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In general, the problem of determining the amplitude and frequency modulations~AM and FM! of
a signal is ill posed because there is an unlimited number of combinations of AM and FM that will
generate a given signal. Although Gabor proposed a method for uniquely defining the AM and FM
of a signal, namely via the analytic signal, the results obtained are sometimes physically
paradoxical. In this paper, four reasonable physical conditions that the calculated AM and FM of a
signal should satisfy are proposed. The analytic signal method generally fails to satisfy two of the
four conditions. A method utilizing the positive~Cohen–Posch! time-frequency distribution and
time-varying coherent demodulation of the signal is given for obtaining an AM and FM that satisfy
the four proposed conditions. Contrary to the accepted definition, the instantaneous frequency~i.e.,
the FM! that satisfies these conditions is generally not the derivative of the phase of the signal.
Rather, the phase is separated into two parts, one which gives the instantaneous frequency via
differentiation, and the other which can be interpreted either as phase modulation or quadrature
amplitude modulation of the signal. Examples are given for synthetic signals and speech, with
comparisons to the analytic signal method. ©1996 Acoustical Society of America.

PACS numbers: 43.60.Qv, 43.60.Gk, 43.72.Ar, 43.58.Ta@JLK#

INTRODUCTION

The transmission of information in many natural and
man-made systems is accomplished by varying, or modulat-
ing, the amplitude and/or frequency of a signal. Determining
the inherent amplitude and frequency modulations~AM and
FM! of a signal, however, is a challenging problem with a
long history.1–10 Typically, the signal is modeled as the real
part of a complex signal with amplitudeA(t) and phasew(t),

x~ t !5R@A~ t !ejw~ t !#. ~1!

Accordingly, the AM is taken to beA(t) ~or its magnitude,
uA(t)u, which is also called the signal envelope!, and the FM
is taken asdw(t)/dt5ẇ(t), which is the ‘‘instantaneous fre-
quency’’ of the signal.

Note, however, that there is an unlimited number of
combinations of AM and FM—i.e.,A(t) and w(t)—that
could generate a given signal, and therefore Eq.~1! is not a
unique representation. To illustrate, Fig. 1 shows a simple
two-tone signal and two possible AM–FM pairs, both of
which yield the signal via the equation above.

Because Eq.~1! is not a unique representation, we must
rely upon physical~and possibly other! considerations to
guide us in making a reasonable choice forA(t) andw(t).
For example, in the two-tone case, the signal is bounded, and
its spectrum is bandlimited. Hence, it is physically reason-
able to require that the AM be bounded, and the FM be
limited to the same spectral band as the signal. AM–FM
pairs that do not satisfy these physical conditions~such as

those in Fig. 1!, while mathematically correct per Eq.~1!, are
physically paradoxical.

In this paper, we consider the determination of the AM
and FM of a signal. Building on the approach of Vakman,8

we propose physical conditions that the calculated AM and
FM should satisfy. We show that, in general, taking the FM,
or instantaneous frequency, as the derivative of the phase
violates two of the conditions. We then present a method,
utilizing positive time-frequency distributions~TFDs!11,12

and time-varying coherent demodulation, for determining an
FM and an AM that satisfy the proposed conditions.

I. PHYSICAL CONDITIONS FOR THE AM AND FM OF
A SIGNAL

Letting A(t) denote the calculated AM andv(t) denote
the calculated FM of a signal, we propose the following four
physical conditions that these quantities should satisfy:

1. If the signal is bounded in magnitude, then the mag-
nitude of the AM should be bounded:

ux~ t !u,` ⇒ uA~ t !u,`. ~2!

2. If the signal is limited in frequency range (i.e., its
spectrum is zero outside some range of frequencies
v l,v,vu), then the FM should likewise be limited to the
same range:

uX~v!u250, v¹~v l,v,vu! ⇒ v l,v~ t !,vu .
~3!

