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Abstract

We introduce a practical and improved version of the Polyharmonic Local Sine

transform (PHLST) called PHLST5. After partitioning an input image into a set

of rectangular blocks, the original PHLST decomposes each block into the poly-

harmonic component and the residual. The polyharmonic component solves the

polyharmonic equation with the boundary condition that matches the values and

normal derivatives of first order up to higher order of the solution along the block

boundary with those of the original image block. Thanks to this boundary con-

dition, the residual component can be expanded into a Fourier Sine series with-

out facing the Gibbs phenomenon and its Fourier Sine coefficients decay faster

than those of the original block. Due to the difficulty of estimating the higher

order normal derivatives, however, only the harmonic case (i.e., Laplace’s equa-

tion) has been implemented to date. In that case, the Fourier Sine coefficients of

the residual decay as O
`

‖k‖−3
´

where k is the frequency index vector. Unlike

the original version, PHLST5 only imposes the boundary values and the first or-

der normal derivatives as the boundary condition, which can be reliably estimated

using neighbouring image block information. We then derive a fast algorithm to

compute a 5th degree polyharmonic function that satisfies such a boundary condi-

tion. The Fourier Sine coefficients of the residual now has the same decaying rate
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as PHLST case. But due to the additional normal derivative information from the

boundary, the block effects of PHLST5 will be largely suppressed and the residual

component shall be much smaller. Hence it provides a better approximation result.

We shall also show our numerical experiments that demonstrates the superiority of

PHLST5 over the original PHLST in terms of the approximation efficiency.

keywords: local Fourier analysis, polyharmonic equation, discrete Sine transform

1 Introduction

One of us (NS) recently introduced the Polyharmonic Local Sine Transform (PHLST)

[12, 13] in an attempt to develop a local Fourier analysis and synthesis method without

encountering the infamous Gibbs phenomenon and to compensate several problems

in the local trigonometric transforms (LTTs) of Coifman and Meyer [5] and Malvar

[9, 10], such as the overlapping windows and the slope of the bell functions. PHLST

first segments a given function (or input data) f(x), x ∈ Ω ⊂ R
d supported on the

open and bounded domain Ω into a set of disjoint blocks {Ωj} such that Ω = ∪J
j=1Ωj

using the characteristic functions. Let fj be the restriction of f to Ωj , i.e., fj = χΩj
f .

Then PHLST decomposes each fj into two components as fj = uj + vj . The com-

ponents uj and vj are referred to as the polyharmonic component and the residual,

respectively. The polyharmonic component is obtained by solving the following poly-

harmonic equation:

∆muj = 0 in Ωj , m = 1, 2, . . . (1)

with given boundary values and normal derivatives

∂q`uj

∂ νq`
=

∂q`f

∂ νq`
on ∂Ωj , ` = 0, . . . , m − 1, (2)

where ∆ =
∑d

i=1 ∂2/∂x2
i is the Laplace operator in R

d, the natural number m is

called a degree of polyharmonicity, and q` is the order of the normal derivatives that

needs to be specified. The parameter q0 is normally set to 0, which means that uj = f
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on the boundary ∂Ωj , which is called the Dirichlet boundary condition. These bound-

ary conditions (2) enforce the function values and the normal derivatives of orders

q1, . . . , qm−1 of the solution uj along the boundary ∂Ωj to match those of the original

signal f over there. If the Ωj’s are all rectangles (of possibly different sizes), then

PHLST sets q` = 2`, i.e., the even order normal derivatives. It is not necessary to

match the odd order normal derivatives for the rectangular domain case because the

Fourier Sine series of vj is equivalent to the complex Fourier series expansion of the

extension of vj by odd reflection with respect to the boundary ∂Ωj and the continuity

of the odd order normal derivatives (up to order 2m− 1) is automatically guaranteed.

