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Abstract--Many image segmentation techniques are available in the literature. Some of these techniques 
use only the gray level histogram, some use spatial details while others use fuzzy set theoretic approaches. 
Most of these techniques are not suitable for noisy environments. Some works have been done using the 
Markov Random Field (MRF) model which is robust to noise, but is computationally involved. Neural 
network architectures which help to get the output in real time because of their parallel processing ability, 
have also been used for segmentation and they work fine even when the noise level is very high. The literature 
on color image segmentation is not that rich as it is for gray tone images. This paper critically reviews and 
summarizes some of these techniques. Attempts have been made to cover both fuzzy and non-fuzzy 
techniques including color image segmentation and neural network based approaches. Adequate attention 
is paid to segmentation of range images and magnetic resonance images. It also addresses the issue of 
quantitative evaluation of segmentation results. 
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I. INTRODUCTION 

There are several types of images, namely, light intensity 
(visual) image, range image (depth image), nuclear 
magnetic resonance image (commonly known as 
magnetic resonance image (MRI)), thermal image and 
so on. Light intensity (LI) images, the most common 
type of images we encounter in our daily experience, 
represent the variation of light intensity on the scene. 
Range image (RI), on the other hand, is a map of depth 
information at different points on the scene. In a digital 
LI image the intensity is quantized, while in the case 
of RI the depth value is digitized. Nuclear magnetic 
resonance images represent the intensity variation of 
radio waves generated by biological systems when ex- 
posed to radio frequency pulses. Biological bodies 
(humans/animals) are built up of atoms and molecules. 
Some of the nuclei behave like tiny magnets, m com- 
monly known as spins. Therefore, if a patient (or any 
living being) is placed in a strong magnetic field, the 
magnetic nuclei tend to align with the applied magnetic 
field. For MRI the patient is subjected to a radio 
frequency pulse. As a result of this the magnetic nuclei 
pass into a high energy state, and then immediately 
relieve themselves of this stress by emitting radio waves 
through a process called relaxation. This radio wave 
is recorded to form the MRI. There are two different 
types of relaxation: longitudinal relaxation and trans- 
verse relaxation resulting in two types of MRIs, namely, 
T1 and T2, respectively. "1 In digital MRI, the intensity 
of the radio wave is digitized with respect to both 
intensity and spatial coordinates. Thus in general, any 
image can be described by a two-dimensional function 
i f (x ,  y), where (x, y) denotes the spatial coordinate and 
f ' ( x , y )  the feature value at (x, y). Depending on the 
type of image, the feature value could be light intensity, 

depth, intensity of radio wave or temperature. A digital 
image, on the other hand, is a two-dimensional discrete 
function f ( x ,  y) which has been digitized both in spatial 
coordinates and magnitude of feature value. We shall 
view a digital image as a two-dimensional matrix whose 
row and column indices identify a point, called a pixel, 
in the image and the corresponding matrix element 
value identifies the feature intensity level. Throughout 
this paper a digital image will be represented as 

F ~ o  = [ f ( x ,Y ) ]e×e  (1) 

where P x Q is the size of the image and f ( x ,  y)~ G L = 
{0, 1,..., L -  1 }, the set of discrete levels of the feature 
value. Since the majority of the techniques we are 
going to discuss in this paper are developed primarily 
for ordinary intensity images, in our subsequent dis- 
cussion, we shall usually refer to f ( x , y )  as gray value 
(although it could be depth or temperature or intensity 
of radio wave). 

Segmentation is the first essential and important 
step of low level vision. 12 51 There are many applica- 
tions of segmentation. For example, in a vision guided 
car assembly system, the robot needs to pick up the 
appropriate components from the bin. For this, seg- 
mentation followed by recognition is required. Its ap- 
plication area varies from the detection of cancerous 
cells to the identification of an airport from remote 
sensing data, etc. In all these areas, the quality of the 
final output depends largely on the quality of the 
segmented output. Segmentation is a process of parti- 
tioning the image into some non-intersecting regions 
such that each region is homogeneous and the union 
of no two adjacent regions is homogeneous. Formally, 
it can be defined 16t as follows: ifF is the set of all pixels 
and P( ) is a uniformity (homogeneity) predicate defined 
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on groups of connected pixels, then segmentation is a 
partitioning of the set F into a set of connected subsets 
or regions ($1, $2,. . . ,  S,) such that 

n 

[.)S,=F with S i ( ] S j = ~ ,  i4:j .  (2) 
i = 1  

The uniformity predicate P(S~)= true for all regions 
(Si) and P(SiwSj)=false, when Si is adjacent to Sj. 
Note that this definition is applicable to all types of 
images we have described. For LI images the uniformity 
predicate measures the uniformity of light intensity, 
while for range images it could be the uniformity of 
surfaces. 

Hundreds of segmentation techniques are present in 
the literature, but there is no single method which can 
be considered good for all images, nor are all methods 
equally good for a particular type of image. Moreover, 
algorithms developed for one class of image (say or- 
dinary intensity image) may not always be applied to 
other classes of images (MRI/RI). This is particularly 
true when the algorithm uses a specific image formation 
model. For  example, some visual image segmentation 
algorithms are based on the assumption that the gray 
level function f(x,y) can be modeled as a product of 
an illumination component and a reflectance com- 
ponentF  ) On the other hand, in Pal and Pal tS) the gray 
level distributions have been modeled as Poisson dis- 
tributions, based on the theory of formation of visual 
images. Such methods 17's~ should not be applied to 
MRI/RIs. However, most of the segmentation methods 
developed for one class of images can be easily applied/ 
extended to another class of images. For example, the 
variable order surface fitting method, tg) although de- 
veloped for range images can be applied for other images 
that can be modeled as a noisy version of piece-wise 
smooth surfaces. 

There are many challenging issues like, the develop- 
ment of a unified approach to image segmentation 
which can (probably) be applied to all kinds of images. 
Even the selection of an appropriate technique for a 
specific type of image is a difficult problem. Up to now, 
to the knowledge of the authors there is no universally 
accepted method of quantification of segmented output. 
Authentication of edges is also a very important task. 
Different edge operators t3-5'1°) like Sobel, Prewitt, 
Marr-Hildreth, etc. produce an edginess value at every 
pixel location. However, all of them are not valid(!) 
candidates for edges. Normally, edges are required to 
be thresholded. The selection of the threshold is very 
crucial as for some part of the image low intensity 
variation may correspond to edges of interest, while 
the other part may require high intensity variation. 
Adaptive thresholding I~ 1-131 often is taken as a solution 
to this. Obviously it cannot eliminate the problem of 
threshold selection. A good strategy to produce mean- 
ingful segments would be to fuse region segmentation 
results and edge outputs. I~ 4, ~5~ Incorporation of psycho- 
visual phenomena I16,17) may be good for light intensity 
images but not applicable for range images. Actually 
semantics and a prior information about the type of 

images are critical to the solution of the segmentation 
problem.i18j According to Pavlidis" a.19~ (visual) image 
segmentation is a problem of psycho-physical percep- 
tion, and therefore, not susceptible to purely analytical 
solution. Any mathematical algorithm usually should 
be supplemented by heuristics which involve semantic 
information about the class of images under consider- 
ation. 

