Laplacian Eigenfunctions: Fast Computation via Commuting Integral Operators and Applications to Image Analysis

Naoki Saito¹

Department of Mathematics University of California, Davis

July 18, 2007

¹ Partially supported by grants from NSF and ONR. I thank Leo Chalupa (UCD, Neurobiology), Raphy Coifman (Yale), Julie Coombs (UCD, Neurobiology), Dave Donoho (Stanford), John Hunter (UCD), Peter Jones (Yale), Linh Lieu (UCD), Stan Osher (UCLA), Allen Xue (UCD), Katsu Yamatani (Meijo Univ.) for the fruitful discussions.

saito@math.ucdavis.edu (UC Davis)

Laplacian Eigenfunctions

ICIAM07 1 / 56

- 2 Laplacian Eigenfunctions
 - 3 Integral Operators Commuting with Laplacian
 - Examples
 - 1D Example
 - 2D Example
 - 3D Example
 - 5 Discretization of the Problem
- 6 Applications
 - Statistical Image Analysis; Comparison with PCA
 - Clustering Mouse Retinal Ganglion Cells
 - Fast Algorithms for Computing Eigenfunctions
 - Conclusions

Sar

Motivations

- - ID Example
 - 2D Example
 - 3D Example

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells

- Consider a bounded domain of general (may be quite complicated) shape $\Omega \subset \mathbb{R}^d$.
- Want to analyze the spatial frequency information inside of the object defined in $\Omega \implies$ need to avoid the Gibbs phenomenon due to $\Gamma = \partial \Omega$.
- Want to represent the object information efficiently for analysis, interpretation, discrimination, etc. ⇒ fast decaying expansion coefficients relative to a meaningful basis.
- Want to extract geometric information about the domain $\Omega \implies$ shape clustering/classification.

JAC.

Motivations ... Data Analysis on a Complicated Domain

saito@math.ucdavis.edu (UC Davis)

ICIAM07 5 / 56

Motivations ... Clustering Complicated Objects

Motivations ... Clustering Complicated Objects ...

2 Laplacian Eigenfunctions

- Integral Operators Commuting with Laplacian
- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

- Our previous attempt was to extend the object to the outside smoothly and then bound it nicely with a rectangular box followed by the ordinary Fourier analysis.
- Why not analyze (and synthesize) the object using genuine basis functions tailored to the domain?
- After all, *sines* (and *cosines*) are the eigenfunctions of the Laplacian on the *rectangular* domain with Dirichlet (and Neumann) boundary condition.
- Spherical harmonics, Bessel functions, and Prolate Spheroidal Wave Functions, are part of the eigenfunctions of the Laplacian (via separation of variables) for the spherical, cylindrical, and spheroidal domains, respectively.

< 🗆 🕨

Sar

- Consider an operator $\mathcal{L} = -\Delta$ in $L^2(\Omega)$ with appropriate boundary condition.
- Analysis of \mathcal{L} is difficult due to unboundedness, etc.
- Much better to analyze its inverse, i.e., the Green's operator because it is compact and self-adjoint.
- Thus L⁻¹ has discrete spectra (i.e., a countable number of eigenvalues with finite multiplicity) except 0 spectrum.
- \mathcal{L} has a complete orthonormal basis of $L^2(\Omega)$, and this allows us to do eigenfunction expansion in $L^2(\Omega)$.

うくつ

- The key difficulty is to compute such eigenfunctions; directly solving the Helmholtz equation (or eigenvalue problem) on a general domain is tough.
- Unfortunately, computing the Green's function for a general Ω satisfying the usual boundary condition (i.e., Dirichlet, Neumann) is also very difficult.

2 Laplacian Eigenfunctions

3 Integral Operators Commuting with Laplacian

- Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

< 🗆

Integral Operators Commuting with Laplacian

- The key idea is to find an integral operator commuting with the Laplacian without imposing the strict boundary condition a priori.
- Then, we know that the eigenfunctions of the Laplacian is the same as those of the integral operator, which is easier to deal with, due to the following

Theorem (G. Frobenius 1878?; B. Friedman 1956)

Suppose \mathcal{K} and \mathcal{L} commute and one of them has an eigenvalue with finite multiplicity. Then, \mathcal{K} and \mathcal{L} share the same eigenfunction corresponding to that eigenvalue. That is, $\mathcal{L}\varphi = \lambda \varphi$ and $\mathcal{K}\varphi = \mu \varphi$.