Note that for m = 1, 2, Equation (1) is usually called Laplace’s equation and the bi-

harmonic equation, respectively. Note also that in 1D (d = 1), uj for m = 1 is simply

a straight line connecting two boundary points of an interval Ωj whereas in the m = 2

case, it is a cubic polynomial. However, in higher dimensions (d ≥ 2), the solution

of (1) with (2) is not a tensor product of algebraic polynomials in general. Subtracting

such uj from fj gives us the residual vj = fj − uj satisfying

∂q`vj

∂ νq`
= 0 on ∂Ωj , ` = 0, . . . , m − 1. (3)

Since the values and the normal derivatives of vj on ∂Ωj vanish, its Fourier Sine ex-

pansion coefficients decay rapidly, i.e., O(‖k‖−2m−1), if there is no other intrinsic

singularity in Ωj . In fact, we have the following theorem.

Theorem 1.1. Let Ωj be a bounded rectangular domain in R
d, and let fj ∈ C2m(Ωj),

but non-periodic. Assume further that (∂/∂xi)
2m+1f , i = 1, . . . , d, exist and are of

bounded variation. Furthermore, let fj = uj + vj be the PHLST representation, i.e.,

the polyharmonic component uj is the solution of the polyharmonic equation (1) of

order m with the boundary condition (2) with q` = 2`, ` = 0, 1, . . . , m − 1, and

vj = fj − uj is the residual component. Then, the Fourier Sine coefficient bk of the

residual vj is of O
(

‖k‖−2m−1
)

for all k 6= 0, where k = (k1, . . . , kd) ∈ Z
d
+, and

‖k‖ is the Euclidean (i.e., `2) norm of k.

The proof of this theorem can be found in our previous paper [13]. We called this
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way of decomposing a function f into a set of functions {fj = uj + vj}
J
j=1 the Poly-

harmonic Local Sine Transform (PHLST) with degree of polyharmonicity m. Note that

if we employ the complex Fourier series expansion or the Fourier Sine expansion of

non-periodic fj by brute-force periodization, the decay rate becomes only O
(

‖k‖−1
)

even if fj ∈ C2m(Ωj). If we use the Fourier cosine series expansion of fj (as adopted

in the JPEG standard), we can get O
(

‖k‖−2
)

. This faster decay of the Fourier Sine co-

efficients of vj thus allows us to distinguish intrinsic singularities in the data from the

artificial discontinuities created by the local windowing or the periodization, and inter-

pret the frequency contents of each block without being influenced by the surrounding

blocks and without the edge effect such as the Gibbs phenomenon. Moreover, the poly-

harmonic components can be computed quickly by utilizing the FFT-based Laplace

solver developed by Averbuch, Braverman, Israeli, and Vozovoi [1, 4], which we shall

call the ABIV method, as long as the boundary data are stored and the normal deriva-

tives at the boundary are available. Combining this feature with the quickly decaying

expansion coefficients of the residuals, the usefulness of PHLST for m = 1 to image

approximation was demonstrated [12, 13].

Soon after developing PHLST, N. Saito and K. Yamatani extended it to the polyhar-

monic local cosine transform (PHLCT) [15] that makes the Fourier cosine coefficients

of the residual decay as O
(

‖k‖−2m−2
)

by setting q` = 2` + 1, ` = 0, . . . , m − 1

in the boundary condition (2) and introducing an appropriate source term in the right

hand side of the polyharmonic equation (1) [15]. In that paper, an efficient algorithm

was also developed to improve the quality of images already severely compressed by

the popular JPEG standard, which is based on Discrete Cosine Transform (DCT).

Finally, N. Saito also introduced the polyharmonic local Fourier transform (PHLFT)[13]

by setting q` = `, ` = 0, . . . , m − 1 in (2) and by replacing the Fourier Sine series

by the complex Fourier series in expanding the vj components [13]. With some sac-

rifice of the decay rate of the expansion coefficients, i.e., O
(

‖k‖−m−1
)

instead of

O
(

‖k‖−2m−1
)

or O
(

‖k‖−2m−2
)

, PHLFT allows one to compute local Fourier mag-

nitudes and phases without the Gibbs phenomenon and capture the important orienta-
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tion information much better than PHLST and PHLCT. Moreover, it is fully invertible

and should be useful for various filtering, analysis, and approximation purposes.

