Quantum mushrooms, scars, and the high-frequency limit of chaotic eigenfunctions

ICIAM07, July 18, 2007

Alex Barnett

Mathematics Department, Dartmouth College

Planar Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Helmholtz, Germain, 19thC) Eigenfunctions ϕ_j of Laplacian $\Delta := \partial_{x_1}^2 + \partial_{x_2}^2$ in bounded cavity $\Omega \subseteq \mathbb{R}^2$

$$-\Delta \phi_j = E_j \phi_j \qquad \phi_j \Big|_{\partial \Omega} = 0 \quad \text{Dirichlet BC} \qquad \int_{\Omega} \phi_i \phi_j d\mathbf{x}$$

 $=\delta_{ij}$

Planar Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Helmholtz, Germain, 19thC) Eigenfunctions ϕ_j of Laplacian $\Delta := \partial_{x_1}^2 + \partial_{x_2}^2$ in bounded cavity $\Omega \subset \mathbb{R}^2$

$$-\Delta \phi_j = E_j \phi_j$$
 $\phi_j |_{\partial \Omega} = 0$ Dirichlet BC

$$\int_{\Omega} \phi_i \phi_j d\mathbf{x} = \delta_{ij}$$

mode $j = 1 \cdots \infty$
discrete eigenvalues
 $E_1 < E_2 \le E_3 \le \cdots \infty$

wavenumber
$$k_j = E_j^{1/2}$$

wavelength
$$\lambda_j := \frac{2\pi}{k_j}$$

Planar Dirichlet eigenproblem

Normal modes of elastic membrane or 'drum' (Helmholtz, Germain, 19thC) Eigenfunctions ϕ_j of Laplacian $\Delta := \partial_{x_1}^2 + \partial_{x_2}^2$ in bounded cavity $\Omega \subset \mathbb{R}^2$

$$-\Delta \phi_j = E_j \phi_j$$
 $\phi_j |_{\partial \Omega} = 0$ Dirichlet BC

$$\int_{\Omega} \phi_i \phi_j d\mathbf{x} = \delta_{ij}$$

mode $j = 1 \cdots \infty$
discrete eigenvalues
 $E_1 < E_2 \le E_3 \le \cdots \infty$

wavenumber
$$k_j = E_j^{1/2}$$

wavelength
$$\lambda_j := \frac{2\pi}{k_j}$$

Time-harmonic solns of wave eqn (acoustics, optics, quantum, etc)
Asymptotics of φ_j as eigenvalue E_j → ∞? Depends on shape...

(Some favorite) eigenmode topics

- I. Background, chaotic billiards
- II. Quantum ergodicity: how uniform are eigenmodes?
- III. Scarring and the mushroom: how do periodic ray orbits affect mode statistics?

Some history of (related) eigenmodes

Ernst Chladni (1756–1827) sprinkles sand on metal plates 'Plays' them with violin bow: visualizes nodal lines ($\phi_j = 0$)

Some history of (related) eigenmodes

Ernst Chladni (1756–1827) sprinkles sand on metal plates 'Plays' them with violin bow: visualizes nodal lines ($\phi_j = 0$)

- popular lectures all over Europe
- Napoleon impressed: offers 1 kg gold to explain patterns
- Napoleon realised: irregularly shaped plate harder to understand (first funding for quantum chaos!)
- Sophie Germain got prize in 1816

Note: rigid plate \neq membrane (biharmonic Δ^2 rather than Laplacian Δ)

(Keller '60)

Recall in separable domains (ellipse, rect.): ϕ_j products of 1D modes

Recall in separable domains (ellipse, rect.): ϕ_j products of 1D modes EBK: semiclassical approx. for certain non-separable modes

$$\phi(\mathbf{x}) \approx \sum_{m=1}^{M} A_m(\mathbf{x}) e^{ikS_m(\mathbf{x})}$$

mode \approx sum of traveling waves, 'rays'

 S_m = phase function A_m = amplitude function

(Keller '60)

Recall in separable domains (ellipse, rect.): ϕ_j products of 1D modes EBK: semiclassical approx. for certain non-separable modes

$$\phi(\mathbf{x}) \approx \sum_{m=1}^{M} A_m(\mathbf{x}) e^{ikS_m(\mathbf{x})}$$

mode \approx sum of traveling waves, 'rays'

