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ABSTRACT

We describe an algorithm to estimate a discrete signal from its noisy observation, using a library of orthonormal
bases (consisting of various wavelets, wavelet packets, and local trigonometric bases) and the information-
theoretic criterion called minimum description length (MDL). The key to effective random noise suppression is
that the signal component in the data may be represented efficiently by one or more of the bases in the library,
whereas the noise component cannot be represented efficiently by any basis in the library. The MDL criterion
gives the best compromise between the fidelity of the estimation result to the data (noise suppression) and the
efficiency of the representation of the estimated signal (signal compression): it selects the “best” basis and the
“best” number of terms to be retained out of various bases in the library in an objective manner. Because of the
use of the MDL criterion, our algorithm is free from any parameter setting or subjective judgments.
This method has been applied usefully to various geophysical datasets containing many transient features.

1. INTRODUCTION

Wavelet transforms and their relatives such as wavelet packet transforms and local trigonometric transforms
are becoming increasingly popular in many fields of applied sciences. So far their most successful application
area seems to be data compression.24,8,13,5,32,28 Meanwhile, several researchers claimed that wavelets and these
transforms are also useful for reducing noise in (or denoising) signals/images.14,9,19 In this paper, we take
advantage of both sides: we propose an algorithm for simultaneously suppressing random noise in data and
compressing the signal, i.e., we try to “kill two birds with one stone.”

Throughout this paper, we consider a simple degradation model: observed data consists of a signal component
and additive white Gaussian noise (WGN). Our algorithm estimates the signal component from the data using
a library of orthonormal bases (including various wavelets, wavelet packets, and local trigonometric bases) and
the information-theoretic criterion called the Minimum Description Length (MDL) criterion for discriminating



signal from noise.

The key motivation here is that the signal component in the data can often be efficiently represented by one or
more of the bases in the library whereas the noise component cannot be represented efficiently by any basis in the
library. The use of the MDL criterion frees us from any subjective parameter setting such as threshold selection.
This is particularly important for real, field data where the noise level is difficult to obtain or estimate a priori.

The organization of this paper is as follows. In Section 2, we formulate our problem. We view the problem of
simultaneous noise suppression and signal compression as a model selection problem out of models generated
by “a library of orthonormal bases.” In Section 3, we review the MDL principle which plays a critical role in
this paper. We also give some simple examples to help understand its concept. In Section 4, we develop an
actual algorithm of simultaneous noise suppression and signal compression. We also give the computational
complexity of our algorithm. Then, we extend our algorithm for higher dimensional signals (images) in Section 5.
In Section 6, we apply our algorithm to several geophysical datasets, both synthetic and real, and compare the
results with other competing methods. We discuss the connection of our algorithm with different approaches in
Section 7, and finally, we conclude in Section 8.

2. THE FORMULATION OF THE PROBLEM

Let us consider a discrete degradation model

d = f + n, (2.1)

where d,f ,n ∈ R
N and N = 2n. The vector d represents the noisy observed data and f is the unknown true

signal to be estimated. The vector n is the WGN, i.e., n ∼ N(0, σ2I). Let us assume that σ2 is unknown.

We now consider an algorithm to estimate f from the noisy observation d. To do this, we need an efficient
representation scheme for the signal f which may consist of various transient features or edges. For this purpose,
we prepare a library of orthonormal bases including the standard Euclidean basis of R

N , the Haar-Walsh bases,
various wavelet bases and wavelet packet best-bases generated by Daubechies’s QMFs, their less asymmetric
versions (i.e., coiflets), and local trigonometric best-bases. This collection of bases is highly adaptable and
versatile for representing various transient signals. For example, if the signal consists of blocky functions such as
acoustic impedance profiles of subsurface structure, the Haar-Walsh bases capture those discontinuous features
both accurately and efficiently. If the signal consists of piecewise polynomial functions of order p, then the
Daubechies wavelets/wavelet packets with the filter length L > 2(p + 1) or the coiflets with the filter length
L > 3(p + 1) would be efficient because of the vanishing moment property. If the signal has a sinusoidal shape
or highly oscillating characteristics, the local trigonometric bases would do the job. Moreover, computational
efficiency of this library is also attractive; the most expensive expansion in this library, i.e., the local trigonometric
expansion, costs about O(N [log2 N ]2) as explained in the previous section. More detailed properties of these
bases can be found in the literature.1,8,12,21,20,31

Let us denote this library L = {B1,B2, . . . ,BM}, where Bm represents one of the orthonormal bases in the
library, and M (typically 5 to 20) is the number of bases in this library. If we want, we can add other orthonormal
bases in this library such as the Karhunen-Loève basis or the prolate spheroidal wave functions. However,
normally, the above-mentioned multiresolution bases are more than enough, considering their versatility and
computational efficiency.