In all of the above transforms, however, we have only implemented and tested the

harmonic case, i.e., the degree of polyharmonicity m = 1. In other words, in practice,

we have only used Laplace’s or Poisson’s equations as the polyharmonic equation in (1)

so far. Consequently, we have only demonstrated the decay rates of PHLST, PHLCT,

and PHLFT as O
(

‖k‖−3
)

, O
(

‖k‖−4
)

, and O
(

‖k‖−2
)

, respectively. We call these

transforms with m = 1 as Laplace Local Sine Transform (LLST), Laplace Local Co-

sine Transform (LLCT), and Laplace Local Fourier Transform (LLFT), respectively. It

is theoretically possible to solve the polyharmonic equation of the higher degree poly-

harmonicity m > 1. But in practice, images are discontinuous almost everywhere and

contain noises. The main difficulty is to reliably estimate the required higher order

normal derivatives at the boundary of each block Ωj . If one tries to use higher order

boundary derivatives literally (i.e. estimated from a higher order polynomial fit), then

the values attends to be chaotically huge. Consequently the polyharmonic solution

(i.e., the u component) becomes a huge surface comparing to the original data and the

residual component v is also with large energy. Although v’s Fourier Sine coefficients

decays rapidly, it is virtually useless for approximation purpose. Therefore, in practice

we shall not only look for fast decaying rate of v’s Fourier Sine coefficients but also

a small energy v component. In this chapter, we explore a different aspect of PHLST.

Instead of blindly seeking for decaying rate, we consider polyharmonic equations as

tools to do smooth interpolation. The more boundary derivative information is used, the

better the prediction of the original image from the u component will be. If one takes

equally spaced samples from a smooth function. It is well known that a cubic spline

always converges to the function much faster than a piece-wise linear interpolation as

the mesh converges to zero. Similarly, we seek a tool which is a higher order inter-

polant than PHLST. In practice, higher order PHLST can be regarded as improvements

of LLST by killing blocking effects and reducing the energy from the residual com-

ponent. We also introduce a practical algorithm to compute PHLST with 5th degree
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polyharmonic equation (m = 5), yet constrained only by the Dirichlet and Neumann

conditions, i.e., by using only q0 = 0 and q1 = 1 in (2). Hence, we shall name this

PHLST5. We believe that this is the limit of the practicality in the line of PHLST of

higher degree polyharmonicity.

The organization of this paper is as follows. Section 2 describes the details of

how to construct our new transform, PHLST5. Section 3 shows the results of our

preliminary numerical experiments and demonstrates the improvements of PHLST5

over LLST in the approximation efficiency. Finally, we conclude this paper in Section 4

with our discussion of the potential problems and our future plans.

2 Construction of PHLST5

In this section, we shall only deal with two-dimensional images (i.e., d = 2), and focus

on the analysis of one image block Ωj for a particular j. Therefore, for simplicity, we

shall drop the subscript j that was used in many equations appeared in Introduction.

Furthermore, we shall assume Ω = (0, 1)2, the unit square in R
2.

2.1 Difficulties in Solving a Biharmonic Equation

Let f(x, y), (x, y) ∈ Ω be a given input image. If one consider LLST to be an in-

terpolant to match the boundary values, then the natural way to extend LLST is to

consider a biharmonic equation

∆2u = 0 (x, y) ∈ Ω, (4)

with boundary condition










u = f (x, y) ∈ ∂Ω

∂u

∂ν
=

∂f

∂ν
(x, y) ∈ ∂Ω

. (5)

A solution of such a biharmonic system will guarantee the regularity across the

boundary is one order higher. In addition, biharmonic solution will have minimum
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curvature property which will minimize the oscillation impact from the boundary data.

Theoretically, one can consider even higher order (i.e., m > 2) polyharmonic equation

with given boundary data (i.e., {∂ lf/∂νl}m−1
l=0 ). One should notice that the normal

derivatives of various orders at the boundary must be estimated from the given original

image samples. However, in practice, the normal derivative estimate ∂qf/∂νq with q ≥

2 is fragile and inaccurate, especially if the original image contains noise. Therefore,

any method requires such higher order normal derivatives is impractical.