One may attempt to extract the segments in a variety 
of ways. Broadly, there are two approaches namely, 
classical approach and fuzzy mathematical approach. 
Under the classical approach we have segmentation 
techniques based on histogram thresholding, edge de- 
tection, relaxation, and semantic and syntactic ap- 
proaches.t1 x-i ~3~ In addition to these, there are certain 
other methods which do not fall clearly in any one of 
the above classes, c114-121) Similarly, the fuzzy math- 
ematical approach ~12z-154) also has methods based 
on edge detection, thresholding and relaxation. Some 
of these methods, particularly the histogram based 
methods are not at all suitable for noisy images. Sev- 
eral attempts have also been made to develop image 
processing algorithms using neural network (NN) 
models, lass ~70~ par t i cu la r ly  the Hopfie ld  and 
Kohonen networks. These algorithms work well even 
in a highly noisy environment and they are capable of 
producing outputs in real time. Though many algorithms 
are available for color image segmentation, ~17~-t 77) 
the literature is not that rich as it is for the gray level 
images. In this context it may be mentioned that the 
literature is very rich on the methods of segmentation, 
but not many attempts have been made for the objective 
evaluation of segmented outputs. 

This paper attempts to critically review and sum- 
marize some of the existing methods of segmentation. 
Before we proceed further, we summarize some of the 
earlier surveys on image segmentation. Fu and Mui Ila~ 
categorized segmentation techniques into three classes: 
(1) characteristic feature thresholding or clustering, 
(2) edge detection, and (3) region extraction. This sur- 
vey was done from the viewpoint of cytology image 
processing. A critical appreciation of several meth- 
ods of thresholding, edge detection and region extrac- 
tion Iz°-33) has been done. This includes some graph 
theoretic approaches 13°1 also. For color image thres- 
holding, only a brief mention about it has been given. 122~ 
The section on edge detection makes a good summar- 
ization of several edge detection approaches including 
some adaptive local operators. 13L321 Hueckel's 133~ ap- 
proach of viewing edge detection as a functional ap- 
proximation problem has been discussed. 

Haralick and Shapiro t341 classified image segmen- 
tation techniques as: (1) measurement space guided 
spatial clustering, (2) single linkage region growing 
schemes, (3) hybrid linkage region growing schemes, 
(4) centroid linkage region growing schemes, (5) spatial 
clustering schemes, and (6) split and merge schemes. 
According to them, the difference between clustering 
and segmentation is that in clustering, the grouping is 
done in measurement space; while in image segmen- 
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tation, the grouping is done in the spatial domain of the 
image. We like to emphasize that segmentation tries 
to do the groupings in the spatial domain but it can 
be achieved through groupings in the measurement 
space, particularly for muitispectral images, t137'177) 
For multispectral data, instead of clustering in the full 
measurement space, Haralick and Shapiro (34) suggested 
to work in multiple lower order projection spaces, and 
then reflect these clusters back to the full measurement 
space as follows: suppose, for example, that the cluster- 
ing is done on a four band image. If the clustering done 
in bands 1 and 2 yields clusters cl, c2, ¢3 and the clustering 
done in bands 3 and 4 yields clusters ca and c 5 then 
each possible 4-tuple from a pixel can be given a cluster 
label from the set "{(cl,c4), (Cl,C5), (c2,c4), (c2,c5), 
(c3, ca) (Ca, c5)}". A 4-tuple (x I , x 2, x 3, x4) gets the cluster 
labels (c2,c4) if (xt,x2) is in cluster c 2 and (x3,x4) is in 
cluster c4. However, this does not seem to be of any 
use to us as this virtually assigns a point (a 4-tuple) 
in two different classes. Note that it is neither a prob- 
abilistic assignment nor a fuzzy assignment. A good 
summary of different types of linkage region growing 
algorithm (35-41) has also been presented. 

Sahoo e ta / .  (42) surveyed only segmentation algor- 
ithms based on thresholding and attempted to evaluate 
the performance of some thresholding algorithms using 
some uniformity and shape measures. They categor- 
ized (42) global thresholding techniques into two classes: 
point dependent techniques (gray level histogram based) 
and region dependent techniques (modified histogram 
or co-occurrence based). A fairly detailed discussion 
on probabilistic relaxation (42) is available. They also 
reviewed several methods of multi-thresholding tech- 
niques. (43-a5) We offer the following comments about 
the previous reviews on image segmentation: 

(1) None of these surveys (1s'34'42~ considers fuzzy 
set theoretic segmentation techniques. 

(2) Neural networks based techniques are also not 
included. 

(3) The problem of objective evaluation of segmen- 
tation results has not been adequately dealt with ex- 
cept in Sahoo et al. ~42) 

(4) Color image segmentation has not been paid 
proper attention. 

(5) Segmentation of range images/magnetic reson- 
ance images has not been considered at all. 

This review paper attempts to incorporate all these 
points to a limited but reasonable extent. However, by 
no means is it an exhaustive survey. 

2. GRAY LEVEL T H R E S H O L D I N G  

Thresholding is one of the old, simple and popular 
techniques for image segmentation. Thresholding can 
be done based on global information (e.g. gray level 
histogram of the entire image) or it can be done using 
local information (e.g. co-occurrence matrix) of the 
image. Taxt et  al. (46) refer to the local and global in- 
formation based techniques as contextual and non- 
contextual methods, respectively. Under each of these 

schemes (contextual/non-contextual) if only one thres- 
hold is used for the entire image then it is called global 
thresholding. On the other hand, when the image is 
partitioned into several subregions and a threshold is 
determined for each of the subregions, it is referred to 
as local thresholding. (46) Some authors (11-13) call these 
local thresholding methods adaptive threshoiding 
schemes. Thresholding techniques can also be classified 
as bilevel thresholding and multithresholding. In bi- 
level thresholding the image is partitioned into two 
regions--object (black) and background (white). When 
the image is composed of several objects with different 
surface characteristics (for a light intensity image, ob- 
jects with different coefficient of reflection, for a range 
image there can be objects with different depths and 
so on) one needs several thresholds for segmentation. 
This is known as multithresholding. In such a situation 
we try to get a set of thresholds (t t, t 2 . . . . .  tk) such that 
all pixels with f ( x ,  y)E [ t ,  ti + 1), i = 0, 1 . . . . .  k; constitute 
the ith region type (t o and tk÷l are taken as 0 and 
L -  1, respectively). Note that thresholding can also be 
viewed as a classification problem. For example, bilevel 
segmentation is equivalent to classifying the pixels 
into two classes: object and background. Mardia and 
Hainsworth t58) have shown that the main idea behind 
the iterative thresholding schemes of Ridler and 
Calvard (63) and Lloyd (st) can be defined as special 
cases of the classical Bayes' discrimination rule. Under 
the assumption that object and background pixels are 
normally distributed with the same variance, Bayes' 
allocation rule yields the formula used for threshold 
computation in reference (81). With an additional as- 
sumption that the prior probabilities for object and 
background pixels are the same, Bayes' formula reduces 
to the computation formula for threshold in Ridter and 
Calvard. (63) 

If the image is composed of regions with different 
gray level ranges, i.e. the regions are distinct, the histo- 
gram of the image usually shows different peaks, each 
corresponding to one region and adjacent peaks are 
likely to be separated by a valley. For  example, if the 
image has a distinct object on a background, the gray 
level histogram is likely to be bimodal with a deep 
valley. In this case, the bottom of the valley (T) is 
taken as the threshold for object background separation. 
Therefore, when the histogram has a (or a set of) deep 
valley(s), selection of threshold(s) becomes easy because 
it becomes a problem of detecting valleys. However, 
normally the situation is not like this and threshold 
selection is not a trivial job. There are various meth- 
ods ( 3 -8 ' 42 -81 )  available for this. For example, Otsu (52) 
maximized a measure of class separability. He max- 
imized the ratio of the between class variance to the 
local variance to obtain thresholds. Nakagawa and 
Rosenfeld t12) assumed that the object and background 
populations are distributed normally with distinct 
means and standard deviations. Under this assumption 
they selected the threshold by minimizing the total 
misclassification error. This method is computationally 
involved. Kittler and Illingworth, (62) under the same 
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assumption of normal mixture, suggested a compu- 
tationally less involved method. They proposed a meth- 
od which optimizes a criterion function related to 
average pixel classification error rate that finds out 
an approximate minimum error threshold. Pal and 
Bhandari t7 ~ optimized the same criterion function but 
assumed Poisson distributions to model the gray level 
histogram. 