Since the bases in the library L compress signals/images very well, we make a strong assumption here: we



suppose the unknown signal f can be completely represented by k (< N ) elements of a basis Bm, i.e.,

f = W mα(k)
m , (2.2)

where W m ∈ R
N×N is the orthogonal matrix whose column vectors are the basis elements of Bm, and α(k)

m ∈ R
N

is the vector of expansion coefficients of f with only k non-zero coefficients. At this point, we do not know
the actual value of k and the basis Bm. However, we regard (2.2) as a model which should be selected from
the library L. Now the problem of simultaneous noise suppression and signal compression can be stated as
follows: find the “best” k and m given the library L. In other words, we translate the estimation problem into
a model selection problem where models are the bases Bm and the number of terms k under the additive WGN
assumption.

For data compression purposes, we want to have k as small as possible. At the same time, we want to minimize
the distortion between the estimate and the true signal by choosing the most suitable basis Bm, where the larger
k normally gives smaller value. How can we satisfy these seemingly conflicting demands?

3. THE MINIMUM DESCRIPTION LENGTH PRINCIPLE

To satisfy the above mentioned conflicting demands, we need a model selection criterion. One of the most
suitable criteria for our purpose is the so-called Minimum Description Length (MDL) criterion proposed by
Rissanen,25,26.27 The MDL principle suggests that the “best” model among the given collection of models is the
one giving the shortest description of the data and the model itself. For each model in the collection, the length
of description of the data is counted as a codelength of encoding the data using that model in binary digits (bits).
The length of description of a model is a codelength of specifying that model, e.g., the number of parameters and
their values if it is a parametric model.

To help understand what “code” or “encoding” means, we give some simple examples. We assume that we
want to transmit data by first encoding (mapping) them into a bitstream by an encoder, then receive the bitstream
by a decoder, and finally try to reconstruct the data. Let L(x) denote the codelength (in bits) of a vector x of
deterministic or probabilistic parameters of either real-valued, integer-valued, or taking values in a finite alphabet.

Example 4.1: Codelength of symbols drawn from a finite alphabet. Let x = (x1, x2, . . . , xN) be a string of
symbols drawn from a finite alphabet X with the independently and identically distributed (i.i.d.) probability
mass function p(x), x ∈ X. In this case, clearly the frequently occurring symbols should have shorter codelengths
than rarely occurring symbols for efficient communication. This leads to the so-called Shannon code10 whose
codelength (if we ignore the integer requirement for the codelength) can be written as

L(x) = − log p(x) for x ∈ X. (3.1)

(From now on, we denote the logarithm of base 2 by “log”, and the natural logarithm, i.e., base e by “ln”.) The
Shannon code has the shortest codelength on average, and satisfies the so-called the Kraft inequality10:

∑

x∈X

2−L(x) ≤ 1, (3.2)

which is necessary and sufficient for the existence of an instantaneously decodable code, i.e., a code such that
there is no codeword which is the prefix of any other codeword in the coding system. The shortest codelength



on average for the whole sequence x becomes

L(x) =
N∑

i=1

L(xi) = −
N∑

i=1

log p(xi). (3.3)

Example 4.2: Codelength of deterministic integers. For a deterministic parameter j ∈ ZN = (0, 1, . . . ,N − 1)
(i.e., both the encoder and decoder know N ), the codelength of describing j is written as L(j) = log N since
log N bits are required to specify N . This can also be interpreted as a codelength using Shannon code for a
sample drawn from the uniform distribution over (0, 1, . . . ,N − 1).