Ideally, we would like to solve the the biharmonic equation (4) with the boundary

condition (5). However, numerically this biharmonic system is difficult to solve. There

are quite a few methods to numerically solve such a biharmonic equation. Some of the

representative methods include finite difference (FD) or FFT-based solver with the FD

approximation of the Laplace operator [3]; a method to convert it to an integral equation

followed by some iterative linear system solver [11]; and the spectral methods based

on the Chebyshev or Legendre polynomial expansions [2]. None of them are suitable

for our problem. The FD-based methods have low accuracy in the computed solution

in general. Moreover, both the FD-based methods and ones using the iterative linear

solvers are computationally expensive. The spectral methods using the Chebyshev or

Legendre polynomial expansions require function values sampled on the special grids

(i.e., the Chebyshev or the Legendre nodes), which are usually not available for our

problem because most digital images are sampled on the regular grids.

On the other hand, we wish to retain the flavor of the ABIV method as much as

possible. For solving Laplace’s equation with the Dirichlet boundary condition on

a rectangular domain, the ABIV method is ideal because: 1) thanks to their use of

the FFT algorithm, it is computationally fast; 2) it is very accurate; 3) the analytical

solution allows us to interpolate at any point within the domain. We refer the reader to

the original papers [1, 4] for the detailed information on the computational efficiency

and accuracy of the ABIV method. Unfortunately, the biharmonic equation (4) with

the boundary condition (5) does not permit us to use the ABIV method directly.
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2.2 Relaxing the Biharmonic System

Instead of solving the biharmonic equation (4) with the standard boundary condition

(5), we relax the polyharmonicity (i.e., m > 2) and propose the following polyhar-

monic system to fully incorporating the ABIV method.



















∆mu = 0 (x, y) ∈ Ω

u = f (x, y) ∈ ∂Ω

∂u

∂ν
=

∂f

∂ν
(x, y) ∈ ∂Ω.

(6)

In such a case, we still have the regularity improvement across the boundary. But

we lose the minimum curvature property. Note that (6) cannot be solved uniquely

because these boundary conditions make the problem underdetermined. Instead of

solving (6), therefore, we shall explicitly find a polyharmonic function that satisfies

(6).

In order to have a proper choice of m, we shall decouple (6) into two subsystems

(i.e.,u = u1 + u2). The component u1 is the solution of Laplace’s equation with the

Dirichlet boundary condition:






∆u1 = 0 (x, y) ∈ Ω

u1 = f (x, y) ∈ ∂Ω
, (7)

which can be solved efficiently by the ABIV method. The component u2 takes care of

the rest:


















∆mu2 = 0 (x, y) ∈ Ω

u2 = 0 (x, y) ∈ ∂Ω

∂u2

∂ν
= g :=

∂f

∂ν
−

∂u1

∂ν
(x, y) ∈ ∂Ω.

(8)

Following the similar strategy used in the ABIV method, we shall find {Gk}
∞
k=1 which

have the following properties:

1. Gk = 0 (x, y) ∈ ∂Ω

2. ∂Gk

∂ν
= 0 (x, y) ∈ ∂Ω\{(x, y)|x = 1}
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Note: such a property will allow one to treat four edges of the boundary sepa-

rately.

3. { ∂Gk

∂ν
= 0

∣

∣

x=1
}∞k=1 is a basis on [0, 1].

Let hk(x, y) := sin(kπy) sinh(kπx)
sinh(kπ) , which is used in ABIV’s Laplace solver with the

following properties:

1. ∆hk = 0 (x, y) ∈ Ω

2. hk = 0 (x, y) ∈ ∂Ω\{(x, y)|x = 1}

3. {hk|x=1}
∞
k=1 is a basis on [0, 1].

