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ABSTRACT

We propose yet another dictionary of orthonormal bases
(which has the same tree structure as the popular wave-
let packet or local trigonometric dictionaries) adapted
to a given ensemble of signals. These orthogonal wave-
forms are generated by a set of locally adapted versions
of the Karhunen-Loéve (KL) transform. The basis vec-
tors in this dictionary represent local features in the
time-frequency plane compared to the standard KL ba-
sis vectors. Because of the structure of the bases, the
best basis selection algorithm of Coifman-Wickerhauser
is readily applicable. Moreover, no a priori choice of
conjugated quadrature filters or cosine/sine polarity is
necessary; it is completely data driven. The compu-
tational cost to build this dictionary is comparable to
or potentially less than that of the standard KL trans-
form. As an application, we give an example of clus-
tering geophysical acoustic waveforms.

1. INTRODUCTION

As a feature extraction tool for signal representation,
compression, or clustering, the Karhunen-Loéve (KL)
expansion or the Principal Component Analysis (PCA)
has been popular for more than 30 years [1]. The stan-
dard KL basis is an orthonormal basis which provides
decorrelated coordinates for a given ensemble of sig-
nals or equivalently diagonalizes the covariance matrix
of the ensemble. The KL basis is considered as the
most efficient coordinate system for representing such
an ensemble of signals under several criteria: it has the
entropy-minimizing and ¢2-error-minimizing properties
[1]. However, the KL basis has a few drawbacks. First,
its computational cost is O(n®) (where n is a number
of time samples in each signal) since it is a solution
of the eigenvalue problem. Second, it is difficult to
capture signal features localized in the time-frequency
plane due to the global eigenvectors.

Over the last five years, many new tools for signal
representation/compression have been proposed. These
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include the so-called dictionaries of orthonormal bases
(see e.g., [2]). A dictionary of orthonormal bases con-
sists of a redundant set of orthonormal bases and has
a tree structure each of which node represents basis
vectors spanning a subspace of specific time-frequency
localization character. The wavelet packet dictionary
and the local trigonometric dictionary are two popular
examples of such a dictionary. This type of dictionary
contains a large number of complete orthonormal bases.
Therefore, this allows one to search the so-called best
basis (from the dictionary) which is adapted to a par-
ticular input signal or to a specific task. This search is
normally done by minimizing a certain information cost
function (e.g., entropy) using the divide-and-conquer
(or split-and-merge) algorithm. These new tools offer
an ability to capture local features as well as compu-
tational efficiency. From the user’s point of view, how-
ever, there is always a question: “Which pair of con-
jugated quadrature filters should I choose?” “Should
I use local cosine dictionary or local sine dictionary?”
Quite often, the answer 1s “It depends on the charac-
teristics of the input signals.”

In this paper, we propose yet another dictionary of
orthonormal bases completely driven by a given ensem-
ble of input signals. We call this a dictionary of local
Karhunen-Loéve bases. This dictionary is a collection
of the KL basis vectors locally adapted in either the
time or the frequency domain and has the same struc-
ture as the dictionaries of wavelet packets and local
trigonometric bases. At least for building this dictio-
nary, no specification is required from the users; i.e.,
“The input signals speak for themselves.” Although
the computational cost of constructing this dictionary
is more expensive (slightly less than O(%n?’)) than the
local trigonometric dictionary (O(n[logn]?)), it is com-
parable to the standard KL basis (O(n?)), and can be
much less than that as explained in the next section.
Once the dictionary is built, selecting a basis from this
dictionary is fast, i.e., O(n), and expanding each signal
into such a basis costs at most O(n?).



2. A DICTIONARY OF LOCAL KL BASES

In the following we describe the time domain version of
the algorithm of building a dictionary of local KL bases
and selecting a suitable basis from the dictionary for
our purpose. The entire procedure can also be applied
to the frequency domain representations of the signals,
i.e., the time (sub)intervals below should be replaced by
the frequency (sub)bands for that case. The algorithm
is simple and straightforward:

SPLIT: split the whole time interval supporting the
input signals into a redundant set of subintervals
by the smooth orthogonal projection of Coifman
and Meyer (see e.g., [2, Chap. 4]).

EIGEN: construct the standard KL basis on each sub-
iterval.