Example 4.3: Codelength of an integer (universal prior for an integer). Suppose we do not know how large
a natural number j is. Rissanen proposed in25 that the code of such j should be the binary representation of
j, preceded by the code describing its length log j, preceded by the code describing the length of the code for
log j, . . . . This recursive strategy leads to

L∗(j) = log∗ j + log c0 = log j + log log j + · · · + log c0, (3.4)

where the sum involves only the non-negative terms and the constant c0 ≈ 2.865064 which was computed to
satisfy the Kraft inequality with equality, i.e.,

∑∞

j=1 2−L∗(j) = 1. This can be generalized for an integer j by
defining

L∗(j) =

{
1/2 if j = 0,

1/2 (log∗ |j| + log 2c0) otherwise.
(3.5)

(We can easily see that (3.5) satisfies
∑∞

j=−∞ 2−L∗(j) = 1.)

Example 4.4: Codelength of a truncated real-valued parameter. For a deterministic real-valued parameter v ∈ R,
the exact code generally requires infinite length of bits. Thus, in practice, some truncation must be done for
transmission. Let δ be the precision and vδ be the truncated value, i.e., |v − vδ| < δ. Then, the number of bits
required for vδ is the sum of the codelength of its integer part [v] and the number of fractional binary digits of
truncation precision δ, i.e.,

L(vδ) = L∗([v]) + log(1/δ). (3.6)

Having gone through the above examples, now we can state the MDL principle more clearly. Let M = {θm :
m = 1, 2, . . . } be a class or collection of models at hand. The integer m is simply an index of a model in the
list. Let x be a sequence of observed data. Assume that we do not know the true model θ generating the data x.
As in,27,22 given the index m, we can write the codelength for the whole process as

L(x,θm,m) = L(m) + L(θm | m) + L(x | θm,m). (3.7)

This equation says that the codelength to rewrite the data is the sum of the codelengths to describe (1) the index
m, (2) the model θm given m, and (3) the data x using the model θm. The MDL criterion suggests picking the
model θm∗ which gives the minimum of the total description length (3.7).

The last term of the right-hand side (RHS) of (3.7) is the length of the Shannon code of the data assuming the
model θm is the true model, i.e.,

L(x | θm,m) = − log p(x |θm,m), (3.8)



and the maximum likelihood (ML) estimate θ̂m minimizes (3.8) by the definition:

L(x | θ̂m,m) = − log p(x |θ̂m,m) ≤ − log p(x |θm,m). (3.9)

However, in practice, we must truncate the real-valued parameters specifying the models in M as shown in
Example 4 above. In other words, we must use the truncated version of the ML estimate. The finer truncation
precision we use, the smaller the term (3.9), but the larger the term L(θ̂m | m) becomes. Suppose that the model
θm has km real-valued parameters, i.e., θm = (θm,1, . . . , θm,km

). Rissanen showed in,2527 that the optimized
truncation precision (δ∗) is of order 1/

√
N and

min
δ

L(x,θm,δ,m, δ) = L(m) + L(θ̂m,δ∗ | m) + L(x | θ̂m,δ∗ ,m) + O(km)

≈ L(m) +
km∑

j=1

L∗([θ̂m,j]) +
km

2
log N + L(x | θ̂m,m) + O(km),

(3.10)

where θ̂m is the optimal non-truncated value given m, and L∗(·) is defined in (3.6). We note that the last term
O(km) in the approximation in (3.10) includes the penalty codelength necessary to describe the data x using the
truncated ML estimate θ̂m,δ∗ instead of the true ML estimate θ̂m. For sufficiently large N , the last term may be
omitted, and instead of minimizing the ideal codelength (3.7), Rissanen proposed to minimize

MDL(x, θ̂m,m) = L(m) +
km∑

j=1

L∗([θ̂m,j]) +
km

2
log N + L(x | θ̂m,m). (3.11)

The minimum of (3.11) gives the best compromise between the low complexity in model and high likelihood on
the data.

The first term of the RHS of (3.11) can be written as

L(m) = − log p(m), (3.12)

where p(m) is the probability of selecting m. If there is a prior information about m as to which m is more
likely, we should reflect this in p(m). Otherwise, we assume each m is equally likely, i.e., p(m) is a uniform
distribution.

