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Handwritten Digits

Data base of about 60, 000 28× 28 gray-scale pictures of
handwritten digits, collected by USPS. Goal: automatic
recognition. It is a point cloud in 282 dimensions. We can think
of being given this cloud, and some points are labeled by the
digit they correspond to, and we would like to predict the digit
corresponding to each point.

Set of 10, 000 picture (28 by 28 pixels) of 10 handwritten digits. Color represents the label (digit) of each point.
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Text documents

1000 Science News articles, from 8 different categories. We
compute about 10000 coordinates, i-th coordinate of document
d represents frequency in document d of the i-th word in a fixed
dictionary.
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An example from Molecular Dynamics

The dynamics of a small protein in a bath of water molecules is
approximated by a Langevin system of stochastic equations
ẋ = −∇U(x) + ẇ .

The set of states of the protein is a noisy set of points in R36.
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Goals

Find parametrizations for the data: manifold learning,
dimensionality reduction. Ideally: number of parameters
equal to, or comparable with, the intrinsic dimensionality of
data (as opposed to the dimensionality of the ambient
space), such a parametrization should be at least
approximately an isometry with respect to the manifold
distance, and finally it should be stable under perturbations
of the manifold. In the examples above: variations in the
handwritten digits, topics in the documents, angles in
molecule...
Construct useful dictionaries of functions on the data:
approximation of functions on the manifold, predictions,
learning.
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Graphs associated with data sets

Assume the data X = {xi} ⊂ Rn. Assume we can assign
local similarities via a kernel function K (xi , xj) ≥ 0. For example
Kσ(xi , xj) = e−||xi−xj ||2/σ.
Model the data as a weighted graph (G, E , W ): vertices
represent data points, edges connect xi , xj with weight
Wij := K (xi , xj), when positive.
Note 1: K typically depends on the type of data.
Note 2: K should be “local”, i.e. close to 0 for points not
sufficiently close.
Let Dii =

∑
j Wij and

L = D− 1
2 (D −W )D− 1

2︸ ︷︷ ︸
normalized Laplacian

, H = e−tL︸ ︷︷ ︸
Heat kernel

, P = D−1W︸ ︷︷ ︸
random walk

, T = I − L︸ ︷︷ ︸
symmetrized random walk
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The Heat Kernel and the Laplacian on Manifolds

Different ways of using the diffusion process T :
Look at T for very large time (T t for t large) →
eigenfunctions of T → Fourier analysis on the data, “basis
method”
Look at T for small time (T , T 2, . . . , T k , k constant) → it is
diffusion on the set → “PDE” method, “no basis”
Look at T at all time scales (T , T 2, T 4, . . . , T 2j

, . . . ) →
multiscale analysis of both functions and the diffusion
process → wavelets and multiscale dynamical processes.
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Eigenfunction Embedding theorems, I

[Joint with P.W. Jones and R. Schul]

We ask whether eigenfunctions of the Laplacian can be used to
parametrize Euclidean domains and manifolds, in which generality
this may be true, and which conditions such an embedding may
satisfy. Originally suggested by Bérard, Besson and Gallot (’84,’94) -
however in their case they map to `2, they require smoothness of the
manifold, and the map is not an isometry (or close to it). Other recent
proposed techniques include isomap, lle, Hessian eigenmaps,
maximum variance embedding; we are aware of proven results only
for isomap and Hessian eigenmap, and in both cases the
assumptions require the manifold to the isometric image of a
Euclidean domain.
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Eigenfunction Embedding theorems, I (cont’d)

Independently of the boundary conditions, we will denote by ∆ the
Laplacian on Ω, For the purpose of this paper (both the Dirichlet and
Neumann case) we restrict our study to domains where the spectrum
is discrete and the corresponding heat kernel can be written as

K Ω
t (z, w) =

∑
ϕj(z)ϕj(w)e−λj t .

where the {ϕj} form an orthonormal basis for the appropriate Hilbert
space with eigenvalues 0 ≤ λ0 ≤ · · · ≤ λj ≤ . . . . We also require

#{j : λj ≤ T} ≤ CWeyl,ΩT
d
2 |Ω| .