Pun t65~ assumed that an image is the outcome of an 
L symbol source. He maximized an upper bound of 
the total a posteriori entropy of the partitioned image 
for the purpose of selecting the threshold. Kapur 
et al., c49) on the other hand, assumed two probability 
distributions, one for the object area and the other for 
the background area. They then, maximized the total 
entropy of the partitioned image in order to arrive at 
the threshold level. Wong and Sahoo t69) maximized 
the a posterior entropy of a partitioned image subject 
to a constraint on the uniformity measure of Levine 
and Nazif ~951 and a shape measure. They maximized 
the a posterior entropy over min (sl, s2) and max (sl, s2) 
to get the threshold for segmentation; where s~ and s2 
are the threshold levels at which the uniformity and 
the shape measure attain the maximum values, respect- 
ively. Pal and Pal Is~ modeled the image as a mixture 
of two Poisson distributions and developed several 
parametric methods for segmentation. The assumption 
of the Poisson distribution has been justified based on 
the theory ol:image formation. These algorithms max- 
imize either entropy or minimize the Z 2 statistic. Though 
these methods use only the histogram, they produce 
good results due to the incorporation of the image 
formation model. 

All these methods have a common drawback, they 
take into account only the histogram information 
(ignoring the spatial details). As a result, such an algor- 
ithm may fail to detect thresholds if these are not 
properly reflected as valleys in the histogram, which 
is normally the case. There are many thresholding 
schemes that use spatial information, instead of histo- 
gram information. For example, the busyness measure 
of Weszka and Rosenfeld ~vS) is dependent on the co- 
occurrence of adjacent pixels in an image. They min- 
imized the busyness measure in order to arrive at the 
threshold for segmentation. Deravi and PaP v6) minim- 
ized the conditional probability of transition across 
the boundary between two regions. This method also 
uses the local information contained in the co-occur- 
rence matrix of the image. However, finally all these 
methods threshold the histogram, but since they make 
use of the spatial details, they result in a more meaningful 
segmentation than the methods which use only the 
histogram information. Based on the co-occurrence 
matrix, Chanda et al. ~vv) have given an average contrast 
measure for segmentation. Pal and Pal ~16,6 ~ proposed 
measures of contrast between regions and homogeneity 
of regions using the brightness perception aspect of 
the human psycho-visual system, and applied them 
to segmentation. They also defined ~4a) the higher order 
entropy and conditional entropy of an image giving 

measures of homogeneity and contrast, respectively. 
These measures are finally applied to develop object 
extraction algorithms. A concept similar to the second- 
order local entropy of Pal and PaP 4a) has been used 
by Abutaleb ts°) for segmentation. The gray value of a 
pixel and the average of its neighboring pixels have 
been used there for the computation of the co-occur- 
rence matrix. As a result the boundary of the segmented 
object usually becomes blurred. 

The philosophy behind gray level thresholding, 
"pixels with gray level < T fall into one region and 
the remaining pixels belong to another region", may 
not be true on many occasions, particularly, when the 
image is noisy or the background is uneven and illumi- 
nation is poor. In such cases the objects will still be 
lighter or darker than the background, but any fixed 
threshold level for the entire image will usually fail to 
seigarate the objects from the background. This leads 
one to the methods of adaptive thresholding. In adap- 
tive thresholding I11 13) normally the image is parti- 
tioned into several non-overlapping blocks of equal 
area and a threshold for each block is computed inde- 
pendently. Chow and Kaneko I111 used the (sub) histo- 
gram of each block to determine local threshold values 
for the corresponding cell centers. These local thres- 
holds are then interpolated over the entire image to 
yield a threshold surface. They I11) used only gray level 
information. Yanowitz and Bruckstein t131 extended 
this idea to use combined edge and gray level informa- 
tion. They computed the gray level gradient magnitude 
from a smooth version of the image. The gradient 
values have then been thresholded and thinned using 
a local maxima directed thinning process. Locations 
of these local gradient maxima are taken as boundary 
pixels between object and background. The correspond- 
ing gray levels in the image are taken as local thresholds. 
The sampled gray levels are then interpolated over the 
entire image to obtain an adaptive threshold surface. 
Several approaches to the two-dimensional interpola- 
tion problem have been discussed. The performance of 
the algorithm is likely to depend on the choice of the 
threshold levels for the gradients and no guideline has 
been provided for this. 

3. ITERATIVE PIXEL CLASSIFICATION 

3.1. Relaxation 

Relaxation t3'94'96) is an iterative approach to seg- 
mentation in which the classification decision about 
each pixel can be taken in parallel. Decisions made at 
neighboring points in the current iteration are then 
combined to make a decision in the next iteration. 
There are two types of relaxation: probabilistic and 
fuzzy. We discuss here the probabilistic relaxation. 
Suppose a set of pixels { f l , f 2  . . . . .  f,} is to  be classified 
into m classes {C~, C 2 . . . . .  C,,}. For the probabilistic 
relaxation we assume that for each pair of class assign- 
ments f ~ C j  and fheCk,  there existsa quantitative 
measure of compatibility C(i, j; h, k) of this pair, i.e. the 
class assignment ofpixels is interdependent. It is reason- 
able to assume that a positive value of C(i, j ;h ,k )  
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indicates the compatibility of f ie  Cj and fhe  Ck, while 
a negative value represents incompatibility and a zero 
don't care situation. The function C need not be sym- 
metric. 

Let Pij represent the probability thatf~ECj, 1 < i < n 
and 1 < j  < m, with 0 < Pij -< 1, ~" pij = I. Intuitively, 

J 

if Phk is high and C(i, j; h, k) is positive, we increase Pij 
since it is compatible with the high probability event 
fh~ Ck. Similarly, ifph k is high and C(i, j; h, k) is negative, 
we reduce P~i as it is incompatible with fheC~. On the 
other hand, ifphk is lOW or C(i, j; h, k) is nearly zero, Pij 
is not changed as either f he  Ck has a low probability 
or is irrelevant to f~ e Cj. The fuzzy relaxation is similar. 