3. If the signal is of constant amplitude and constant
frequency, i.e., if x(t)5A0 cos~v0t1f0! wheref0 is an ar-
bitrary phase constant, then the magnitude of the AM should
equal the magnitude of A0 and the FM should equalv0:

A0 cos~v0t1f0! ⇒ uA~ t !u5uA0u, v~ t !5v0 . ~4!

a!This research was presented in part at the IEEE 1995 International Con-
ference on Acoustics, Speech and Signal Processing, Detroit, MI, 9–12
May 1995.
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4. If the signal is scaled in amplitude by a constant c,
then the AM should be scaled by the same constant, and the
FM should be unaffected:

if x~ t ! ⇒ A~ t !,v~ t !,

then cx~ t ! ⇒ cA~ t !,v~ t !. ~5!

The first condition above is more restrictive than Vak-
man’s ‘‘amplitude continuity’’ constraint, and the second
condition is not considered by Vakman.8 The last two con-
ditions are essentially equivalent to Vakman’s ‘‘harmonic
correspondence’’ and ‘‘phase independence of scaling’’ con-
ditions, respectively. Any method that fails to satisfy any one
of Vakman’s conditions necessarily fails to satisfy at least
one of ours. These methods include, among others, the
Teager–Kaiser method, Mandelstam’s method and Shekel’s
method.18

II. THE ANALYTIC SIGNAL AND TIME-FREQUENCY
DISTRIBUTIONS

Gabor proposed a method for unambiguously defining
the amplitude and phase by generating a specific complex
signal~the analytic signal! from the given real signal, via the
Hilbert transform.2 Letting x(t) and y(t) denote, respec-
tively, the real and imaginary parts of the analytic signal, the
phase and amplitude are calculated in the usual way

w~ t !5atan„y~ t !/x~ t !… ~6!

A~ t !5„x~ t !1 jy~ t !…e2 jw~ t !. ~7!

The instantaneous frequency and signal envelope are given
by ẇ(t) anduA(t)u 5 Ax2(t)1y2(t), respectively.

In the time-frequency literature, instantaneous frequency
is interpreted as the average frequency at each time because,
for an unlimited number of time-frequency distributions

FIG. 1. Two possible AM-FM candidates@~a! and~b!# for a two-tone signal~top!. The dashed lines in the FM plots indicate the individual frequencies of the
two-tone signal. Given that the signal was bounded in amplitude and frequency range, neither AM-FM pair is physically reasonable, although both satisfy Eq.
~1!.
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~TFDs! P(t,v) of the signalA(t)ejw(t), the first conditional
moment in frequency@integrals span~2`,`! unless noted
otherwise#

^v& t5E vP~vut !dv

5E vP~ t,v!dvY E P~ t,v!dv, ~8!

which gives the average frequency at each time, equals the
derivative of the phase:10,13,14

^v& t5ẇ~ t !. ~9!

This equality, however, holds forany complex signal, not
just the analytic signal.13 @TFDs that satisfy Eq.~9! for any
complex signalA(t)ejw(t) are not positive~i.e., they contain
negative values!,13 a result that is difficult to reconcile with
the desired interpretation of such TFDs as joint energy den-
sity functions.# Thus Eq.~9! offers no more guidance in the

selection of a particular phase and amplitude than does Eq.
~1!; therefore, the analytic signal is frequently used in com-
puting the TFD for agreement with Gabor’s definition of
instantaneous frequency.

In light of the proposed conditions, however, there is a
problem: it is well known that the derivative of the phase of
a complex signal~analytic or otherwise! can extend beyond
the frequency range of the signal3,15 thereby violating the
second condition. Indeed, for the analytic signal, the first and
second conditions are violated.@The first condition can be
violated by the analytic signal because the Hilbert transform
is not bounded-input/bounded-output stable. The analytic
signal will be unbounded in magnitude wherever there is a
finite discontinuity in the real, bounded signal. A sufficient
condition for a bounded real signalx(t) with Fourier trans-
form X~v! to have a bounded analytic signal is thatuX~v!u be
integrable, which follows from * uX(v)udv
>2u*0

`X(v)ejvtdvu.#

FIG. 2. Time waveforms~left! and time-conditional positive~Cohen–Posch! distributionsP(vut) ~right! of ~a! two tones of equal strength;~b! two tones of
unequal strength; and~c! voiced speech. The conditional mean frequency@Eq. ~10!# gives the average frequency at each time, which is the interpretation of
‘‘instantaneous frequency’’ in the time-frequency literature. The distributions were computed per Ref. 12.
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III. A METHOD FOR FINDING AN AM-FM PAIR
SATISFYING THE PHYSICAL CONDITIONS

To find an AM-FM pair that satisfies the desired physi-
cal conditions, we turn to the theory of positive~Cohen–
Posch! TFDs,11,12 which satisfy Eq.~9! for some complex
signals, but not all.16 Accordingly, the positive TFDs elimi-
nate many possibilities for the AM and FM and can therefore
potentially guide us in the selection of a pair consistent with
the conditions.