Remark 1: Even though the list of models M does not include the true model, the MDL method achieves the
best result among the available models. See Barron,2 Barron and Cover3 for detailed information on the error
between the MDL estimate and the true model.

Remark 2: We also would like to note that the MDL principle does not attempt to find the absolutely minimum
description of the data. The MDL always requires an available collection of models and simply suggests picking
the best model from that collection. In other words, the MDL can be considered as an “oracle” for model
selection. This contrasts with the algorithmic complexities such as the Kolmogorov complexity which gives the
absolutely minimum description of the data, however, in general, is impossible to obtain.25

Before deriving our simultaneous noise suppression and signal compression algorithm in the context of the
MDL criterion, let us give a closely related example:

Example 4.5: A curve fitting problem using polynomials. Given N points of data (xi, yi) ∈ R
2, consider the

problem of fitting a polynomial through these points. The model class we consider is a set of polynomials of
orders 0, 1, . . . ,N − 1. In this case, θm = (a0, a1, . . . , am) represents the m + 1 coefficients of a polynomial
of order m. We also assume that the data is contaminated by the additive WGN with unknown variance σ2, i.e.,

yi = f(xi) + ei,



where f(·) is an unknown function to be estimated by the polynomial models, and ei ∼ N(0, σ2). To invoke
the MDL formalism, we pose this question in the information transmission setting. First we prepare an encoder
which computes the ML estimate of coefficients of the polynomial, (â0, . . . , âm) of the given degree m from
the data. (In the additive WGN assumption the ML estimate coincides with the least square estimate.) This
encoder transmits these m coefficients as well as the estimation errors. We also prepare a decoder which receives
the coefficients of the polynomial and residual errors and reconstruct the data. (We assume that the abscissas
{xi}1≤i≤N and the noise variance σ2 are known to both the encoder and the decoder.) Then we ask how many
bits of information should be transmitted to reconstruct the data. If we used polynomials of degree N − 1, we
could find a polynomial passing through all N points. In this case, we could describe the data extremely well.
In fact, there is no error between the observed data and the ones reconstructed by the decoder. However, we
do not gain anything in terms of data compression/transmission since we also have to encode the model which
requires N coefficients of the polynomial. In some sense, we did not “learn” anything in this case. If we used
the polynomial of degree 0, i.e., a constant, then it would be an extremely efficient model, but we would need
many bits to describe the deviations from that constant. (Of course, if the underlying data is really a constant,
then the deviation would be 0.)

Let us assume there is no prior preference on the order m. Then we can easily see that the total codelength
(3.11) in this case becomes

MDL(y, θ̂m,m) = log N +
m∑

j=0

L∗([âj ]) +
m + 1

2
log N +

N

2
log 2πσ2 +

log e

2σ2

N∑

i=1


yi −

m∑

j=0

âjxi
j




2

.
(3.13)

The MDL criterion suggests to pick the “best” polynomial order m∗ by minimizing this approximate codelength.

The MDL criterion has been successfully used in various fields such as signal detection,30 image segmenta-
tion,17 and cluster analysis29 where the optimal number of signals, regions, and clusters, respectively should be
determined. Most of these applications use very rigid models such as a set of sinusoids, piecewise polynomials,
etc., which either lack adaptability to transient features or are time-consuming to estimate their parameters.

We would like to note that compared to the set of polynomials or sinusoids, the library of wavelets, wavelet
packets, and local trigonometric transforms provide a versatile set of models which efficiently describe real-life
signals which are full of transients or edges.

4. A SIMULTANEOUS NOISE SUPPRESSION AND SIGNAL COMPRESSION
ALGORITHM

We carry on our development of the algorithm based on the information transmission setting as the polynomial
curve fitting problem described in the previous section. We consider again an encoder and a decoder for our
problem. Given (k,m) in (2.2), the encoder expands the data d in the basis Bm, then transmits the number of
terms k, the specification of the basis m, and k expansion coefficients, the variance of the WGN model σ2, and
finally the estimation errors. The decoder receives this information in bits and tries to reconstruct the data d.