 S_m = phase function A_m = amplitude function VS

Insert into $-\Delta \phi = E \phi$ gives $|\nabla S_m| = 1$ phase grows along straight rays

For single-valued ϕ to exist and satisfy BCs: i) rays reflect off boundary, giving ray families which must close ii) quantization: round-trip phase = $2\pi n + \frac{\pi}{2}$ (# focal points) + π (# reflections)

(Keller '60)

Recall in separable domains (ellipse, rect.): ϕ_j products of 1D modes EBK: semiclassical approx. for certain non-separable modes

 $\phi(\mathbf{x}) \approx \sum_{m=1}^{M} A_m(\mathbf{x}) e^{ikS_m(\mathbf{x})}$

mode \approx sum of traveling waves, 'rays'

 S_m = phase function A_m = amplitude function ∇S

Insert into $-\Delta \phi = E \phi$ gives $|\nabla S_m| = 1$ phase grows along straight rays

For single-valued ϕ to exist and satisfy BCs: i) rays reflect off boundary, giving ray families which must close ii) quantization: round-trip phase = $2\pi n + \frac{\pi}{2}$ (# focal points) + π (# reflections)

But, do bouncing ray paths always form closed families...?

(Keller '60)

Bouncing rays: the game of billiards

full phase space $(x_1, x_2, \xi_1, \xi_2) =: (\mathbf{x}, \xi)$

free motion: Hamiltonian dynamical system energy $H(\mathbf{x},\xi) = |\xi|^2$ conserved

trajectory $\mathbf{x}(t)$ launched at $\mathbf{x}(0) = \mathbf{x}_0$

Bouncing rays: the game of billiards

full phase space $(x_1, x_2, \xi_1, \xi_2) =: (\mathbf{x}, \xi)$

free motion: Hamiltonian dynamical system energy $H(\mathbf{x}, \xi) = |\xi|^2$ conserved

trajectory $\mathbf{x}(t)$ launched at $\mathbf{x}(0) = \mathbf{x}_0$

TWO BROAD CLASSES OF MOTION

integrable:

d conserved quantities (d=2)

ergodic:

only H conserved: chaos!

Properties of chaotic rays

Defn. of ergodic: Given $A(\mathbf{x})$ test func, for a.e. trajectory \mathbf{x}_0 ,

time average = spatial average $\lim_{T \to \infty} \frac{1}{T} \int_0^T A(\mathbf{x}(t)) dt = \frac{1}{\operatorname{vol}(\Omega)} \int_{\Omega} A(\mathbf{x}) d\mathbf{x} =: \overline{A}$

Properties of chaotic rays

Defn. of ergodic: Given $A(\mathbf{x})$ test func, for a.e. trajectory \mathbf{x}_0 ,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T A(\mathbf{x}(t)) dt = \frac{1}{\operatorname{vol}(\Omega)} \int_\Omega A(\mathbf{x}) d\mathbf{x} =: \overline{A}$$

- 'hyperbolic': $|\mathbf{x}_1(t) \mathbf{x}_2(t)| \sim c e^{\Lambda t}$
- 'Anosov': uniformly hyperbolic (all peri

 $0 < \Lambda =$ Lyapunov exponent (all periodic orbits unstable, isolated)

e.g. Bunimovich stadium ergodic but not Anosov...

Properties of chaotic rays

Defn. of ergodic: Given $A(\mathbf{x})$ test func, for a.e. trajectory \mathbf{x}_0 ,

$$\lim_{T \to \infty} \frac{1}{T} \int_0^T A(\mathbf{x}(t)) dt = \frac{1}{\operatorname{vol}(\Omega)} \int_\Omega A(\mathbf{x}) d\mathbf{x} =: \overline{A}$$

- 'hyperbolic': $|\mathbf{x}_1(t) \mathbf{x}_2(t)| \sim c e^{\Lambda t}$
- 'Anosov': uniformly hyperbolic

 $0 < \Lambda =$ Lyapunov exponent (all periodic orbits unstable, isolated)

e.g. Bunimovich stadium ergodic but not Anosov...

'QUANTUM CHAOS': study of eigenmodes when Ω ergodic (Einstein 1917)

• Apps: quantum dots, nano-scale devices, molecular phys/chem Why chaos important? Generic shapes have some chaotic phase space

Modes ϕ_j irregular: **VIEW** $j \approx 3000$: 45 wavelengths across ... say more?