We propose that the FM,v(t), of a real signal be cal-
culated from a positive TFD of the signal as

v~ t !5^v& t52E
0

`

vP~vut !dv, ~10!

where a one-sided integral is taken to obtain a result different
from zero for real signals.@If the given signal happens to be
complex, one can substitutev(t)5^v& t5*vP(vut)dv for
~10!.# It is shown in the Appendix that this approach yields
an FM that satisfies the proposed conditions.

The AM can be obtained, given the FM, via time-
varying coherent demodulation. First, calculate a phase as

FIG. 3. AM and FM via the analytic signal method for the three signals in Fig. 2.~a! Two tones of equal strength;~b! two tones of unequal strength;~c! voiced
speech. Dashed lines in the FM plots in~a! and ~b! delineate the frequencies of the two tones. The analytic signal approach generally violates the second
condition ~FM limited to the same frequency range as the signal!, and it can violate the bounded AM condition~although that condition is met for these
signals!. Note that the FM, or instantaneous frequency taken as the derivative of the phase, equals the mean of the two frequencies in~a!, consistent with the
interpretation of instantaneous frequency as ‘‘the average frequency at each time.’’ However, that is not the case in~b! or ~c!. The only case for which the
derivative of the phase of the two-tone signal does not extend beyond the tones atv0 andv1 is when the tones are of equal strength,16 as in ~a!. In ~c!, the
FM exceeds the bandwidth of the signal, and indicates extremely rapid frequency changes that are physically impossible in voiced speech, given the inertia
of the system~e.g., mass of the tongue!.
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wF~ t !5E
2`

t

v~t!dt. ~11!

Coherent demodulation is achieved by multiplying the real
signal by the cosine and sine of the phasewF(t), respec-
tively, followed by time-varying low-pass filtering to obtain
in-phaseAI(t) and quadratureAQ(t) components of the AM,
as follows:

AI~ t !5E x~t!cos~wF~t!!hlp~ t,t!dt, ~12!

AQ~ t !5E x~t!sin„wF~t!…hlp~ t,t!dt, ~13!

where hlp(t,t) is the time-varying impulse response of a
low-pass filter with varying cutoff frequencŷv&t and a pass-
band gain equal to two. This approach yields an AM

†AAI
2(t)1AQ

2 (t)‡ that satisfies the proposed conditions~see
the Appendix!.

IV. EXAMPLES

We illustrate the proposed method and conditions for a
two-tone signal and a speech signal. Comparison is made to
the AM and FM obtained via the analytic signal. Discrete
TFDs were computed via the method of Ref. 12, and the
conditional mean frequency was computed as in Ref. 16. The
time-varying filter used in the calculation of the AM per Eqs.
~12!, ~13! was implemented as in Ref. 17.

Figure 2 shows the time waveforms and time-
conditional positive distributionsP(vut) for the signals con-
sidered. Figure 3 shows the AM and FM obtained for each
signal via the analytic signal approach, and Fig. 4 shows the
AM and FM obtained via the proposed method. For the two-
tone signalA1e

jv1t 1 A2e
jv2t ~which is analytic ifv1,v2.0!

with uA1u5uA2u @~a! in Figs. 2–5#, the AM and FM obtained

FIG. 4. AM and FM via the proposed method for the three signals in Fig. 2.~a! Two tones of equal strength;~b! two tones of unequal strength;~c! voiced
speech. Dashed lines in the FM plots in~a! and~b! delineate the frequencies of the two tones. This approach satisfies the proposed conditions for the AM and
FM of a signal. Furthermore, the instantaneous frequency, or FM, calculated as the conditional mean frequency of a positive TFD, is always interpretable as
the average frequency at each time.
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is the same for both methods. ForuA1uÞuA2u @~b! in Figs.
2–5#, the AM (uA(t)u) is the same in both methods, but only
the FM of the proposed approach satisfies the conditions and
is consistent with the results for equal strength tones: it is a
weighted average of the two tones. The derivative of the
phase@FM in Fig. 3~b!#, on the other hand, is highly erratic
and extends beyond the frequency range of the signal; it
cannot be interpreted as ‘‘the average frequency at each
time.’’