Once such a dictionary of bases is computed and stored,
then we can:

MERGE: select an optimal (in some sense) cover of
the original time interval and the corresponding
basis.

One can select a single basis which does a good job
on the average for the whole input signals. One can
also select a set of bases optimized for some subset of
the input signals or even an optimized basis per input
signal. It is at user’s disposal once the dictionary is
built.

Let us now describe the above three steps in detail.
Step SPLIT. This step applies the orthogonal pro-
jection operator using the smooth bell function to the
signals to segment them smoothly into local pieces. See
[2, Chap. 4] for details of this projection operator. By
this projector, the signals supported on the original
global interval Iy can be decomposed into the local
pieces supported on {I;}. We are interested in the
redundant set of subintervals {I;} and the associated
subspaces and their orthonormal bases over {Ij,}. Step
MERGE selects an optimal non-redundant cover from
{I+} (or equivalently an optimal complete orthonormal
basis) for one’s need. The selected basis vectors should
capture the local features/phenomena of the signals.
There are at least two efficient ways to perform the
SPLIT and MERGE processes. One is to split the orig-
inal interval into its left and right half intervals and re-
peat the process recursively. This process generates the
popular binary-tree structured subspaces/subintervals.
This binary tree contains more than 92¢/7Y complete
orthonormal bases if we repeat the recursive splitting
process J times. To obtain a best possible basis for
one’s need from this dictionary one can invoke the best-
basis search algorithm of Coifman and Wickerhauser

with a suitable cost function [2, Chap. 8]. This search
process is rapid, i.e., O(n).

The other method is due to X. Fang [3]; this splits
the original interval I; into the many short subintervals
of equal length, I, T, ..., Ik (similar to the bottom
level leaves of the binary tree representation). Then
it examines whether it is worth merging the adjacent
intervals from left to right. In other words, consider
the first two subintervals I;,/5 and their parent [; 5 =
I U Iy, If it is worth uniting 7/; and I; under some
criterion (which will be specified below), then use I 5.
Next, examine whether I3 should be merged with I ».
This process continues as long as it is worthwhile to
merge the adjacent subintervals. Suppose it merged
subintervals Iy, I, ..., Iy, but it decided not to merge
the next subinterval Ij41. Then, the merging process
restarts by comparing Iy 1, Ir42 and Ip41 p4o.

Step EIGEN. This process computes the KL basis
on each subinterval. Thus, on each subinterval I}, it
requires O(n?) operations for diagonalizing the covari-
ance matrix of the projected signals onto I, where
ni < n is a length of each projected signal. Because
this KL basis computation is required for each I, as
a whole, it seems much more expensive than the one
step global KL transform; however, our local KL trans-
form with binary tree splits cost at most O(%ng’) since
each split reduces the dimensionality of the problem
to half. In fact, if the levels (or depth) of the tree is
J, then the computational cost is O(%n?’(l —4=7-1).
We also need to store eigenvectors at each subinterval.
The space required to store all of these eigenvectors is
2n%(1 — 277~1) floating points. Expansion of an input
signal into the bases costs O(2n%(1—277~1)) additions
and multiplications. We note that the computational
cost can be substantially smaller if we are only inter-
ested in the time intervals shorter than a certain length
since this avoids the EIGEN step from the root node
to the nodes at the corresponding level. Also, the split-
ting algorithm of Fang can be much more inexpensive
than the binary tree version since it does not require
the global KL basis computation in general.

Step MERGE. Once the dictionary is constructed, we
want to select a best possible basis out of many pos-
sible bases from this dictionary for our needs. For the
purpose of signal representation/compression or even
signal clustering, the reduction of dimensionality is of
critical importance. Main purpose here is to describe or
represent a given ensemble of signals with a small num-
ber of basis functions each of which has some “physical
meaning” or allows one to make “easy interpretation.”
Step MERGE is the key step for this purpose. It de-
cides whether it is worth merging two adjacent subin-
tervals or not in a recursive manner. For each subinter-