II. Quantum Ergodicity Theorem (QET)

study mode matrix elements $\langle \phi_j, A\phi_j \rangle := \int_{\Omega} A(\mathbf{x}) |\phi_j(\mathbf{x})|^2 d\mathbf{x}$

II. Quantum Ergodicity Theorem (QET)

study mode matrix elements $\langle \phi_j, A\phi_j \rangle := \int_{\Omega} A(\mathbf{x}) |\phi_j(\mathbf{x})|^2 d\mathbf{x}$

Thm: if Ω ergodic, a.e. matrix element tends to the mean:

 $\lim_{E_j \to \infty} \langle \phi_j, A \phi_j \rangle - \overline{A} = 0 \quad \forall j \text{ except subseq. of vanishing density}$ (Schnirelman '74, Colin de Verdière '85, Zelditch '87, Z-Zworski '96)

II. Quantum Ergodicity Theorem (QET) study mode matrix elements $\langle \phi_j, A \phi_j \rangle := \int_{\Omega} A(\mathbf{x}) |\phi_j(\mathbf{x})|^2 d\mathbf{x}$ Thm: if Ω ergodic, a.e. matrix element tends to the mean: $\lim_{E_j \to \infty} \langle \phi_j, A \phi_j \rangle - \overline{A} = 0 \qquad \forall j \text{ except subseq. of vanishing density}$ (Schnirelman '74, Colin de Verdière '85, Zelditch '87, Z-Zworski '96) • measure $|\phi_j|^2 dx \xrightarrow{\text{weakly in } L^1} dx/\text{vol}(\Omega)$ $j = 10^2 \qquad \qquad j = 10^3 \qquad \qquad j \approx 5 \times 10^4$ j = 10j = 1

II. Quantum Ergodicity Theorem (QET) study mode matrix elements $\langle \phi_j, A \phi_j \rangle := \int_{\Omega} A(\mathbf{x}) |\phi_j(\mathbf{x})|^2 d\mathbf{x}$ Thm: if Ω ergodic, a.e. matrix element tends to the mean: $\lim_{E_j \to \infty} \langle \phi_j, A \phi_j \rangle - \overline{A} = 0 \qquad \forall j \text{ except subseq. of vanishing density}$ (Schnirelman '74, Colin de Verdière '85, Zelditch '87, Z-Zworski '96) • measure $|\phi_j|^2 dx \xrightarrow{\text{weakly in } L^1} dx / \text{vol}(\Omega)$ j = 10 $j = 10^2$ $j = 10^3$ $j \approx 5 \times 10^4$ j = 1

Of practical importance: At what *rate* is limit reached? How fast does the density of excluded subsequence vanish?

Quantum Unique Ergodicity (QUE)

Conj. (Rudnick-Sarnak '94): There is no excluded subsequence in QET

Quantum Unique Ergodicity (QUE)

Conj. (Rudnick-Sarnak '94): There is no excluded subsequence in QET

• context: negatively curved manifolds (Anosov)

Recent analytic results:

- Proven to hold for *arithmetic* manifold $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ (Lindenstrauss '03) ... very special system, symmetries, all $\Lambda = 1$
- Proven *not* to hold for some quantum Arnold cat maps (Faure et al '03)

Quantum Unique Ergodicity (QUE)

Conj. (Rudnick-Sarnak '94): There is no excluded subsequence in QET

• context: negatively curved manifolds (Anosov)

Recent analytic results:

- Proven to hold for *arithmetic* manifold $SL_2(\mathbb{Z}) \setminus \mathbb{H}$ (Lindenstrauss '03) ... very special system, symmetries, all $\Lambda = 1$
- Proven *not* to hold for some quantum Arnold cat maps (Faure et al '03)

But there are no analytic results for planar cavities...

Numerical experiments

dispersing cavity, proven Anosov (Sinai '70) desymmetrized, generic Λ exponents

test function $A = \begin{cases} 1 & \text{in } \Omega_A, \\ 0 & \text{otherwise} \end{cases}$

(B, Comm. Pure Appl. Math. '06)

Numerical experiments

dispersing cavity, proven Anosov (Sinai '70) desymmetrized, generic Λ exponents

test function $A = \begin{cases} 1 & \text{in } \Omega_A, \\ 0 & \text{otherwise} \end{cases}$

(B, Comm. Pure Appl. Math. '06)

Large-scale study, 30,000 modes in range $j \sim 10^4$ to 10^6 , enabled by:

- 1. Efficient boundary-based numerics for ϕ_j ('scaling method')
- 2. Matrix elements $\int_{\Omega_A} \phi_j^2 d\mathbf{x}$ via boundary integrals on $\partial \Omega_A$
- 100 times higher in *j* than any previous studies (*e.g.* Bäcker '98)
 only a few CPU-days total

Typical high-frequency ergodic mode

225 wavelengths across system level number $j \approx 5 \times 10^4$ $E_j \approx 10^6$

Stringiness unexplained...