• Let's replace the Green's function $G(\mathbf{x}, \mathbf{y})$ by the fundamental solution of the Laplacian:

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} -\frac{1}{2} |\mathbf{x} - \mathbf{y}| & \text{if } d = 1, \\ -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}| & \text{if } d = 2, \\ \frac{|\mathbf{x} - \mathbf{y}|^{2-d}}{(d-2)\omega_d} & \text{if } d > 2. \end{cases}$$

 The price we pay is to have rather implicit, non-local boundary condition although we do not have to deal with this condition directly.

Integral Operators Commuting with Laplacian ...

• Let \mathcal{K} be the integral operator with its kernel $K(\mathbf{x}, \mathbf{y})$:

$$\mathfrak{K}f(\mathbf{x}) \stackrel{\Delta}{=} \int_{\Omega} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \, \mathrm{d}\mathbf{y}, \quad f \in L^2(\Omega).$$

Theorem (NS 2005)

The integral operator \mathcal{K} commutes with the Laplacian $\mathcal{L} = -\Delta$ with the following non-local boundary condition:

$$\int_{\Gamma} \mathcal{K}(\mathbf{x}, \mathbf{y}) \frac{\partial \varphi}{\partial \nu_{\mathbf{y}}}(\mathbf{y}) \, \mathrm{d}s(\mathbf{y}) = -\frac{1}{2} \varphi(\mathbf{x}) + \operatorname{pv}_{\Gamma} \frac{\partial \mathcal{K}(\mathbf{x}, \mathbf{y})}{\partial \nu_{\mathbf{y}}} \varphi(\mathbf{y}) \, \mathrm{d}s(\mathbf{y}),$$

for all $\mathbf{x} \in \Gamma$, where φ is an eigenfunction common for both operators.

Corollary (NS 2005)

The integral operator \mathcal{K} is compact and self-adjoint on $L^2(\Omega)$. Thus, the kernel $K(\mathbf{x}, \mathbf{y})$ has the following eigenfunction expansion (in the sense of mean convergence):

$$\mathcal{K}(\mathbf{x},\mathbf{y})\sim\sum_{j=1}^{\infty}\mu_{j}arphi_{j}(\mathbf{x})\overline{arphi_{j}(\mathbf{y})},$$

and $\{\varphi_j\}_j$ forms an orthonormal basis of $L^2(\Omega)$.

うくつ

- Motivations
- 2 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 4 E>

Examples

- ID Example
- 2D Example
- 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

2 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

- Consider the unit interval $\Omega = (0, 1)$.
- Then, our integral operator \mathcal{K} with the kernel K(x, y) = -|x y|/2 gives rise to the following eigenvalue problem:

$$-\varphi'' = \lambda \varphi, \quad x \in (0,1);$$

$$\varphi(0) + \varphi(1) = -\varphi'(0) = \varphi'(1).$$

- The kernel $K(\mathbf{x}, \mathbf{y})$ is of Toeplitz form \implies Eigenvectors must have even and odd symmetry (Cantoni-Butler '76).
- In this case, we have the following explicit solution.

JAC.

1D Example ...

• $\lambda_0 \approx -5.756915$, which is a solution of $\tanh \frac{\sqrt{-\lambda_0}}{2} = \frac{2}{\sqrt{-\lambda_0}}$,

$$\varphi_0(x) = A_0 \cosh \sqrt{-\lambda_0} \left(x - \frac{1}{2}\right);$$

• $\lambda_{2m-1} = (2m-1)^2 \pi^2$, m = 1, 2, ..., $\varphi_{2m-1}(x) = \sqrt{2} \cos(2m-1)\pi x;$ • $\lambda_{2m}, m = 1, 2, ...,$ which are solutions of $\tan \frac{\sqrt{\lambda_{2m}}}{2} = -\frac{2}{\sqrt{\lambda_{2m}}},$

$$\varphi_{2m}(x) = A_{2m} \cos \sqrt{\lambda_{2m}} \left(x - \frac{1}{2} \right)$$

where A_k , k = 0, 1, ... are normalization constants.