A natural way to construct Gk is to seek a form, Gk = hkp(x, y), where p(x, y) is a

polynomial. To make Gk satisfy above three properties is to choose a p(x, y) which

will vanish at ∂Ω. The simplest choice is p(x, y) = x(x − 1)y(y − 1). In fact, we can

show the polyharmonicity of Gk is equal to the summation of the polyharmonicity of

hk and the degree of p(x, y) (i.e., ∆(1+4)Gk = 0). Hence, we found (6) with m = 5 is

one polyharmonic system which can be computed fast and accurate.

Once we find this polyharmonic u component, then the residual v and its Fourier

Sine series expansion are computed as usual. We shall refer to this new version of

PHLST as PHLST5. In PHLST5 the Fourier Sine coefficients of v have the same de-

cay rate as that of PHLST. But the `2 residual norm of PHLST5 is smaller for smooth

images (see numerical experiments). However, to match (5), there are a plenty of other

methods. In fact, we will show that it is possible to use scattered data interpolation

methods such as a radial basis function to compute the u component in our numeri-

cal experiment, which will achieve the same boundary condition (5). However, it is

computational expensive.

2.3 An Algorithm to Compute PHLST5

Because (7) can be solved directly by ABIV’s Laplace solver, our main task is to find

a polyharmonic function that satisfies (8). The algorithm is proposed as follows:
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Step 1: Decompose (8) into four independent subproblems.























∆5u
(1)
2 = 0 (x, y) ∈ Ω

u
(1)
2 = 0 (x, y) ∈ ∂Ω

∂u
(1)
2

∂ν
= g(1) (x, y) ∈ ∂Ω

, g(1) =































g x ∈ (0, 1), y = 0

0 x ∈ (0, 1), y = 1

0 x = 0, y ∈ (0, 1)

0 x = 1, y ∈ (0, 1)

,

(9)






















∆5u
(2)
2 = 0 (x, y) ∈ Ω

u
(2)
2 = 0 (x, y) ∈ ∂Ω

∂u
(2)
2

∂ν
= g(2) (x, y) ∈ ∂Ω

, g(2) =































0 x ∈ (0, 1), y = 0

0 x ∈ (0, 1), y = 1

g x = 0, y ∈ (0, 1)

0 x = 1, y ∈ (0, 1)

,

(10)






















∆5u
(3)
2 = 0 (x, y) ∈ Ω

u
(3)
2 = 0 (x, y) ∈ ∂Ω

∂u
(3)
2

∂ν
= g(3) (x, y) ∈ ∂Ω

, g(3) =































0 x ∈ (0, 1), y = 0

g x ∈ (0, 1), y = 1

0 x = 0, y ∈ (0, 1)

0 x = 1, y ∈ (0, 1)

,

(11)






















∆5u
(4)
2 = 0 (x, y) ∈ Ω

u
(4)
2 = 0 (x, y) ∈ ∂Ω

∂u
(4)
2

∂ν
= g(4) (x, y) ∈ ∂Ω

, g(4) =































0 x ∈ (0, 1), y = 0

0 x ∈ (0, 1), y = 1

0 x = 0, y ∈ (0, 1)

g x = 1, y ∈ (0, 1)

.

(12)

Step 2: Construct four sets of polyharmonic functions satisfying (9)–(12) as follows:

G1 := {G1k}
∞
k=1 :=

{

x(x − 1) sin(kπx) · y(y − 1) sinh(kπ(1−y))
sinh(kπ)

}∞

k=1

G2 := {G2k}
∞
k=1 :=

{

x(x − 1) sinh(kπ(1−x))
sinh(kπ) · y(y − 1) sin(kπy)

}∞

k=1

G3 := {G3k}
∞
k=1 :=

{

x(x − 1) sin(kπx) · y(y − 1) sinh(kπy)
sinh(kπ)

}∞

k=1

G4 := {G4k}
∞
k=1 :=

{

x(x − 1) sinh(kπx)
sinh(kπ) · y(y − 1) sin(kπy)

}∞

k=1
(13)

One can verify each function in Gi satisfies the zero Dirichlet condition as in (8)

and its normal derivatives are zeros on three edges except the one with g(i) as in

10



(9)–(12).