The same is true for the derivative of the phase of the
voiced speech signal@FM in Fig. 3~c!#. Any physical inter-
pretation of this result, in terms of the mechanisms of speech
production, is difficult to make. On the other hand, the con-
ditional mean frequency of a positive TFD of the speech
signal @Fig. 4~c!# exhibits general agreement with the rising
formant observed in the TFD@Fig. 2~c!#, and is indeed the
average frequency at each time. Note the conditional mean
frequency shows modulations occurring regularly with the
pitch period, and within a single pitch period.

V. DISCUSSION

Coherent demodulation yields, in effect, a complex am-
plitudeAI(t) 1 jAQ(t) 5 A(t)ejwA(t). Accordingly, the total

signal phase isw(t)5wA(t)1wF(t), and per Eq.~1! we have

x~ t !5R@A~ t !ej ~wA~ t !1wF~ t !!#

5AI~ t !cos„wF~ t !…2AQ~ t !sin„wF~ t !… ~14a!

5A~ t !cosS E
2`

t

v~t!dt1wA~ t ! D . ~14b!

The derivative ofwF(t) @i.e., v(t)# is the FM, while the
phasewA(t) can be interpreted in two different ways: per Eq.
~14a!, wA(t) induces quadrature amplitude modulation,
where AI(t)5A(t)cos„wA(t)… and AQ(t)5A(t)sin„wA(t)….
Alternately, wA(t) constitutes phase modulation~PM! per
Eq. ~14b!.

To satisfy the bounded AM condition, the signal phase
must be split into two parts. In other words, the phasewF(t)
obtained from the positive TFD cannot be taken as the total
phasew(t) of the signal. To see this, consider the case where
we takewF(t) to be the total signal phase; solving Eq.~1! for

FIG. 5. Comparison of the signal magnitude~dashed! and the AM obtained via time-varying coherent demodulation~solid! for the three signals in Fig. 2:~a!
two tones of equal strength,~b! two tones of unequal strength, and~c! speech. In all cases, the AM is a good match to the ‘‘envelope’’ of the signal.
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the amplitude yieldsA(t)5x(t)/coswF(t), which is gener-
ally unbounded @e.g., AM in Fig. 1~a!#. Taking
w(t)5wA(t)1wF(t), on the other hand, yields an AM and
FM that satisfy the proposed conditions.

VI. CONCLUSION

Determining the AM and FM of a signal is an ill-posed
problem, in that there is an infinite number of amplitudes
A(t) and phasesw(t) that will yield the given signal, per Eq.
~1!. While all of these pairs are mathematically legitimate,
not all are physically sensible, in that they violate reasonable
physical conditions.

We proposed four conditions that the calculated AM and
FM of a signal should satisfy. We showed that the commonly
accepted method for defining the AM and FM of a signal,
namely as the amplitude and the derivative of the phase of
the complex signalA(t)ejw(t), generally violates some of the
physical conditions. A method for calculating an AM and
FM that satisfy the proposed conditions was presented. Ex-
amples were provided to illustrate the conditions and
method, with comparisons to the analytic signal approach.

In general, for the conditions to be met, the phase must
be separated into an FM partwF(t) and an AM partwA(t)
~or equivalently, a PM part—see Sec. V!. Positive TFDs al-
low one to determinewF(t) via ~11!. Time-varying coherent
demodulation can be used to determine the remaining phase
wA(t) @and the amplitudeA(t)#, via Eqs.~12! and ~13!.

ACKNOWLEDGMENT

The authors thank Professor Amro El-Jaroudi for helpful
discussions and comments, particularly regarding the phase
modulation interpretation ofwA(t).