3.2. M R F  based approaches 

There are many image segmentation methods~ ~4 121) 
which use the spatial interaction models like Markov 
Random Field (MRF) or Gibbs Random Field (GRF) 
to model digital images. Geman and Geman (118) have 
proposed a hierarchical stochastic model for the original 
image and developed a restoration algorithm, based on 
stochastic relaxation (SR) and annealing, for computing 
the maximum a posterior estimate of the original scene 
given a degraded realization. Due to the use of annealing, 
the restoration algorithm does not stop at a local maxima 
but finds the global maximum of the a posterior prob- 
ability. We mention here that the probabilistic relax- 
ation (94) (also known as relaxation labeling (RL)) and 
stochastic relaxation, although they share some com- 
mon features like parallelism and locality, are quite 
distinct. RL is essentially a non-stochastic (deterministic) 
process which allows jumps to states (configurations) 
of lower energy. On the other hand, SR transition 
to a configuration which increases the energy (decreases 
the probability) is also allowed. In fact, if the new 
configuration decreases the energy, the system transits 
to that state, while if the new configuration increases 
the energy the system accepts that state with a prob- 
ability. This helps the system to avoid the local minima. 
RL usually gets stuck in a local minima. Moreover, in 
RL there is nothing corresponding to an equilibrium 
state or even a joint probability law over the configur- 
ations. Derin et al. (1~ ?) extended the one-dimensional 
Bayes smoothing algorithm of Askar and Derin (t 20) to 
two dimensions to get the optimum Bayes estimate for 
the scene value at every pixel. In order to reduce the 
computational complexity of the algorithm, the scene 
is modeled as a special class of MRF models, called 
Markov mesh random fields which are characterized 
by causal transition distributions. The processing is 
done over relatively narrow strips and estimates are 
obtained at the middle section of the strips. These 
pieces together with overlapping strips yield a sub- 
optimal estimate of the scene. Without parallel implemen- 
tation these algorithms become computationally 
prohibitive. Derin and Elliott (x21) used a doubly stoch- 
astic hierarchical model for image data. At the top 
level a Gibbs distribution (GD) is used to characterize 
the clusters of the image pixels into regions with similar 

features. At the bottom level, the feature or textural 
properties of region types are modeled by a second set 
of GD, one for each type of class. The segmentation 
algorithms are derived by using the maximum a pos- 
terior probability (MAP) criterion. To reduce the com- 
putational overhead of the exact MAP estimate, they 
derived suboptimal solutions through simplifying 
assumptions in the model. They formulated it as a 
dynamic programming problem. These algorithms 
require only one raster scan over the image. 

3.3. Neural network based approaches 

For any artificial vision application, one desires to 
achieve robustness of the system with respect to random 
noise and failure of processors. Moreover, a system can 
(probably) be made artificially intelligent if it is able to 
emulate some aspects of the human information pro- 
cessing system. Another important requirement is to 
have the output in real time. Neural network based 
approaches are attempts to achieve these goals. Neural 
networks are massively connected networks of ele- 
mentary processors. (x55-158~ Architecture and dyn- 
amics of some networks are claimed to resemble infor- 
mation processing in biological neurons. (157) The mas- 
sive connectionist architecture usually makes the system 
robust while the parallel processing enables the system 
to produce output in real time. Several authors (159 170) 
have attempted to segment an image using neural 
networks. Blanz and Gish (159) used a three-layer feed 
forward network for image segmentation, where the 
number of neurons in the input layer depends on the 
number of input features for each pixel and the number 
of neurons in the output layer is equal to the number 
of classes. Babaguchi eta/.  (16°) used a multilayer net- 
work trained with backpropagation, for thresholding 
an image. The input to the network is the histogram 
while the output is the desirable threshold. In this 
method at the time of learning a large set of sample 
images with known thresholds which produce visually 
suitable outputs are required. But for practical appli- 
cations it is very difficult to get many sample images. 

Recently Ghosh et al. t162' 166) used a massively con- 
nected network for extraction of objects in a noisy 
environment. The maximum a posterior probability 
estimate of a scene modeled as a GRF and corrupted 
by additive Gaussian noise has been done using 
a neural network. (162) The hardware realization of 
neurons to be used for such a network has also been sug- 
gested. This NN based method takes into account 
the contextual information, because the GRF model 
considers the spatial interactions among neighboring 
pixels. Another robust algorithm for the extraction of 
objects from highly noise corrupted scenes using a 
Hopfield type neural network has been developed in 
references (167, 169). The energy function of the network 
has been constructed in such a manner that in a stable 
state of the net it extracts compact regions from a noisy 
scene. A multilayer neural network (~64) where each 
neuron in layer i (i > 1 ) is connected to the correspond- 
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ing neuron in layer (i - 1) and some of its neighboring 
neurons (in layer i - 1), has been used to segment noisy 
images. The output status of the neurons in the output 
layer has been viewed as a fuzzy set (to be defined in 
Section 7). The weight updating rules have been derived 
to minimize the fuzziness in the system. For  this algor- 
ithm the architecture of the network enforces the system 
to consider the contextual information. Moreover, 
this algorithm integrates the advantages of both fuzzy 
sets (decision from imprecise/incomplete knowledge) 
and neural networks (robustness). Shah t~ 63) formulated 
the problem of edge detection in the context of an 
energy minimizing model. The method is capable of 
eliminating weak boundaries and small regions. Cortes 
and Hertz t 165) proposed a NN to detect potential edges 
in different orientatioias. The performance of the system 
has been investigated through simulation studies using 
simulated annealing and mean field annealing. In 
reference (168) the image segmentation problem has 
been formulated as a constraint satisfaction problem 
(CSP) and a class of constraint satisfaction neural net- 
work (CSNN) is proposed. A CSNN consists of a set 
of objects, a set of labels, a collection of constraint 
relations and a topological constraint describing 
the neighborhood relationships among various objects. 
The CSNN is viewed as a collection of interconnected 
neurons. The architecture is chosen in such a way that 
it represents constraints in the CSP. The proposed 
method is found to be successful on CT (computed 
tomography) images and MRIs. However, robustness 
of the algorithm with noisy data has not been investi- 
gated. Moreover, for references (164, 168) a large num- 
ber of neurons are required even for an image of 
moderate size. 

4. SURFACE BASED SEGMENTATION 

This section mainly discusses a few selected tech- 
niques for range image segmentation. ~9'14'15'82-841 
Besl and Jain t91 have developed an image segmentation 
algorithm based on the assumption that the image 
data exhibits surface coherence, i.e. image data may be 
interpreted as noisy samples from a piece-wise smooth 
surface function. Though, this method is probably 
most useful for range images, it can be used to segment 
any type of image that can be modeled as a noisy 
sampled version of a piece-wise smooth graph surface. 
This method is based on the fact that the signs of 
Gaussian and mean curvatures yield a set of eight 
surface primitives: peak, pit, ridge, saddle ridge, valley, 
saddle valley, flat (planar) and minimal. These primitives 
possess some desirable invariant properties and can 
be used to decompose any arbitrary smooth surfaces. 
In other words, any arbitrary smooth surface can be 
decomposed into one of those eight possible surface 
types. These simple surfaces can be well approximated, 
for the purpose of segmentation, by bivariate poly- 
nomials of order < 4. The first stage of the algorithm 
creates a surface type label image based on the local 
information (using mean curvature and Gaussian curv- 

ature images). The second stage takes the original 
image and the surface type image as input and performs 
an iterative region growing using the variable order 
surface fitting. In the variable order surface fitting, first 
it has been tried to represent the points in a seed region 
by a planar surface. If this simple hypothesis of planar 
surface is found to be true then the seed region is grown 
on the planar surface fit. If this simple hypothesis fails, 
then the next more complicated hypothesis of biquad- 
ratic surface fit is tried. If this is satisfied, the region is 
grown based on that form otherwise, the next compli- 
cated form is tried. The process is terminated when 
either the region growing has converged (same region 
obtained twice) or when all preselected hypotheses fail. 
In the later case, possibly a higher order surface should 
be tried. 