First 5 Basis Functions

saito@math.ucdavis.edu (UC Davis)

ICIAM07 21 / 5

2 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

- 4 E
 - Examples1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

2D Example

• Consider the unit disk Ω . Then, our integral operator $\mathcal K$ with the kernel $K(\mathbf{x}, \mathbf{y}) = -\frac{1}{2\pi} \log |\mathbf{x} - \mathbf{y}|$ gives rise to:

$$-\Delta \varphi = \lambda \varphi, \quad \text{in } \Omega;$$
$$\frac{\partial \varphi}{\partial \nu}\Big|_{\Gamma} = \frac{\partial \varphi}{\partial r}\Big|_{\Gamma} = -\frac{\partial \mathcal{H}\varphi}{\partial \theta}\Big|_{\Gamma},$$

where \mathcal{H} is the Hilbert transform for the circle, i.e.,

$$\mathfrak{H}f(\theta) \triangleq rac{1}{2\pi} \operatorname{pv} \int_{-\pi}^{\pi} f(\eta) \cot\left(rac{\theta-\eta}{2}\right) \mathrm{d}\eta \quad \theta \in [-\pi,\pi].$$

• Let $\beta_{k,\ell}$ is the ℓ th zero of the Bessel function of order k, $J_k(\beta_{k,\ell}) = 0$. Then,

$$\varphi_{m,n}(r,\theta) = \begin{cases} J_m(\beta_{m-1,n} r) {\binom{\cos}{\sin}}(m\theta) & \text{if } m = 1, 2, \dots, n = 1, 2, \dots, \\ J_0(\beta_{0,n} r) & \text{if } m = 0, n = 1, 2, \dots, \end{cases}$$
$$\lambda_{m,n} = \begin{cases} \beta_{m-1,n}^2, & \text{if } m = 1, \dots, n = 1, 2, \dots, \\ \beta_{0,n}^2 & \text{if } m = 0, n = 1, 2, \dots, \end{cases}$$

 $\lambda_{m,n} = 0$

First 25 Basis Functions

 $\langle \Box \rangle$

a

- Motivations
- 2 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 4 Examples
 - ID Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

3D Example

- Consider the unit ball Ω in \mathbb{R}^3 . Then, our integral operator \mathcal{K} with the kernel $K(\mathbf{x}, \mathbf{y}) = \frac{1}{4\pi |\mathbf{x}-\mathbf{y}|}$.
- Top 9 eigenfunctions cut at the equator viewed from the south:

- Motivations
- 2 Laplacian Eigenfunctions
- Integral Operators Commuting with Laplacian
- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example

5 Discretization of the Problem

Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- 7 Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

< 🗆

Discretization of the Problem

- Assume that the whole dataset consists of a collection of data sampled on a regular grid, and that each sampling cell is a box of size $\prod_{i=1}^{d} \Delta x_i$.
- Assume that an object of our interest Ω consists of a subset of these boxes whose centers are{x_i}^N_{i=1}.
- Under these assumptions, we can approximate the integral eigenvalue problem $\mathcal{K}\varphi = \mu\varphi$ with a simple quadrature rule with node-weight pairs (\mathbf{x}_j, w_j) as follows.

$$\sum_{j=1}^{N} w_j \mathcal{K}(\mathbf{x}_i, \mathbf{x}_j) \varphi(\mathbf{x}_j) = \mu \varphi(\mathbf{x}_i), \quad i = 1, \dots, N, \quad w_j = \prod_{i=1}^{d} \Delta x_i.$$

 Let K_{i,j} ≜ w_jK(x_i, x_j), φ_i ≜ φ(x_i), and φ ≜ (φ₁,...,φ_N)^T ∈ ℝ^N. Then, the above equation can be written in a matrix-vector format as: Kφ = μφ, where K = (K_{ij}) ∈ ℝ^{N×N}. Under our assumptions, the weight w_j does not depend on j, which makes K symmetric.