In this case, the total codelength to be minimized may be expressed as the sum of the codelengths of (1) two
natural numbers (k,m), (2) (k + 1) real-valued parameters (α(k)

m , σ2) given (k,m), and (3) the deviations of
the observed data d from the (estimated) signal f = W mα(k)

m given (k,m,α(k)
m , σ2). The approximate total



description length (3.11) now becomes

MDL(d, α̂(k)
m , σ̂2, k,m) = L(k,m) + L(α̂(k)

m , σ̂2 | k,m) + L(d | α̂
(k)
m , σ̂2, k,m), (4.1)

where α̂
(k)
m and σ̂2 are the ML estimates of α(k)

m and σ2, respectively.

Let us now derive these ML estimates. Since we assumed the noise component is additive WGN, we have the
probability of observing the data given all model parameters

P (d | α(k)
m , σ2, k,m) = (2πσ2)−N/2 exp

(
−‖d − W mα(k)

m ‖2

2σ2

)
, (4.2)

where ‖ · ‖ is the standard Euclidean norm on R
N . For the ML estimate of σ2, first consider the log likelihood

of (4.2)

ln p(d |α(k)
m , σ2, k,m) = −N

2
ln 2πσ2 − ‖d − W mα(k)

m ‖2

2σ2
. (4.3)

Taking the derivative with respect to σ2 and setting it to zero, we easily obtain

σ̂2 =
1

N
‖d − W mα(k)

m ‖2. (4.4)

Insert this equation back to (4.3) to get

ln p(d |α(k)
m , σ̂2, k,m) = −N

2
ln

(
2π

N
‖d − W mα(k)

m ‖2

)
− N

2
. (4.5)

Let d̃m = W
T
md denote a vector of the expansion coefficients of d in the basis Bm. Since this basis is

orthonormal, i.e., W m is orthogonal, and we use the ℓ2 norm, we have

‖d − W mα(k)
m ‖2 = ‖W m(W T

md − α(k)
m )‖2 = ‖d̃m − α(k)

m ‖2. (4.6)

Putting this back to (4.5) and then we find that maximizing (4.5) is equivalent to minimizing

‖d̃m − α(k)
m ‖2. (4.7)

Considering that the vector α(k)
m only contains k nonzero elements, we can easily conclude that the minimum of

(4.7) is achieved by taking the largest k coefficients in magnitudes of d̃m as the ML estimate of α(k)
m , i.e.,

α̂
(k)
m = Θ

(k)
d̃m = Θ

(k)(W T
md), (4.8)

where Θ
(k) is a thresholding operation which keeps the k largest elements in absolute value intact and sets all

other elements to zero. Finally, inserting (4.8) into (4.4), we obtain

σ̂2 =
1

N
‖W T

md − Θ
(k)

W
T
md‖2 =

1

N
‖(I − Θ

(k))W T
md‖2, (4.9)

where I represents the N dimensional identity operator (matrix).

Let us further analyze (4.1) term by term. Let us assume now that we do not have any prior information on
(k,m) so that the cost L(k,m) is the same for all cases, i.e., we can drop the first term of (4.1) for minimization
purpose. If one has some prior preference about the choice of basis, knowing some prior information about the
signal f , L(k,m) should reflect this information. For instance, if we happen to know that the original function
f consists of linear combination of dyadic blocks, then we clearly should use the Haar basis. In this case, we



may use the Dirac distribution, i.e., p(m) = δm,m0
, where m0 is the index for the Haar basis in the library L. By

(3.12), this leads to

L(k,m) =

{
L(k) if m = m0,

+∞ otherwise.
(4.10)

On the other hand, if we either happen to know a priori or want to force the number of terms retained (k) to
satisfy k1 ≤ k ≤ k2, then we may want to assume the uniform distribution for this range of k, i.e.,

L(k,m) =

{
L(m) + log(k2 − k1 + 1) if k1 ≤ k ≤ k2,

+∞ otherwise.
(4.11)

As for the second term of (4.1), which is critical for our algorithm, we have to encode k expansion coefficients
α̂