Hoffman and Jain ~s2) have developed a method for 
segmentation and classification of range images. They 
have used a clustering algorithm to segment the image 
into surface patches. Different types of clustering algor- 
ithms including methods based on minimal spanning 
tree, mutual nearest neighbor, hierarchical clustering 
and square error clustering have been attempted. The 
square error clustering has been found to be the most 
successful method for range images. The feature set 
used contains the coordinate position (x, y), the depth 
value f(x,y) and the estimated unit surface normal 
vector. The unit surface normal vector is normal to the 
tangent plane at a point which is obtained by finding 
the best (in the least square sense) titling plane over a 
neighborhood. In the second phase of the method 
these patches are classified as planar, convex or concave. 
In order to make the method of classification more effec- 
tive they have combined three different methods, 
namely, "non-parametric trend test for planarity", 
"curvature planarity test", and the "eigenvalue planarity 
test". In the final stage, boundaries between adjacent 
surface patches are classified as crease or non-crease 
edge, and this information is then used to merge adja- 
cent compatible patches to result in reasonable faces 
of the object. For this type of method, the choice of the 
neighborhood to compute the local parameters is an 
important issue and no theoretical guideline has been 
provided for this. 

Yokoya and Levine tl4) also used a differential geo- 
metric technique like Besl and Jain ~9) for range image 
segmentation. Yokoya and Levine t14J combined both 
region and edge based considerations. They approxi- 
mated object surfaces using biquadratic polynomials. 
As in reference (9) signs of Gaussian and mean curva- 
tures (curvature sign map) have been used to get the 
initial region based segmentation. Two edge maps are 
formed: one for the jump edge and the other for the 
roof edge. The jump edge magnitude is obtained by 
computing the maximum difference in depth between 
a point and its eight neighbors; while the roof edge 
magnitude is computed as the maximum angular dif- 
ference between adjacent unit surface normals. These 
two edge maps and the curvature sign map are then 
fused to form the final segmentation. This method too 
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requires selection of threshold levels for the maps and 
the curvature sign map. Improper choice of these 
parameter values is likely to deteriorate the quality 
of segmentation output. At this point we note that for 
range images, detection of jump edges can be done 
with ordinary gradient operators, but detection of 
crease edges with ordinary gradient operators becomes 
difficult. For  an inclined plane depth value changes 
slowly and hence any difference operator is likely to 
respond resulting in false edges. Often magnitude of 
the crease edge is computed as the maximum angular 
difference between adjacent unit surface normals. Note 
that the maximum angular difference method may 
(usually will) fail to detect jump edges. 

Thus for edge detection in range images one needs 
to account for both crease and jump edges separately. 
Rimey and Cohe# s*) formulated the problem as a 
maximum likelihood (ML) segmentation problem. 
Here also the objective is to divide the range image 
into windows, classify each window as a particular 
surface primitive, and group like windows into surface 
regions. Homogeneous windows are classified accord- 
ing to a generalized likelihood ratio test. This test uses 
information from adjacent windows and is compu- 
tationally simple. Once each window has been classi- 
fied, similar windows are merged using ML clustering 
analysis. 

5. SEGMENTATION OF COLOR IMAGES 

Color is a very important perceptual phenomenon 
related to human response to different wavelengths in 
the visible electromagnetic spectrumJ 22' ~ ~ n The image 
is usually described by the distribution of three color 
components R (red), G (green), B (blue). Color image 
is often also represented by three psychological qual- 
i t i e s - h u e ,  saturation and intensity. These color fea- 
tures and many others can be calculated from the 
tristimuli R, G and B by either a linear or a non-linear 
transformation. Ohta e t  al. 1174) attempted to find a set 
of effective color features by systematic experiments in 
region segmentation. They applied an Ohlander type 
segmentation algorithm for the experiment, t175) At 
every step of segmenting a region, calculation of the 
new color features is done for the pixels in that region 
by the Karhunen-Loave (KL) transform of R, B and 
G data. Based on extensive experiments, it has been 
found that the following three color features I 1 = (R + 
B + G)/3, I2 = (R - B)/2 or (B - R)/2 and I3 = (2G - 
R - B)/4 constitute an effective set of features for seg- 
mentation. 

Spectrum analysis is another technique of color 
image segmentation in which prior knowledge about 
object colors is used to classify pixels. However, in 
many real life applications prior knowledge about the 
colors of the object may be difficult to gather. Under 
this situation clustering techniques can be used. Ohta 
e t  a l .  ~ ~ 7 , )  instead of using the R - B - G  color coordinate 
directly, used I1, I2 and I3. Lim and Lee t~72) developed 
a two-stage color image segmentation technique based 

on thresholding and fuzzy c-means (FCM) methods. It22) 
The FCM method will be discussed in Section 7. This 
method" 72) can be viewed as a coarse to fine technique 
which tries to reduce the computational overhead of 
FCM. The method is similar to the iterative algor- 
ithm proposed by Huntsberger e t  a l .  ~ 77) except it uses 
the scale space filter for finding the number of clusters. 
The coarse segmentation attempts to segment using 
thresholding and then the FCM algorithm is used to 
classify pixels which have not yet been assigned to any 
class in the coarse segmentation phase. Though the 
method is claimed to find the number of classes auto- 
matically, it does have some subjective choices. For 
example, in the coarse segmentation phase if the num- 
ber of pixels in a class exceeds a prespecified threshold, 
then only it is taken as a valid class. We mention here 
that a color image is a special case of multispectral 
images and algorithms developed for multispectral 
images a37) usually can be used for color image seg- 
mentation. 

6. EDGE DETECTION 

Segmentation can also be obtained through detection 
of edges of various regions, which normally tries to 
locate points of abrupt changes in gray level intensity 
values. As discussed in the previous section, for range 
images edges are declared at points of significant changes 
in depth values. Since edges are local features, they are 
determined based on local information. A large variety 
of methods are available in the literature t3-s'97-113) 
for edge finding. Davis" 8,109) classified edge detection 
techniques into two categories: sequential and parallel. 
In the sequential technique the decision whether a 
pixel is an edge pixel or not is dependent on the result 
of the detector at some previously examined pixels. On 
the other hand, in the parallel method the decision 
whether a point is an edge or not is made based on the 
point under consideration and some of its neighboring 
points. As a result of this the operator can be applied 
to every point in the image simultaneously. The perform- 
ance of a sequential edge detection method is depen- 
dent on the choice of an appropriate starting point and 
how the results of previous points influence the selection 
and result of the next point. Kelly t~°) and Chien and 
Fu t111) used guided search techniques for this. Chien 
and Fu ttlt~ detected cardiac and lung boundaries in 
chest X-ray images using a sequential search technique 
with an evaluation function. 

There are different types of parallel differential oper- 
ators such as Roberts gradient, Sobel gradient, Prewitt 
gradient and the Laplacian operator. ~3-5) These differ- 
ence operators respond to changes in gray level or av- 
erage gray level. The gradient operators, not only re- 
spond to edges but also to isolated points. For Prewitt's 
operator the response to the diagonal edge is weak, 
while for Sobel's operator it is not that weak as it gives 
greater weights to points lying close to the point (x, y) 
under consideration. However, both Prewitt's and 
Sobel's operators possess greater noise immunity. The 
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preceding operators are called the first difference oper- 
ator. Laplacian, on the other hand, is a second difference 
operator. The Laplacian operator is given by 

V 2 d 2 f  d 2 f  (3) 
= t3x ~ + t3y-~. 