APPENDIX A: SATISFACTION OF CONDITIONS

1. Bounded AM

Time-varying coherent demodulation yields a bounded
AM given a bounded signal provided that the filter is
bounded-input/bounded-output stable, i.e.,*uhlp(t,t)udt,`.
The sufficiency of this stability requirement follows from
Eqs. ~12! and ~13! by usingAAI

21AQ
2 < AAI

2 1 AAQ
2 and

u* f (t)dtu<* u f (t)udt. This requirement is not a limitation,
and is readily met in practice.

2. Bandlimited FM

If the spectral densityuX~v!u2 is zero outside the band of
frequenciesv l,v,vu , then so is the time-conditional posi-
tive TFD P(vut).11 Furthermore, becauseP(vut) is non-
negative, it follows that the conditional mean frequency^v&t
is limited to the same band,v l,^v& t,vu . Hence, condition
2 is satisfied. TFDs that are not positive generally fail this
condition as can TFDs that are non-negative but fail to be
zero outside the band of frequenciesv l,v,vu .

14,18

3. Constant AM and FM for pure tone

The maximum entropy positive TFD of a pure tone is
the distribution ux(t)u2uX(v)u2/E ~where E is the signal
energy!,12 which is also the correlationless distribution. The
conditional mean frequency is therefore equal to the mean
frequency here, i.e.,̂v&t5^v&5v0 ~see Appendix B!, and
hence the FM is constant and equal tov0 as required.

Time-varying coherent demodulation yields a constant
AM for this signal. First, note that because the corner fre-
quency of the filter is constant,^v&t5v0, the superposition
integrals of Eqs.~12! and~13! become convolution integrals
~i.e., the filter is linear time-invariant here!. Evaluating the
integrals for x(t)5A0 cos~v0t1f0! yields, after applying
trigonometric identities,

AI~ t !5
1

2
A0E „cos~2v0t1f0!1cos~f0!…hlp~ t2t!dt,

~A1!

AQ~ t !5
1

2
A0E „sin~2v0t1f0!2sin~f0!…hlp~ t2t!dt,

~A2!

@where without loss of generality we assumewF~2`!50 in
evaluating Eq.~11!#. The cosine and sine terms of frequency
2v0 are removed by the filter, while in the passband, the filter
has a gain of two, so we have

AI~ t !5A0 cos~f0!, ~A3!

AQ~ t !52A0 sin~f0!, ~A4!

from which it follows that the AMAAI
2(t)1AQ

2 (t) equals
uA0u, as desired.

4. Amplitude scaling affects only AM

If a signal is scaled in amplitude,x(t)→cx(t), its con-
ditional mean frequencŷv&t is unaffected because of the
normalization inherent in its calculation@see ~10!—since
P(vut)5P(t,v)/*P(t,v)dv, scale factors cancel#. Accord-
ingly, wF(t) and hlp(t,t) are also unaffected by amplitude
scaling. It follows by inspection of Eqs.~12! and ~13! that
only the AM is affected, and it scales appropriately.

APPENDIX B: CONDITIONAL MEAN FREQUENCY OF
A PURE TONE

For the real toneA0 cos~v0t1f0! with positive TFD
P(t,v)5ux(t)u2uX(v)u2/E, we have by Eq.~10!,

^v& t52E
0

`

vuX~v!u2dvY E
2`

`

uX~v!u2dv5^v&. ~B1!

Care must be exercised in the evaluation of~B1!, because the
signal is not finite energy. Accordingly, we will evaluate the
conditional mean frequency for a finite-duration tone, and
then take the limit as the duration goes to infinity. Consider,
therefore, the signal

x~ t !5e2t2/2s2A0 cos~v0t1f0! ~B2!

with Fourier transform
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X~v!5sA2pA0@e
jf0e2s2~v2v0!2/2

1e2 jf0e2s2~v1v0!2/2#/2. ~B3!

Evaluating~B1! yields

^v& t5F 1s e2s2v0
2
„11cos~2f0!…1E

2sv0

sv0
v0e

2x2 dxG Y
Ap@11cos~2f0!e

2s2v0
2
#. ~B4!

As s→`, (1/s)e2s2v0
2
→0, e2s2v0

2
→0, and

*
2sv0

sv0 e2x2 dx→Ap; therefore^v&t→v0, in agreement with

the convergence of the spectral peak of a finite duration tone
to v0 in the limit.19
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