(k)
m and σ̂2, i.e., (k + 1) real-valued parameters. However, in this case, by normalizing the whole sequence

by ‖d‖, we can safely assume that the magnitude of each coefficient in α̂
(k) is strictly less than one; in other

words, the integer part of each coefficient is simply zero. Hence we do not need to encode the integer part as in
(3.11) if we transmit the real-valued parameter ‖d‖. Now the description length of these becomes approximately
k+2
2

log N + L∗([σ̂2]) + L∗([‖d‖]) bits since there are k + 2 real-valued parameters: k nonzero coefficients,
σ̂2, and ‖d‖. After normalizing by ‖d‖, we clearly have σ̂2 < 1, so that L∗([σ̂2]) = 1/2 (see (3.5)). For each
expansion coefficient, however, we still need to specify the index of the coefficient, i.e., where the k non-zero
elements are in the vector α̂

(k)
m . This requires k log N bits. As a result, we have

L(α̂(k)
m , σ̂2 | k,m) =

3

2
k log N + c, (4.12)

where c is the constant independent of (k,m).

Since the probability of observing d given all model parameters is given by (4.2), we have for the last term in
(4.1)

L(d | α̂
(k)
m , σ̂2, k,m) =

N

2
log ‖(I − Θ

(k))W T
md‖2 + c′, (4.13)

where c′ is the constant independent of (k,m). Using (4.12) and (4.13), now we can state our simultaneous noise
suppression and signal compression algorithm:
Pick

(k∗,m∗) = argmin
0≤k<N
1≤m≤M

(
3

2
k log N +

N

2
log ‖(I − Θ

(k))W T
md‖2

)
. (4.14)

Then reconstruct the signal estimate

f̂ = W m∗α
(k∗)
m∗ . (4.15)

Let us call the objective function to be minimized in (4.14), the approximate MDL (AMDL). Let us now show
a typical behavior of the AMDL value as a function of the number of terms retained (k) in Figure 1. (In fact,
this curve is generated using Example 7.1 below.) We see that the log(residual energy) always decreases as k
increases. By adding the penalty term of retaining the expansion coefficients, i.e., (3/2)k log N (which is just a
straight line), we have the AMDL curve which typically decreases for the small k, then starts increasing because
of the penalty term, then finally decreases again at some large k near from k = N because the residual error
becomes very small. Now what we really want is the value of k achieving the minimum in the beginning of the
k-axis, and we want to avoid searching for k beyond the maximum occurring for k near N . So, we can safely



assume that k1 = 0 and k2 = N/2 in (4.10) to avoid searching more than necessary. (In fact, setting k2 > N/2
does not make much sense in terms of data compression purpose either.)
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Figure 1. Graphs of AMDL versus k: AMDL [solid line] which is sum of the (3/2)k log N
term [dotted line] and the (N/2) log(residual energy) term [dashed line].

We briefly examine the computational complexity of our algorithm here. To obtain (k∗,m∗), we proceed as
follows:
Step 1: Expand the data d into bases B1, . . . ,BM . Each expansion (including the best-basis selection procedure)
costs O(N) for wavelets, O(N log N) for wavelet packets best-bases, and O(N [log N ]2) for local trigonometric
best-bases.
Step2: Let K(= k2−k1+1) denote the length of the search range for k. For k1 ≤ k ≤ k2, 1 ≤ m ≤ M , compute
the expression in the parenthesis of the RHS in (4.14). This costs approximately O(N + 3MK) multiplications
and MK calls to the log function.
Step 3: Search the minimum entry in this table, which costs MK comparisons.
Step 4: Reconstruct the signal estimate (4.15), which costs O(N) for wavelets, O(N log N) for wavelet packets



best-bases, and O(N [log N ]2) for local trigonometric best-bases.