2 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- Fast Algorithms for Computing Eigenfunctions

8 Conclusions

2 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- Fast Algorithms for Computing Eigenfunctions
- 8 Conclusions

< 🗆

- Consider a stochastic process living on a domain Ω.
- PCA/Karhunen-Loève Transform is often used.
- PCA/KLT incorporate geometric information of the measurement (or pixel) location through the data correlation, i.e., implicitly.
- Our Laplacian eigenfunctions use explicit geometric information through the harmonic kernel $\varphi(\mathbf{x}, \mathbf{y})$.

- "Rogue's Gallery" dataset from Larry Sirovich
- 72 training dataset; 71 test dataset
- Left & right eye regions

< 🗆

Comparison with PCA: Basis Vectors

< <p>Image: Image: Imag

a

э.

Comparison with PCA: Basis Vectors

< <p>Image: Image: Imag

Comparison with PCA: Basis Vectors

< <p>Image: Image: Imag

Comparison with PCA: Kernel Matrix

< 🗆

Comparison with PCA: Energy Distribution over Coordinates

Sar

Comparison with PCA: Basis Vector $\#7 \dots$

Comparison with PCA: Basis Vector $#13 \dots$

Comparison with PCA: Coefficient Decay

< <p>Image: Image: Imag

Comparison with PCA: Coefficient Decay

saito@math.ucdavis.edu (UC Davis)

ICIAM07 39 / 56

Sar

2 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- Fast Algorithms for Computing Eigenfunctions

Conclusions

Clustering Mouse Retinal Ganglion Cells

- Objective: To understand how the structural/geometric properties of mouse retinal ganglion cells (RGCs) relate to the cell types and their functionality
- Why mouse? \implies great possibilities for genetic manipulation
- Data: 3D images of dendrites/axons of RGCs
- State of the Art: Process each image via specialized software to extract geometric/morphological parameters (totally 14 such parameters) followed by a conventional clustering algorithm
- These parameters include: somal size; dendric field size; total dendrite length; branch order; mean internal branch length; branch angle; mean terminal branch length, etc. ⇒ takes half a day per cell with a lot of human interactions!

< □ ▶

JAC.

Clustering Mouse Retinal Ganglion Cells ... 3D Data

saito@math.ucdavis.edu (UC Davis)

Laplacian Eigenfunctions

ICIAM07 42 / 56

- Use 2D plane projection data instead of full 3D
- Compute the smallest k Laplacian eigenvalues using our method (i.e., the largest k eigenvalues of \mathcal{K}) for each image
- Construct a feature vector per image
- Possible feature vectors reflecting geometric information: $\mathbf{F}_1 = (\lambda_1, \dots, \lambda_k)^T$; $\mathbf{F}_2 = (\mu_1, \dots, \mu_k)^T$; $\mathbf{F}_3 = (\lambda_1/\lambda_2, \dots, \lambda_1/\lambda_k)^T$; $\mathbf{F}_4 = (\mu_1/\mu_2, \dots, \mu_1/\mu_k)^T$.
- Do visualization and clustering

うくつ

Preliminary Study on Mouse RGCs ...

< <p>Image: Image: Imag

a

-

Crossplot of the First Two Laplacian Eigenvalues

Laplacian Eigenfunctions on a Mouse RGC

Challenges of Mouse Retinal Ganglion Cells

- Their shapes are very complicated.
- Interpretation of our eigenvalues are not yet fully understood compared to the usual Dirichlet-Laplacian case that have been well studied: the Payne-Pólya-Weinberger inequalities; the Faber-Krahn inequalities; the Ashbaugh-Benguria results, etc. For Ω ∈ ℝ^d,

$$\lambda_1^{(D)}(\Omega) \geq \left(rac{|\mathcal{B}_1^d|}{|\Omega|}
ight)^2 \lambda_1^{(D)}(\mathcal{B}_1^d), \quad rac{\lambda_{k+1}^{(D)}(\Omega)}{\lambda_k^{(D)}(\Omega)} \leq rac{\lambda_2^{(D)}(\mathcal{B}_1^d)}{\lambda_1^{(D)}(\mathcal{B}_1^d)}, \quad k=1,2,3.$$

Note the related work on "Shape DNA" by Reuter et al. (2005), and classification of tree leaves by Khabou et al. (2007).