Dirichlet case: OK, Neumann: possible problems.
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Eigenfunction Embedding theorems, II
[Joint with P.W. Jones and R. Schul]

Theorem (Embedding via Eigenfunctions, for Euclidean domains)

Let Ω be a domain in Rd , with |Ω| = 1, and boundary as above. There
are constants c1, . . . , c6 > 0 that depend only on d and CWeyl,Ω, such
that the following hold. For any z ∈ Ω, let Rz ≤ dist (z, ∂Ω). Then
there exist i1, . . . , id and constants
c6R

d
2

z ≤ γ1 = γ1(z) , ..., γd = γd (z) ≤ 1 such that:

(a) Φ : Bc1Rz (z) → Rd , defined by

x 7→ (γ1ϕi1(x), . . . , γdϕid (x))

satisfies, for any x1, x2 ∈ B(z, c1Rz),

c2

Rz
||x1 − x2|| ≤ ||Φ(x1)− Φ(x2)|| ≤

c3

Rz
||x1 − x2|| .

(b) c4R−2
z ≤ λi1 , . . . , λid ≤ c5R−2

z .
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Eigenfunction Embedding theorems, III

Figure: Top left: a non-simply connected domain in R2, and the point
z with its neighborhood to be mapped. Top right: the image of the
neighborhood under the map. Bottom: Two eigenfunctions for
mapping.
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Eigenfunction Embedding theorems, IV

[Joint with P.W. Jones and R. Schul]
Let M be a smooth, d-dimensional compact manifold, possibly with
boundary. Suppose we are given a metric tensor g on M which is Cα

for some α > 0. For any z0 ∈M, let (U, x) be a coordinate chart
such that z0 ∈ U, g il(x(z0)) = δil and for any w ∈ U, and any
ξ, ν ∈ Rd , cmin(g)||ξ||2Rd ≤

∑d
i,j=1 g ij(x(w))ξiξj ,∑d

i,j=1 g ij(x(w))ξiνj ≤ cmax(g)||ξ||Rd ||ν||Rd .
We let rM(z0) = sup{r > 0 : Br (x(z0)) ⊆ x(U)}.

∆Mf (x) = − 1√
det g

∑
i,j=1

∂j

(√
det g g ij(x)∂i f

)
(x) .
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Eigenfunction Embedding theorems, IV
[Joint with P.W. Jones and R. Schul]

Theorem (Embedding via Eigenfunctions, for Manifolds)
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d
2
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z .
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Heat triangulation theorem, V

[Joint with P.W. Jones and R. Schul]

Theorem (Heat Triangulation Theorem)

Let (M, g), z ∈M and (U, x) be as above, where we now allow
|M| = +∞. Let Rz ≤ min{1, rM(z)}. Let p1, ..., pd be d linearly
independent directions. There are constants c1, . . . , c5 > 0,
depending on d , cmin, cmax, ||g||α∧1, α ∧ 1, and the smallest and
largest eigenvalues of the Gramian matrix (〈pi , pj〉)i=1,...,d , such that
the following holds. Let yi be so that yi − z is in the direction pi , with
c4Rz ≤ dM(yi , z) ≤ c5Rz for each i = 1, . . . , d and let tz = c6R2

z . The
map

Φ : Bc1Rz (z) → Rd

x 7→ (Rd
z Ktz (x , y1)), . . . , Rd

z Ktz (x , yd ))

satisfies, for any x1, x2 ∈ Bc1Rz (z),

c2

Rz
dM(x1, x2) ≤ ||Φ(x1)− Φ(x2)|| ≤

c3

Rz
dM(x1, x2) .
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Idea of proof

When t ∼ λ−1 ∼ R2
z , prove heat kernel resembles Euclidean Dirichlet heat kernel in a ball, in terms of its size and

gradient, from above and below, with constants independent of the smoothness of the manifold. This will give the
heat triangulation theorem, since the heat kernel has the correct gradient estimates. For the eigenfunction theorem,
look at the spectral expansion of the heat kernel, and observe that the main contribution to that series comes from
frequencies in the correct range. So not all eigenfunctions in that range have small gradient→ pigeon-hole→ find
eigenfunction with gradient of the correct size in a given direction→ repeat over directions, each orthogonal to the
span of the gradients of the previously chosen eigenfunctions.
How to prove smoothness-independent heat kernel estimates? Start with manifold with smooth metric, use
probability:

Theorem

Let x, y ∈ Bδ0Rz (z) be such that ||x − y|| < δ0Rz , δ0 < 1
4 . Let τn ’s be the return times in B 3

2 δ0Rz
(x) after

exiting B2δ0Rz (x), and xn(ω) = ω(τn(ω)). Then

Ks(x, y) = K
Dir(B2δ0Rz (x))

s (x, y) +
+∞∑
n=1

Eω

[
K

Dir(B2δ0Rz (x))

s−τn(ω)
(xn(ω), y)χ{τn(ω)<s}(ω)

]
P(τn < s) . (1)

Moreover there exists an M = M(cmax ) such that P(τn < s) .d,M,cmin,cmax e−n

(
δ0Rz

2

)2

2Ms .