The digital Laplacian being a second difference oper- 
ator, has a zero response to linear ramps. It responds 
strongly to corners, lines, and isolated points. Thus for 
a noisy picture, unless it has a low contrast, the noise 
will produce higher Laplacian values than the edges. 
Moreover, the digital Laplacian is not orientation 
invariant. A good edge detector, should be a filter with 
the following two features. First, it should be a differ- 
ential operator, taking either a first or second spatial 
derivative of the image. Second, it should be capable 
of being tuned to act at any desired scale, so that large 
filters can be used to detect blurry shadow edges, and 
small ones to detect sharply focused fine details. The 
second requirement is very useful as intensity changes 
occur at different scales in an image. According to 
Marr and Hildreth (~°) the most satisfactory operator 
fulfilling these conditions is the Laplacian of Gaussian 
(LG) operator. It is normally denoted by VEG; where 
the Laplacian is as given by equation (3) and 

G = e (x2 +Y2)/(2ntr2) (4) 

is a two-dimensional Gaussian distribution, with stan- 
dard deviation a. The Gaussian part of the LG operator 
blurs the image, wiping out all structures at scales 
much smaller than the a of the Gaussian. (1°1 The 
Gaussian blurring function is preferred over others 
because it has the desirable property of being smooth 
and localized in both spatial and frequency domains. 
In order to find the intensity change at a given scale, 
Marr and Hildreth, first filtered the image with the 
VZG filter and then found the zero-crossings in the 
filtered image. The space described by the scale par- 
ameter a and the zero-crossing curves is called the 
scale space. The behavior of edges in the scale space 
produced by the LG operator has been studied by Lu 
and Jain. ~1°6) In order to formulate rules for reasoning 
in the scale space they studied dislocation of edges, 
false edges, and merging of edges with nice mathemati- 
cal frames. 

According to Canny 1~°5) a good edge detector should 
have the following three properties: (1) low probability 
of wrongly marking non-edge points and low prob- 
ability of'failing to mark real edge points (i.e. good 
detection); (2) points marked as edges should be as 
close as possible to the center of true edges (i.e. good 
localization); and (3) one and only one response to a 
single edge point (single response). Good detection can 
be achieved by maximizing signal to noise ratio (SNR), 
while for good localization Canny used the reciprocal 
of an estimate of the r.m.s, distance of the marked edge 
from the center of the true edge. To maximize simul- 
taneously both good detection and localization criteria 
Canny (~°5) maximized the product of SNR and the 
reciprocal of standard deviation (approximate) of the 

displacement of edge points. The maximization of the 
product is done subject to a constraint which eliminates 
multiple responses to single edge points. 

In the case of a noise free image, the edge angle can 
be measured accurately, but in real life images, noise 
cannot be avoided and it makes it difficult to estimate 
the true edge angles. Kittler et al. (98) suggested three 
methods to improve the edge angle estimate obtained 
from Sobel's operator. All the three methods involve 
averaging of the outputs of the Sobel operator over 
a 3 x 3 window. One of the methods, which ignores 
the effect of the central pixel, at which the angle es- 
timate is wished, is found to produce the best result. 
They have justified this counterintuitive view also. 
Haralick (1°2) attacked the problem of edge and region 
detection from a new angle. He assumed that the 
observed image is an ideal image with noise added. 
Each region in the image is a sloped plane. In order to 
determine the edge between two pixels, best fitted 
sloped planes over a neighborhood of each pixel are 
found. Edges are declared at locations having signifi- 
cantly different planes on either side of them. The least 
square error procedure has been used to estimate the 
parameters of a sloped surface for a given neighborhood. 
An appropriate F statistic has been used to test the 
significance of the difference of the estimated slope 
from a zero slope or the significance of the difference 
of estimated slopes of adjacent neighbors. 

An iterative algorithm has been developed by 
Gokmen and Li" 12) using the regularization theory. 
The energy functional in the standard segmentation 
has been modified to spatially control the smoothness 
over the image in order to obtain the accurate location 
of edges. An algorithm for defining a small, optimal 
kernel conditioned on some important aspects of the 
imaging process has been suggested by Reichenbach 
et al ."  ~31 for edge detection. This algorithm takes into 
account the nature of the scene, the point spread func- 
tion of the image gathering device, the effect of noise, 
etc.; and generates the kernel values which minimize 
the expected mean square error of the estimate of the 
scene characteristics. We have discussed various oper- 
ators to get edge values. All the edges produced by 
these operators are, normally, not significant (relevant) 
edges when viewed by human beings. Therefore, one 
needs to find out prominent (valid) edges from the out- 
put of the edge operators. Kundu and Pal" 7) have sug- 
gested a method of thresholding to extract the promi- 
nent edges based psycho-visual phenomena. Had- 
don (~°s) developed a technique to derive a threshold 
for any edge operator, based on the noise statistics of 
the image. 

7. METHODS BASED ON FUZZY SET THEORY 

Zadeh introduced the concept of fuzzy sets in which 
imprecise knowledge can be used to define an event. A 
fuzzy set A is represented as 

A = {I~A(Xi)/X i, i = 1,2 . . . . .  n} (5) 
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where p~(x~) gives the degree of belonging of the ele- 
ment xi to the set A. 

The relevance of fuzzy sets theory in pattern recog- 
nition problems has adequately been addressed in the 
literature.1122 125~ It is seen that the concept of fuzzy 
sets can be used at the feature level in representing an 
input pattern as an array of membership values denot- 
ing the degree of possession of certain properties and 
in representing linguistically phrased input features; 
at the classification level in representing multi-class 
membership of an ambiguous pattern, and in providing 
an estimate (or a representation) of missing infor- 
mation in terms of membership values. "251 In other 
words, fuzzy set theory may be incorporated in handling 
uncertainties (arising from deficiencies of information: 
the deficiencies may result from incomplete, imprecise, 
ill-defined, not fully reliable, vague, contradictory infor- 
mation) in various stages of a pattern recognition 
system. While the application of fuzzy sets in cluster 
analysis and classifier design was in the process of 
development, an important and related effort in fuzzy 
image processing and recognition t 126,133,137,14.1,177) 
was evolving more or less in parallel with the aforesaid 
general developments. This evolution was based on the 
realization that many of the basic concepts in image 
analysis, e.g. the concept of an edge or a corner or a 

boundary or a relation between regions, do not lend 
themselves well to precise definition. A gray tone image 
possesses ambiguity within pixels due to the possible 
multi-valued levels of brightness in the image. This 
indeterminacy is due to inherent vagueness rather than 
randomness. Incertitude in an image pattern may be 
explained in terms of grayness ambiguity or spatial 
(geometrical) ambiguity or both. Grayness ambiguity 
means "indefiniteness" in deciding whether a pixel is 
white or black. Spatial ambiguity refers to "indefinite- 
ness" in the shape and geometry of a region within the 
image. 

Conventional approaches to image analysis and rec- 
ognition 12-5~ consist of segmenting the image into 
meaningful regions, extracting their edges and skeletons, 
computing various features/properties (e.g. area, per- 
imeter, centroid, etc.) and primitives (e.g. line, cor- 
ner, curve, etc.) of and relationships among the regions, 
and finally, developing decision rules/grammars for 
describing, interpreting and/or classifying the image 
and its subregions. In a conventional system each of 
these operations involves crisp decisions (i.e. yes or no, 
black or white, 0 or 1) about regions, features, primitives, 
properties, relations and interpretations. 

Since the regions in an image are not always crisply 
defined, uncertainty can arise within every phase of the 
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function. 
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aforesaid tasks. Any decision made at a particular level 
will have an impact on all higher level activities. A 
recognition (or vision) system should have sufficient 
provision for representing and manipulating the un- 
certainties involved at every processing stage; i.e. in 
defining image regions, features, matching, and rela- 
tions among them, so that the system retains as much 
of the "information content" of the data as possible. If 
this is done, the ultimate output (result) of the system 
will possess minimal uncertainty (and unlike conven- 
tional systems, it may not be biased or affected as much 
by lower level decision components). 