- Perhaps original 3D data should be used instead of projected 2D data.
- Reduce computational burden \implies need to develop fast algorithms.
- Heat propagation on the dendrites may give us interesting and useful information; after all the dendrites are network to disseminate information via chemical reaction-diffusion mechanism.
- Construct actual graphs based on the connectivity and analyze them directly via spectral graph theory and diffusion maps. < => <=> >= >> >= >> >

2 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells

Fast Algorithms for Computing Eigenfunctions

Conclusions

A Possible Fast Algorithm for Computing φ_j 's

- Observation: our kernel function $K(\mathbf{x}, \mathbf{y})$ is of special form, i.e., the fundamental solution of Laplacian used in potential theory.
- Idea: Accelerate the matrix-vector product Kφ using the Fast Multipole Method (FMM).
- Convert the kernel matrix to the tree-structured matrix via the FMM whose submatrices are nicely organized in terms of their ranks. (Computational cost: our current implementation costs O(N²), but can achieve O(N log N) via the randomized SVD algorithm of Martinsson-Rokhlin-Tygert.)
- Construct O(N) matrix-vector product module fully utilizing rank information (See also the work of Bremer (2007) and the "HSS" algorithm of Chandrasekaran et al. (2006)).
- Embed that matrix-vector product module in the Krylov subspace method, e.g., Lanczos iteration.

(Computational cost: O(N) for each eigenvalue/eigenvector).

Sar

Tree-Structured Matrix via FMM

0	1	4	5	16	17	20	21
2	3	6	7	18	19 -	22	23
8	9	12	13	24	25	28	29
10	11	14	15	26	27	30	31
32	33	36	37	48	49	52	53
34	35	38	39	50 ^{II}	Z 51	5 4	3 55
40	41	44	45 1	56 1	57	60	61
42	43	46	∎ 47	58	59	62	3 63

(a) Hierarchical indexing scheme

(b) Tree-Structured Matrix

< □ ▶

First 25 Basis Functions via the FMM-based algorithm

JAC.

Splitting into Subproblems for Faster Computation

Eigenfunctions for Separated Islands

2 Laplacian Eigenfunctions

Integral Operators Commuting with Laplacian

- 4 Examples
 - 1D Example
 - 2D Example
 - 3D Example
- 5 Discretization of the Problem

6 Applications

- Statistical Image Analysis; Comparison with PCA
- Clustering Mouse Retinal Ganglion Cells
- Fast Algorithms for Computing Eigenfunctions

Conclusions

Conclusions

- Allow object-oriented image analysis & synthesis
- Can get fast-decaying expansion coefficients
- Can decouple geometry/domain information and statistics of data
- Can extract geometric information of a domain through the eigenvalues
- ∃ A variety of applications: interpolation, extrapolation, local feature computation, solving heat equations on complicated domains ...
- Fast algorithms are the key for higher dimensions/large domains
- Connection to lots of interesting mathematics: spectral geometry, spectral graph theory, isoperimetric inequalities, Toeplitz operators, PDEs, potential theory, almost-periodic functions, ...
- Many things to be done:
 - Synthesize the Dirichlet-Laplacian eigenvalues/eigenfunctions from our eigenvalues/eigenfunctions

< □ ▶

- How about higher order, i.e., polyharmonic ?
- Features derived from heat kernels ?
- Improve our fast algorithm

Sar

- The following articles are available at http://www.math.ucdavis.edu/~saito/publications/:
- N. Saito: "Geometric harmonics as a statistical image processing tool for images defined on irregularly-shaped domains," in *Proc. IEEE Workshop on Statistical Signal Processing*, Bordeaux, France, Jul. 2005.
- N. Saito: "Data analysis and representation using eigenfunctions of Laplacian on a general domain," Submitted to Applied & Computational Harmonic Analysis, Mar. 2007.

Thank you very much for your attention!