boundary information.

Segmentation techniques, in general, are still in
need of considerable improvement. The techniques

we have looked at still have some faults and there

is, as yet, no perfect segmentation algorithm,

something which is vital for the advancement of

Computer Vision and its applications. However,

integration of region and boundary information

has brought improvements to previous results.

Work in this field of research has generated nu-
merous proposals in the last few years. This current

interest encourages us to predict that further work

and improvement of segmentation will be focussed

on integrating algorithms as well as information.
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