For example, consider the problem of object extrac- 
tion from a scene. Now, the question is "How can one 
define exactly the target or object region in a scene 
when its boundary is ill-defined?" Any hard thresholding 
made for the extraction of the object will propagate 
the associated uncertainty to subsequent stages (e.g. 
thinning, skeleton extraction, primitive selection) and 
this might, in turn, affect feature analysis and recog- 
nition. Consider, for example, the case of skeleton ex- 
traction of a region through medial axis transformation 
(MAT). The MAT of a region in a binary picture is 
determined with respect to its boundary. In a gray tone 
image, the boundaries are not well defined. Therefore, 
errors are more likely, if we compute the MAT from 
the hard-segmented version of the image. 

Thus, it is convenient, natural and appropriate to 
avoid committing ourselves to a specific (hard) decision 
(e.g. segmentation/thresholding, edge detection and 
skeletonization), by allowing the segments or skeletons 
or contours to be fuzzy subsets of the image, the 
subsets being characterized by the possibility (degree) 
to which each pixel belongs to them. Similarly, for 
describing and interpreting ill-defined structural infor- 
mation in a pattern, it is natural to define primitives 
(line, corner, curve, etc.) and relations among them 
using labels of fuzzy sets. For example, primitives 
which do not lend themselves to precise definition may 
be defined in terms of arcs with varying grades of 
membership from 0 to I representing their degree of 
belonging to more than one class. The production 
rules of a grammar may similarly be fuzzified to account 
for the fuzziness (impreciseness) in physical relation 
among the primitives; thereby increasing the generative 
power of a grammar for syntactic recognition of a 
pattern. 

We shall describe here a few methods of fuzzy seg- 
mentation (based on both gray level thresholding and 
pixel classification) and edge detection using global 
and/or local information of an image space. We mention 
here that the result of segmentation should be fuzzy 
subsets rather than ordinary subsets was first suggested 
by Prewitt." 5o~ 

7.1. Fuzzy thresholdin9 

Different histogram thresholding techniques in pro- 
viding both fuzzy and non-fuzzy segmented versions 
by minimizing the grayness ambiguity (global entropy, 

index of fuzziness, index of crispness) and geometrical 
ambiguity (fuzzy compactness) of an image have been 
described in references (126, 131). These algorithms use 
different S-type membership functions (Fig. l(a)) to 
define fuzzy "object regions" and then select the one 
which is associated with the minimum (optimum) 
value of the aforesaid ambiguity measures. The optimum 
membership function thus obtained enhances the 
object from background and denotes the membership 
values of the pixels for the fuzzy object region. Note 
that the cross-over point (the point with membership 
value of 0.5; in Fig. l(a) b is the cross-over point) of 
the optimum membership function may be considered 
a threshold for crisp segmentation. Its extension to 
multithresholding has also been made. An S-type 
membership function can be asymmetric also. The 
mathematical framework of the algorithm including 
the selection of S functions, its bandwidth and bounds 
has been established by Murthy and Pal. t132) Many 
other measures of image ambiguity, e.g. fuzzy correl- 
ation,I 1,,6) index of area coverage, t 144) adjacencyt t 44. ~ 47) 
may similarly be used. Pal and Pal t133'134'151) intro- 
duced a measure called higher order entropy of a fuzzy 
set and applied it in a similar way to the object extrac- 
tion problem using an adaptive membership function. 

The problem of determining the appropriate mem- 
bership function in image processing drew the attention 
of many researchers. Reconsider the problem of gray 
level thresholding using S functions. If there is a differ- 
ence in opinion in defining an S function (i.e. instead 
of a single membership function, we have a set of 
monotonically non-decreasing functions), the concept 
of spectral fuzzy sets t~4s) can be used to provide soft 
decisions (a set of thresholds along with their certainty 
values) by giving due respect to all opinions. In making 
such a decision, the algorithm minimizes differences in 
opinions in addition to the ambiguity measures men- 
tioned earlier; thereby managing the uncertainty. The 
bounds for S-type functions have been defined based 
on the properties of fuzzy correlation ~32) so that any 
function lying in the bounds would give satisfactory 
segmentation results. It, therefore, demonstrates the 
flexibility of fuzzy algorithms. Xie and Bedrosian ta45) 
have also made attempts in determining membership 
functions for gray level images. 

7.2. Fuzzy clusterin9 

The fuzzy c-means (FCM) clustering algorithm "2 2~ has 
has also been used in image segmentation.I 137.138.177) 
The fuzzy c-means algorithm uses an iterative optim- 
ization of an objective function based on a weighted 
similarity measure between the pixels in the image and 
each of the c-cluster centers. A local extremum of this 
objective function indicates an optimal clustering of 
the input data. The objective function that is minimized 
is given by 

Wrn(U , V)= ~ ~ (llik)m(dik) 2 (6) 
k = l  i - - I  
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where ]-/ik is the fuzzy membership value of the kth pixel 
in the ith cluster, dlk is any inner product induced norm 
metric, m controls the nature of clustering with hard 
clustering at m = 1 and increasingly fuzzier clustering 
at higher values of m, V is the set of c-cluster centers 
and U is the fuzzy c-partition of the image. Trivedi and 
Bezdek 1137~ proposed a fuzzy set theoretic image seg- 
mentation algorithm for aerial images. The method is 
based upon region growing principles using a pyramid 
data structure. The algorithm is hierarchical in nature. 
Segmentation of the image at a particular processing 
level is done by the FCM algorithm. In a multilevel 
segmentation experiment, level i regions are considered 
homogeneous when image elements have largest cluster 
membership values of greater than a prescribed thres- 
hold. If the homogeneity test fails, regions are split to 
form the next level regions which are again subjected 
to the FCM algorithm. This algorithm is a region 
splitting algorithm, where the acceptance of a region 
is determined by fuzzy membership values to different 
regions. Hall et al. (~ 38) segmented magnetic resonance 
brain images using the unsupervised fuzzy c-means 
and also by a supervised computational network a 
dynamic multilayered perceptron trained with the 
cascade correlation learning algorithm. The different 
aspects of both approaches and their utility for the 
diagnostic process have been discussed. However, 
computational complexity of fuzzy c-mean is too high 
to apply it for real time application of MRI segmen- 
tation. Cannon et al. (139) suggested an approximate 
version of the algorithm that reduces the compu- 
tational overhead. One of the advantages in using 
fuzzy clustering algorithms is that one can dynamically 
select the appropriate number of clusters depending on 
the strength of memberships across clusters, t139) Keller 
and Carpenter "4°) used a modified version of FCM 
for image segmentation. The cluster centers are up- 
dated using the FCM formula but new membership 
values for each point are calculated using an S-type 
function based on the feature value of each point and 
the fuzzy means. They (14°) also proposed region grow- 
ing and relaxation algorithms based on membership 
values. 

Backer~l 35) developed a very general clustering strat- 
egy which has been applied to different types of data 
including images. The set of samples d is first parti- 
tioned into c (number of classes) disjoint sets as an in- 
itial guess of the desired partition. Then a membership 
function is assigned to those initialized clusters accord- 
ing to some "point to point subset affinity" mechanism 
for all points in .q/. In fact, he suggested a number of 
affinity mechanisms based on the distance concept, the 
neighborhood concept, and the probabilistic concept. 
Updating of the partitions (repartition, reclassification) 
is then done under the guidance of some criterion 
function which characterizes the partition. Three dif- 
ferent types of criterion functions, based on measures 
of fuzziness, inter fuzzy set distance, and measure of 
fuzzy similarity have been considered there. If changes 
occur in the earlier step, the process of assigning mere- 

bership function and updating is repeated; otherwise, 
the algorithm terminates. Fuzzy measures and fuzzy 
integral have also been used for image segmentation 
including multispectral images. (141-143) 

We emphasize here that these developments are 
mainly based on the applications of fuzzy operators, 
properties and mathematics. Segmentation based on 
the theory of approximate reasoning (i.e. based on 
"if-then" rules) should constitute a field of research in 
the near future. 