Step 3: Compute the normal derivative of functions in each set Gi at the boundary.

P1 := {x(x − 1) sin(kπx)}∞k=1 := {P1k}
∞
k=1 x ∈ (0, 1), y = 0

P2 := {y(y − 1) sin(kπy)}∞k=1 := {P2k}
∞
k=1 x = 0, y ∈ (0, 1)

P3 := {x(x − 1) sin(kπx)}∞k=1 := {P3k}
∞
k=1 x ∈ (0, 1), y = 1

P4 := {y(y − 1) sin(kπy)}∞k=1 := {P4k}
∞
k=1 x = 1, y ∈ (0, 1).

(14)

Step 4: Expand g(i) =
∞
∑

k=1

w
(i)
k Pik , i = 1, . . . , 4.

Step 5: Set u2 =
4

∑

i=1

∞
∑

k=1

w
(i)
k Gik , which is a desired polyharmonic function.

In practice, if we discretize the image f at (xi, yj) = (i/N, j/N), i, j = 0, 1, . . . , N −

1, N , and view it as a matrix of size (N +1)× (N +1), then Steps 2, 3, 4 above should

use N − 1 terms instead of the infinite terms. The over all computation cost is about

the twice as the ABIV method for Laplace’s equation if we do not count the cost for

normal derivative estimates. Note that in Step 4, we first divide the boundary function

g(i) on (0, 1) by the quadratic polynomial x(x − 1) for i = 1, 3 and y(y − 1) for

i = 2, 4. Since the two endpoints of the interval are not included in the division, there

is no blowup here. Finally, we expand the results into the Fourier Sine series. Notice

that one can easily show that g(i) are zeros at the endpoints so that these functions even

after divided by x(x − 1) or y(y − 1) are still suitable functions to expand into the

Fourier Sine series.

The algorithm by itself now is complete. However the normal derivatives are not

given in practice. If one take a close look at our FFT-based Laplace solver, the solution

is given in analytic form. We simply take the derivatives of u components from two

side of the boundary (between two blocks) and do the average. Those values will be

fed on our algorithm as our estimated normal derivatives. Hence the algorithm has the

following features:
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• Since the normal derivative estimation is computed from the u component, we

don’t need to store them. Hence PHLST5 has the same storage and information

requirement as LLST.

• The computation cost of the u component in PHLST5 is just twice as much as

that of LLST.

• Since the additional normal derivatives are matched at the grids, PHLST5 will

have a globally smoother u component.

3 Numerical Experiments

In this section, we shall report the results of our numerical experiments and compare

the performance of PHLST5 with that of LLST and that of the method using scattered

data approximation by radial basis functions.

3.1 Experiments with Synthetic Data

We set the domain Ω = [0, 1]2. The first image we have chosen is a smooth flat

function f(x, y) = sin(x + 2y)e−3((x−0.2)2+(y−0.4)2). We sample the image on the

regular lattice with 129 × 129 grid points. Note that the first normal derivatives at the

boundary used in PHLST5 can be calculated analytically. Figure 1 shows the residuals

of LLST and PHLST5 in the spatial domain and in the frequency domain. PHLST5

clearly outperforms LLST in terms of the size of the v component. In fact, the v

component of PHLST5 has much smaller `2 norm than that of LLST as we can see

from Figure 1 (b) and (c). The ratio of ‖v‖2 to ‖f‖2 is 0.1317 in PHLST5 while that

of LLST is 0.4969. This means that the u component in PHLST5 predicts the original

f better than that in LLST in terms of the `2 norm.

Next, we examine a more oscillatory image, f(x, y) = sin(20(x+2y))e−3((x−0.2)2+(y−0.4)2).

We sample the image on the regular lattice with 1025×1025 grid points. We apply our

algorithm in different levels of segmentation. We denote J as the levels of dyadic splits
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(b) LLST residual
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(c) PHLST5 residual

Figure 1: u comparison of LLST and PHLST5 using the smooth data.