val, the Shannon entropy of the eigenvalues of the co-
variance (or autocorrelation) matrix measures the flat-
ness of the variance (or energy) distribution over the
KL coordinates under consideration; in other words, it
measures inefficiency of the coordinates for compres-
sion. If we adopt this entropy measure as a cost func-
tional to minimize, however, the original global interval
is always selected because of the optimality property
of the global KL basis [1]. Therefore, we must use
other criteria to capture the local features of the sig-
nals. There are many possible criteria. Here, we only
mention two simple ones. One is based on the £'/? norm
of those eigenvalues. The other is based on the mean
absolute deviations of the expansion coefficients. Let
Ao = (Aa(D), ..., Aa(na)), ne < n be a set of eigenval-
ues (they are all nonnegative) of the covariance matrix
of a particular subinterval 7,. In fact, these eigenvalues
represent variances of the input signals under the KL
coordinates over I,. Then, we measure the inefficiency
of the subinterval by the following nonlinear functional:

E(Aq;m) 2 i (:\a(k))p ) (1)

k=1

where m < n, is a specified number of the coordi-
nates the user wants to use, say e.g., m = 10 for the
signals of length n = 256, and X, (k)s are decreasing re-
arrangement of the sequence A,, and 0 < p < 1. With
p= %, this cost functional measures the spread of the
distribution of the standard deviations over the coordi-
nates after ignoring the coordinates whose contribution
is small.

The other criterion replaces the variances A, (k) by
the mean absolute deviations of the ensemble of the
input signals under the local KL coordinates. In this
case, we set Ao (k) = E|Y,(k)| where Y, (k) is the kth
component of the local KL coordinates of the projec-
tion of a random input signal X onto [,, and E is the
expectation operation. Then, for this cost functional,
we use (1) with p = 1 instead of p = %

Now let B, be the standard KL basis computed
over I,, and be A, be the best KL basis over I, which
may be B, or direct sum of the shorter KL bases over
some descendant nodes of 7. Then, the following algo-
rithm selects the so-called Local Karhunen-Loéve Basis

(LKLB):

e Set A, = B, for every I, which is a leaf (a bot-
tom level node) of the tree.

e For every I, above the bottom level and its two
children I3, I,, do the following:

If E(Ag;m) < E({As, A };m),
Then A, = B,.

Else A, = Ag® A, and replace A, by {Ag, A, }.

We note that (1) is not additive for m # n. The mech-
anism of this selection algorithm is essentially the same
as the local regression basis selection proposed by the

authors [4, Chap. 5], [5].

3. AN EXAMPLE

We apply the LKLB algorithm to the real geophysi-
cal dataset used in [4, Chap. 6], [6] which is shown in
Figure 1. This dataset consists of 402 acoustic wave-
forms recorded in a borehole. Each waveform has 256
time samples with 6t = 10usec. The top 201 waveforms
represent the ones propagated through sandstone lay-
ers (“sand waveforms”) and the bottom 201 waveforms
represent the ones through shale layers (“shale wave-
forms”). Figure 2 and 3 show the top 10 global KLB
vectors and the top 10 LKLB vectors (with m = 10),
respectively. The two different selection criteria dis-
cussed in the previous section yielded almost the same
result; the only difference is the order of the last few
basis functions. Figure 4 shows a cross-plot or pro-
jection onto the first and seventh LKLB vectors. The
points indicated by % and - correspond to sand and
shale waveforms, respectively. A combination of the
cross-plot and the plots of LKLB vectors allows one
to make easier interpretation of waveform analysis and
clustering.

4. DISCUSSION

The close relationship between the KL transform and
discrete cosine transform (DCT) was pointed out in
[7]. In fact, DCT is a limiting case of KLT if the sig-
nals under consideration obey the first order Markov
process. Therefore, we conjecture that the local co-
sine transform (LCT) is a limiting case of the local KL
transform proposed in this paper. Actual comparison
between the LCT and LKLT is currently under inves-
tigation.

We also note that it is a straightforward exercise
to extend the algorithm for images because of its con-
struction. The image version of this algorithm may be
useful for texture segmentation problems.

Finally, we remark that the same splitting process
can be used for signal classification problems. For clas-
sification, we replace the KL basis computation by the
linear discriminant analysis of Fisher, and the cost func-
tion by the classification error or some functional mea-
suring the “distances” among classes. We are cur-
rently investigating this local linear discriminant anal-
ysis (LLDA) and comparing it with the local discrimi-
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nant bases (LDB) of Saito and Coifman [5], [4, Chap. 4],
[8].
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