7.3. Fuzzy edge detection 

Pal and King "26~ used a non-symmetrical member- 
ship function G to get the fuzzy property plane from 
the intensity plane. The G is defined as 

G(f(x,y))  = (1 + If* - f (x ,y) l /Fa)  ro (7) 

where f* is a reference level, F e and F d are the expo- 
nential and denominational fuzzifiers, respectively. If 
f* = fma~, the maximum gray level, then G approximates 
the standard S function t13°) of Zadeh and when f* is 
equal to some other level, 0 < f* < fmax, it approximates 
the standard rr function t~ 30) of Zadeh shown in Fig. l(b). 
The G functions under the above cases are denoted by 
Gs and G,, respectively. They used these Gs and G~ 
functions in conjunction with an intensification oper- 
ator INT to intensify the contrast in the image. (Note 
that the non-fuzzy thresholds obtained automatically 
from fuzzy segmentation techniques can be used in 
defining Gs and G,.) Finally, an inverse transformation 
is applied to get the enhanced spatial domain image. 
Edges of this enhanced image can then be easily found 
with any spatial domain technique. Edge detection 
operators based on max and min operations are avail- 
able in references (152-154). In references (133, 151) 
the entropy of a fuzzy set defined by an adaptive 
membership function, over a neighborhood of a pixel 
(x, y) is used as a measure of edginess at (x, y). The use 
of an adaptive membership function makes the detec- 
tion algorithm robust. The framework of the algorithm 
is quite general and works with any measure of am- 
biguity (fuzziness). In the next section we compare a 
few of the segmentation techniques. 

8. COMPARISON OF SOME METHODS 

We have discussed several methods of segmentation 
but so far not shown any results. In this section, for 
the sake of completeness and illustration, we consider 
segmentation results produced by a few techniques. 
We implemented six histogram based methods (meth- 
ods of OIsu, {52} Pun, 165) Kapur et  al., 149~ Kittler and 
Illingworth, ~62) Pal and Bhandari, tT~) and Pal and 
PaltS}), and two iterative pixel classification methods 
(relaxation t94} and MAP estimate of a scene using 
NN~I62)). Reference (8) has several algorithms, we have 
implemented only the maximum entropy algorithm 
(that uses Poisson distributions). Since the first six 
algorithms are not suitable for highly noisy images, 
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(a) (b) 

(c) (d) 

(e) (f) 

Fig. 2. Image of Abraham Lincoln: (a) input; (b) output by algorithm of Pal and Bhandari; 171~ (c) output by 
algorithm of Pun; (65J (d) output by algorithm of Kapur e t  al.; (49) (e) output by algorithm of Pal and Pal; (a) 

(f) output by algorithm of OtsuJ 52~ 

while the last two are, two input images have been 
used. Figure 2(a) is an image of Abraham Lincoln and 
Fig. 3(a) is a synthetic noisy image with geometric 
objects. Needless to say the first six algorithms fail for 

this image. We have applied the first six thresholding 
algorithms on Fig. 2(a) and the last two algorithms on 
Fig. 3(a). Figures 2(b)-(f) represent different segmented 
images produced by different thresholding methods 
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r 

k 

for the image of Lincoln. We tried different initial 
approximate thresholds for the method of Kittler and 
Illingworth, but it failed completely to produce any 
meaningful threshold. The algorithm either does not 
converge or converges towards the end of the gray 
scale. On the other hand, the algorithm in reference 
(71) which essentially uses the concept of Kittler and 
lllingworth but with Poisson distributions to model 
the histogram, produces a good thresholded image 
(Fig. 2(b)). The segmentation results produced by the 
methods of Pun ~65~ and Kapur eta/. t49) are displayed 
in Figs 2(c) and (d), respectively. Both of these methods 
are based on entropy maximization. The parametric 
method in reference (8) which uses the Poisson dis- 
tribution based model (derived considering the image 
formation process) produces Fig. 2(e). The result pro- 
duced by the method of Otsu (Fig. 2(f)) is better than 
Figs 2(c) and (d); but this result is also not as good 
as those produced by the Poisson distribution based 
methods. For  the noisy image (Fig. 3(a)) the probabil- 
istic relaxation method produces a reasonably good 
segmentation (Fig. 3(b)). The neural network based 
method t162~ which uses the GRF to model the noisy 
scene and then uses a network to obtain the MAP esti- 
mate of the scene (the segmented image) also produces 
a good segmentation (Fig. 3(c)) of Fig. 3(a). 

tb) 

(c) 

Fig. 3. Noisy image of geometric objects: (a) input; (b) output 
by the relaxation algorithm; t94~ (c) output by neural net 

method.i112) 

9. O B J E C T I V E  E V A L U A T I O N  O F  S E G M E N T A T I O N  

R E S U L T S  

We have already discussed several methods of image 
segmentation. It is known that no method is equally 
good for all images and all methods are not good for 
a particular type of images. Here an important problem 
remains to be discussed, how to make a quantitative 
evaluation of segmentation results. Such a quantitative 
measure would be quite useful for vision applications 
where automatic decisions are required. Also this will 
help to justify an algorithm. Unfortunately, a human 
being is the best judge to evaluate the output of any 
segmentation algorithm. However, some attempts have 
already been made for the quantitative evaluation. 
Levine and Nazif ~l~s~ used a two dimensional distance 
measure that quantifies the difference between two 
segmented images, one proposed by a human being the 
other by an algorithm. Later on they t95~ defined another 
set of performance parameters such as region uniform- 
ity, region contrast, line contrast, etc. These measures 
have also been used for quantitative evaluation of 
segmentation algorithms. Lim and Lee t172~ attempted 
to do this by computing the probability of error between 
the manually segmented image and the segmentation 
result. Pal and Bhandari ~68) used the higher order local 
entropy as an index to measure the quality of the output. 
They also suggested the use of symmetric divergence 
between two probability distributions, one for the out- 
put generated by an algorithm and the other for the 
manually segmented image. The correlation measure ~61) 
between the original image and the segmented one has 
also been used for the purpose of quantitative eval- 
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uation, t6s) We have already mentioned that a human 
being is the ultimate judge to make an evaluation of 
the result. However,  one can use a vector of such 
measures for objective evaluation. For  example, if for 
some segmented image, the correlation, uniformity, 
and entropy are all high and divergence is low then 
one can consider the output  to be good. 

10. CONCLUSION 

This paper reviews and summarizes some existing 
methods of segmentation. The literature is not so much 
rich on color image segmentation. Enough scope also 
exists for the fuzzy set theoretic approaches to segmen- 
tation. Neural  network model  based algorithms seem 
to be very promising as they can generate output  in 
real time. Moreover,  these algorithms are robust also. 
Selection of an appropriate segmentation technique 
largely depends on the type of images and application 
areas. An interesting area of investigation is to find 
methods of objective evaluation of segmentation results. 
It is very difficult to find a single quantitative index for 
this purpose because such an index should take into 
account many factors like homogeneity, contrast, com- 
pactness, continuity, psycho-visual perception, etc. 
Possibly the human being is the best judge for this. 
However,  it may be possible to have a small vector of 
attributes which can be used for objective evaluation 
of results. 
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