(i.e., J = 0 means no splitting.) We refer u and v as the union of polyharmonic compo-

nents and the union of residual components. Here we are not using analytic derivative

information from the given formula. We apply the estimation method mentioned in the

end of Section 2.3. One can see that in the coarsest level, the v component (i.e., the

union of the local residuals pieces) of LLST is smaller than that of PHLST5. However

as we further segmenting our function into local pieces, PHLST5 outperforms LLST

markedly. Figures in 2 and 3 compare the convergence of u components to our orig-

inal function as the mesh gets finer. Here the relative `2 norm (i.e., ||v||
||f || ) is computed

as our error. For local pieces, the situation is very similar as we saw in our first exam-

ple. Since PHLST5 includes more information from the boundary, we would expect it

predicts original function better.

3.2 Experiments with Real Images

We now report our results using real images. We have selected two regions of the

popular “Barbara” image for our experiments. One is around the face area (smooth

region) with the scarf (some oscillations). The other one is the region around the leg

area (very oscillatory). The size of both images are 129× 129 pixels. We first compute

the U (i.e., the union of the u components) and expand the V (i.e., the union of the v

components) into the Fourier Sine series. (Note: In practice, we should approximate
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(b) J=1, Err = 0.9102

LLST J = 2 Err = 0.6498
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(c) J=2, Err = 0.6498
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Figure 2: The u component of LLST in different levels of splits.
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Figure 3: The u component of PHLST5 in different levels of splits.
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those v components by their local Fourier Sine transforms. But here, we simply take

the Fourier Sine transform of V to show the influence of our improved U component.)

Then we approximate V with a few large Fourier Sine coefficients and reconstruct

via the original U and approximated V . We compare the approximation qualities by

use PSNR (i.e., Peak Signal-to-Noise Ratio), SNR (i.e., Signal-to-Noise Ratio) and

MSSIM [14]. MSSIM is an image similarity index between [0, 1] that compares the

difference between two images in terms of luminance, contrast and structure. The

closer MSSIM to 1, the more similar two images are. The first normal derivatives

were computed using the estimator mentioned in Section 2.3 again. In addition, we

also compare with the u component computed from the radial basis function transform

(RDT) based global scattered approximation [6, 7, 8]. In RDT, we choose our φ(x) =
√

||x||22 + 1 and consider the linear system

∑

yi∈S

ciφ(xj − yi) = f(xj), xj ∈ S (15)

Here S is the grid structure where we sample our image data and f(xj) is the gray

scale image value at the given spot xj . We solve for the coefficients of (15) and use the

Nyström method to extend the interpolant to the full square region. One shall notice

the u component of RDT gives a function in C∞. In this experiment, we shall split

the image domain homogenously into 4 × 4 blocks (i.e., 32 × 32 pixels within each

block) and 8 × 8 blocks (i.e., 16 × 16 pixels within each block). Figures 4, 5 show

the u components. Figures 6, 8 and figures 7, 9 (zoom up version) show the quality

difference measured by PSNR, SNR and MSSIM respectively.

From these figures, we observed the following:

• In the face image (smooth):

1. The u component of PHLST5 showed a visual improvement over that of

LLST in the eye areas.

2. RDT performed the best, followed by PHLST5 and then LLST.

3. With further splitting the image domain, the measurement curves of RDT
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and PHLST5 were separated from that of LLST even more.

• In the leg image (textured):

1. RDT and PHLST still showed a significant advantage in PSNR and SNR.

But three approaches were not significantly different in terms of MSSIM.

2. Further splitting the image domain benefits RDT and PHLST5 in terms of

PSNR and SNR.

One can see that RDT outperforms the other two methods in both regions in terms

of PSNR and SNR. Because RDT is a global smooth interpolation, in addition to match

the boundary values of a single segmented block, it matches all the samples on the grid

structure. On the other hand, PHLST5 only averages the derivatives among the neigh-

bouring blocks. Comparing to PHLST5, the derivatives across the boundary of RDT

can be obtained by using global data information. Hence RDT gives a very smooth

interpolant. The smoothness contributes the better PSNR and SNR curves.