Then take limits of smooth metrics to the Cα metric. Pretty easy for the heat kernel, some tricks (time-stopping

arguments) for the gradient,
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To be done:

Generalize to “manifolds” with varying dimensionality,
graphs (what is the boundary, inradius?), data with noise.
Efficient algorithms, in particular we are working on the
heat triangulation theorem;
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Fast tour through the rest of the story..

Fourier analysis on data: use eigenfunctions for function
approximation.
Fourier summability kernels: in analogy with summability
kernels in Euclidean spaces (or the sphere), such kernels can
be constructed on rather general metric spaces, modeling data,
and yield multiscale approximation schemes with better
approximation properties for functions with non-homogeneous
smoothness (joint with H.N. Mhaskar).
Wavelets: multiscale wavelets can be constructed on data sets
by using the diffusion operator and its power. Original
construction is one year old, and novel constructions with better
approximation properties, localization and faster algorithms are
being developed.
The diffusion semigroup itself on the data can be used as a
smoothing kernel. We recently obtained very promising results
in image denoising and semisupervised learning.
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Applications

Hierarchial organization of data and of Markov chains (e.g. documents, regions
of state space of dynamical systems, etc...);

Distributed agent control, Markov decision processes (e.g.: compression of state
space and space of relevant value functions);

Machine Learning (e.g. nonlinear feature selection, semisupervised learning
through diffusion, multiscale graphical models);

Approximation, learning and denoising of functions on graphs (e.g.: machine
learning, regression, etc...)

Sensor networks: compression of measurements collected from the network
(e.g. wavelet compression on scattered sensors);

Multiscale modeling of dynamical systems (e.g.: nonlinear and multiscale PODs);

Compressing data and functions on the data;

Data representation, visualization, interaction;

...
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Nonlinear image denoising, I

Left to right: 1) a clean image, with range from 0 to 255. 2) A noisy image obtained by adding Gaussian noise

40N (0, 1). 3) TV denoising kindly provided by Guy Gilboa. 4) Denoising using a diffusion built on the graph of

5× 5 patches, with a constrained search.
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Nonlinear image denoising, II

1) Lena with Gaussian noise added. 2) Denoising using a 7x7 patch graph. 3) Denoising using hard thresholding of

curvelet coefficients. The image is a sum over 9 denoisings with different grid shifts. 4) Denoising with a diffusion

built from the 9 curvelet denoisings.
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Nonlinear image denoising, III
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Semi-supervised Learning on Graphs

[Joint with R.R. Coifman and A.D.Szlam]

Given: many data points with similarity function, yielding a
graph G, of which only a very small subset G̃, are labeled.
We use diffusion process to smooth the label functions from G̃
to functions on G. Each point has now a vector of probabilities
of belonging to different classes: use this extra information to
design a better, anisotropic diffusion on G, and start anew by
applying this to the initial labels. Motivations: the diffusion
process is a very flexible tool, it is easy to tune time-scales, it is
easily tuned to incorporate labeling information, it is very fast to
compute.
Experiments on standard data sets show this technique
outperforms the previous semi-supervised learning algorithms.
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Semi-supervised Learning on Graph (cont’d)

[Joint with R.R. Coifman and A.D.Szlam]

FAKS FAHC FAEF Best of other meth-
ods

digit1 2.0 2.1 1.9 2.5 (LapEig)
USPS 4.0 3.9 3.3 4.7 (LapRLS, Disc.

Reg.)
BCI 45.5 45.3 47.8 31.4 (LapRLS)
g241c 19.8 21.5 18.0 22.0 (NoSub)
COIL 12.0 11.1 15.1 9.6 (Disc. Reg.)
gc241n 11.0 12.0 9.2 5.0 (ClusterKernel)
text 22.3 22.3 22.8 23.6 (LapSVM)

In the first column we chose, for each data set, the best performing method with model
selection, among all those discussed in Chapelle’s book. In each of the remaining

columns we report the performance of each of our methods with model selection, but
with the best settings of parameters for constructing the nearest neighbor graph,

among those considered in other tables. The aim of this rather unfair comparison is to
highlight the potential of the methods on the different data sets.
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