(compare: random sum of plane waves)

$$\operatorname{Re}\sum_{m}a_{m}e^{i\mathbf{k}_{m}\cdot\mathbf{x}}$$

all wavenumbers $|\mathbf{k}_m| = \sqrt{E} = \text{const.}$

similarly stringy...
interesting
to the eye only?

Raw matrix element data

To reach high E, only use modes in intervals $E_j \in [E, E + L(E)]$

• No outliers \Rightarrow strong evidence for QUE (exceptional density < 3×10^{-5})

At what rate condense to the mean? interval $I_E = [E, E + L(E)]$

choose width $\overline{L(E)} = O(\overline{E^{1/2}})$

eigenvalue count in interval $N(I_E) := \#\{j : E_j \in I_E\}$

quantum variance'
$$V_A(E) := \frac{1}{N(I_E)} \sum_{E_j \in I_E} \left| \langle \phi_j, A \phi_j \rangle - \overline{A} \right|^2$$

At what rate condense to the mean? interval $I_E = [E, E + L(E)]$ choose width $L(E) = O(E^{1/2})$ eigenvalue count in interval $N(I_E) := \#\{j : E_j \in I_E\}$ 'quantum variance' $V_A(E) := \frac{1}{N(I_E)} \sum_{E_i \in I_E} |\langle \phi_j, A\phi_j \rangle - \overline{A}|^2$

• Random-wave statistical model for ϕ_j gives: $V_A(E) \sim a_{RW} E^{-1/2}$

At what rate condense to the mean? interval $I_E = [E, E + L(E)]$ choose width $L(E) = O(E^{1/2})$ eigenvalue count in interval $N(I_E) := \#\{j : E_j \in I_E\}$ 'countum variance' $V_{-}(E) := \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} |\langle \phi_{-j} | \phi_{-j} \rangle = \frac{1}{2}$

quantum variance'
$$V_A(E) := \frac{1}{N(I_E)} \sum_{E_j \in I_E} \left| \langle \phi_j, A \phi_j \rangle - \overline{A} \right|^2$$

• Random-wave statistical model for ϕ_j gives: $V_A(E) \sim a_{RW} E^{-1/2}$

Conj. (Feingold-Peres '86):
$$V_A(E) \sim \frac{g\tilde{C}_A(0)}{\operatorname{vol}(\Omega)} E^{-1/2}$$

where g = 2 from statistical independence of nearby ϕ_j (heuristic) $\tilde{C}_A(\omega) := \text{FT}$ of autocorrelation $\frac{1}{\text{vol}(\Omega)} \int_{\Omega} A(\mathbf{x}_0) A(\mathbf{x}(\tau)) d\mathbf{x} - \overline{A}^2$

Results on quantum ergodicity rate

consistent with power law model $V_A(E) = aE^{-\gamma}$ fit $\gamma = 0.48 \pm 0.01$

very close to $\gamma = 1/2$

prefactor:

- RW model fails
- FP Conj. succeeds

• large numbers of modes \rightarrow unprecedented accuracy (< 1%)

- asymptotic regime seen for first time (but more data needed!)
- consistent with FP Conj., convergence very slow: 7% off at $j = 10^5$

III. Scars: shadows of periodic ray orbits

Some high-j modes $|\phi_j|^2$ localize on unstable periodic orbits (UPO) • discovered by *numerical* study of quarter-stadium modes (Heller '84)

• Note also exceptional 'bouncing ball' BB modes (since not Anosov)

• Apps of scars: dielectric micro-lasers (Tureci et al), tunnel diodes...