In order to see the perceptual quality of these approximations, we further examining

the reconstruction quality of two real images. Figures 10, 11, 12, 13, 14 and 15 shows

the reconstructions and the errors by using the top 1500 coefficients (i.e. 10.41% coef-

ficients) with 8 × 8 segmentation of the 129 × 129 Barbara image. Figures 17, 18, 19

and 20 shows the reconstructions and the errors by using the top 500 coefficients (i.e.,

2.14% coefficients) with 32 × 32 segmentation of the 513 × 513 Lenna image. Now

it is clear that the quality of PHLST5 approximation is better than LLST approxima-

tion. The features from eyes, nose and mouth area are more obviously shown in the

reconstruction error of LLST in both Barbara and Lenna images. In addition, blocking

artifact presents in LLST.

4 Discussion

We have described a new, practical, and improved version of PHLST called PHLST5

that uses the 5th degree polyharmonic function as the u component whose the boundary
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Figure 4: U components from RDT, LLST and PHLST5 in the face area
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19



0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

110

Ratio of retained coefficients (%)

M
SS

IM

RDT
LLST
PHLST5

(a) PSNR 4×4 segmentation in Face

Image Area

0 10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

110

Ratio of retained coefficients (%)

PS
NR

RDT
LLST
PHLST5

(b) PSNR 8×8 segmentation in Face
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(c) SNR 4 × 4 segmentation in Face
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(d) SNR 8 × 8 segmentation in Face
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(e) MSSIM 4 × 4 segmentation in

Face Image Area
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Figure 6: Quality Measurements of Face Image Area
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(c) SNR 4 × 4 segmentation in Face
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(e) MSSIM 4 × 4 segmentation in
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Figure 7: Zoom Up Version of Figure 6
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(c) SNR 4 × 4 segmentation in Leg
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Figure 8: Quality Measurements of Leg Image Area
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Figure 9: Zoom Up Version of Figure 8
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Figure 10: The 1500 Coefficient Reconstruction from RDT
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Figure 11: The 1500 Coefficient Reconstruction from LLST
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Figure 12: The 1500 Coefficient Reconstruction from PHLST5
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Figure 13: The Error component from RDT
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Figure 15: The Error component from PHLST5
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Figure 16: The Original Image of Lenna
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Figure 17: The 500 Coefficient Reconstruction from LLST
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Figure 18: The 500 Coefficient Reconstruction from PHLST5
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Figure 19: The Error from LLST
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Figure 20: The 500 Coefficient Reconstruction from PHLST5
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values and the first normal derivatives at the boundary match with those of the original

function f . The coefficients of residual v = f − u has same decaying rate but much

smaller energy. Similarly to the ABIV method, our algorithm to compute the PHLST5

representation of an input image is fast, accurate, and based on a analytic formula.

Thus, this method also should be able to use for image interpolation and zooming

without suffering from the Gibbs phenomenon. We also showed a Radial basis function

based transform (RDT) to compute the u component. It provides a global smooth

interpolation. Hence in smooth regions, it predicts the original image well and has

a very small v component. However the computation cost of RDT is huge since it

requires to solve a full linear system (15). We have demonstrated the advantage of

PHLST5 over LLST using two synthetic datasets in terms of the size residual. our

experiments on the real images confirms that PHLST5 beats LLST at smooth regions.

There’re numbers of issues still left open. First, the theoratical aspect of PHLST5

is still left open. This is not an easy task since we are using 5th degree polyharmonic

operator which is not well studied. At this point we only numerically demonstrated the

u component of PHLST5 converges to original function much faster than than LLST

by further splitting the domain. We will set this topic into our high priority research.

Second, PHLST5 has been shown to improve LLST at smooth regions of a image. It’s

necessary to come up with a criteria while one is splitting a image. So that we can

tell where exactly PHLST5 should be applied. Due to the difficulty of higher order

derivative estimation, we consider PHLST5 is the practical limitation of higher degree

PHLST.
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