Statistics of modes \leftrightarrow *Greens function* \leftrightarrow *wave propagation*

Statistics of modes \leftrightarrow *Greens function* \leftrightarrow *wave propagation*

• In distributional sense in k (wavenumber), for $\mathbf{x} \in \Omega$,

$$\sum_{j=1}^{\infty} |\phi_j(\mathbf{x})|^2 \delta(k-k_j) = \frac{2k}{\pi} \lim_{\varepsilon \to 0} \operatorname{Im} G(\mathbf{x}, \mathbf{x}; k^2 + i\varepsilon)$$

'Local Density Of States'

Greens func for Helmholtz eqn in Ω

Statistics of modes \leftrightarrow *Greens function* \leftrightarrow *wave propagation*

• In distributional sense in k (wavenumber), for $\mathbf{x} \in \Omega$,

$$\sum_{j=1}^{\infty} |\phi_j(\mathbf{x})|^2 \delta(k-k_j) = \frac{2k}{\pi} \lim_{\varepsilon \to 0} \operatorname{Im} G(\mathbf{x}, \mathbf{x}; k^2 + i\varepsilon)$$

'Local Density Of States'

Greens func for Helmholtz eqn in Ω

• Then use semiclassical ray theory (heuristic):

$$G(\mathbf{x}, \mathbf{x}; k^2) \approx (\text{free space}) + \sum_{\substack{\text{returning}\\\text{orbits } \mathbf{x} \to \mathbf{x}}} (\text{geometric factor}) e^{ik(\text{orbit length})}$$

Statistics of modes \leftrightarrow *Greens function* \leftrightarrow *wave propagation*

• In distributional sense in k (wavenumber), for $\mathbf{x} \in \Omega$,

$$\sum_{j=1}^{\infty} |\phi_j(\mathbf{x})|^2 \delta(k-k_j) = \frac{2k}{\pi} \lim_{\varepsilon \to 0} \operatorname{Im} G(\mathbf{x}, \mathbf{x}; k^2 + i\varepsilon)$$

'Local Density Of States'

Greens func for Helmholtz eqn in Ω

• Then use semiclassical ray theory (heuristic):

$$G(\mathbf{x}, \mathbf{x}; k^2) \approx (\text{free space}) + \sum_{\substack{\text{returning}\\\text{orbits } \mathbf{x} \to \mathbf{x}}} (\text{geometric factor}) e^{ik(\text{orbit length})}$$

Outcome: *k*-periodic LDOS enhancement along each periodic orbit (Gutzwiller, Heller, Bogomolny, Berry, Kaplan, '80-90s)

Mushroom cavity modes

Unusually simple divided phase space (Bunimovich '01)

ergodic rays

regular rays

(B-Betcke, nlin/0611059)

Mushroom cavity modes

(B-Betcke, nlin/0611059)

Unusually simple divided phase space (Bunimovich '01)

ergodic rays

regular rays

First calculation of high-freq modes: $j \approx 2000$

• Percival '73 conjecture verified (Percival '73): modes localize to either regular or chaotic region

Very high freq mushroom modes

ergodic, equidistributed

ergodic, strongly scarred

New phenomenon: a 'moving scar'

$|\partial_n \phi_j(q)|^2$, boundary location q:

SMOOTHED

New phenomenon: a 'moving scar'

$|\partial_n \phi_j(q)|^2$, boundary location q:

SMOOTHED

MODES

take FT along k axis, gives: wave autocorrelation in time

- refocused returning orbits
 - return length varies with q

Conclusion

High frequency asymptotic properties of chaotic modes ϕ_j :

- $|\phi_j(\mathbf{x})|^2$ tends to spatially uniform at conjectured rate
- Scarring on unstable periodic orbits, enhanced by refocusing

Topics not covered:

• Bouncing ball mode leakage

(ongoing w/ A. Hassell)

• Quasi-orthogonality of boundary functions $\partial_n \phi_j(s)$

Find out how the numerical method works: Fri am: KOL F 121

Thanks: P. Deift (NYU) A. Hassell (ANU) P. Sarnak (Princeton) T. Betcke (Manchester) S. Zelditch (JHU) Funding: NSF (DMS-0507614)

Preprints, talks, movies: http://math.dartmouth.edu/~ahb

made with: Linux, LATEX, Prosper

High-eigenvalue quarter-stadium scar

• Our numerical evidence for $QUE \Rightarrow$ scars die, measure o(1)

Husimi distributions on mushroom boundary

classical boundary PSOS:

ergodic, strongly scarred

regular

IV. Bouncing Ball modes

(ongoing work w/ A. Hassell)