5. EXTENSION TO IMAGES

For images or multidimensional signals, we can easily extend our algorithm by using the multidimensional
version of the wavelets, wavelet packets, and local trigonometric transforms. In this section, we briefly sum-
marize the two-dimensional (2D) versions of these transforms. For the 2D wavelets, there are several different
approaches. The first one is the tensor product of the one-dimensional (1D) wavelets, i.e., applying the wavelet
expansion algorithm separately along two axes t1 and t2 corresponding to row (horizontal) and column (vertical)
directions respectively. Let f ∈ R

N1×N2 and Hi, Gi be the 1D convolution-subsampling operations along axis
ti, i = 1, 2. Then this version of the 2D wavelet transform applies the convolution-subsampling operations along
the t1 axis to obtain f 1 = (G1f , G1H1f , . . . , G1H

J1

1 f), then applies the convolution-subsampling operations
along the t2 axis to get the final 2D wavelet coefficients (G2f 1, G2H2f 1, . . . , G2H

J2

2 f 1) of length N1 × N2,
where J1 (≤ log N1) and J2 (≤ log N2) are maximum levels of decomposition along t1 and t2 axes respectively.
We note that one can choose different 1D wavelet bases for t1 and t2 axes independently. Given M different
QMF pairs, there exist M2 possible 2D wavelets using this approach.

The second one is the basis generated from the tensor product of the multiresolution analysis. This first decom-
poses an image f into four different sets of coefficients, H1H2f , G1H2f , H1G2f , and G1G2f , corresponding
to “low-low”, “high-low”, “low-high”, “high-high” frequency parts of the two variables, respectively. The
decomposition is iterated on the “low-low” frequency part and this ends up a “pyramid” structure of coefficients.
Transforming the digital images by these wavelets to obtain the 2D wavelet coefficients are described in e.g.,,18.12

There are also 2D wavelet bases which do not have a tensor product structure, such as wavelets on the
hexagonal grids and wavelets with matrix dilations. See e.g.,,1615 for detail.

There has been some argument as to which version of the 2D wavelet bases should be used for various
applications,4.12 Our strategy toward this problem is this: we can put as many versions of these bases in the
library as we can afford in terms of computational time. Then minimizing the AMDL values automatically
selects the most suitable one for our purpose.

Similarly to the 2D wavelets, there are two simple approaches to construct the 2D wavelet packet best-basis:
one way is to select the best-basis of each column vector and then select the best-basis of the resulting column
best-basis coefficients along row direction. The other way is to recursively decompose not only the “low-low”
components but also the other three components. This process produces the “quad-tree” structure of the wavelet
packet coefficients instead of the “binary-tree” structure for 1D wavelet packets. Then, finally the 2D wavelet
packet best-basis coefficients are selected using the entropy criterion.31

The 2D version of the local trigonometric transforms proceeds just like the second way of constructing the 2D
wavelet packet best-basis: the original image is smoothly folded and segmented into 4 subimages, 16 subimages,
. . . , and in each subimage the separable DCT/DST is applied, and then the quad-tree structure of the coefficients
is constructed. Finally, the local trigonometric best-basis is selected using the entropy criterion.31

For the image of the N = N1 × N2 pixels, the computational costs are approximately O(N), O(N log4 N),
O(N [log4 N ]2) for a 2D wavelet, a 2D wavelet packet best-basis,a 2D local trigonometric best-basis, respectively.



6. EXAMPLES

In this section, we give several examples to show the usefulness of our algorithm.

Example 7.1: The Synthetic Blocky Function of Donoho-Johnstone’s. We compared the performance of our
algorithm in terms of the visual quality of the estimation and the relative ℓ2 error with Donoho-Johnstone’s
method using the blocky function used in their experiments.14 The results are shown in Figure 2. The true signal
is the blocky function with N = 2048. In the Donoho-Johnstone method, we used the C06, i.e., 6-tap coiflet
with 2 vanishing moments. We also specified the scale parameter J = 7, and supplied the exact value of σ2.
Next, we forced the Haar basis to be used in their method. Finally, we applied our algorithm without specifying
anything. In this case, the Haar-Walsh best-basis with k∗ = 63 was automatically selected. The relative ℓ2 errors
are 0.116, 0.089, 0.051, respectively. Although the visual quality of our result is not too different from Donoho
and Johnstone’s (if we choose the appropriate basis for their method), our method generated the estimate with
smaller relative ℓ2 error and slightly sharper edges.

Example 7.2: A Pure White Gaussian Noise. We generated the synthetic WGN with σ2 = 1.0 and N = 4096.
We also set the upper limit of search range k2 = N/2 = 2048. Figure 3 shows the AMDL curves versus k for
all bases in the library. As we can see, there is no single minimum in the graphs, and our algorithm satisfactorily
decided k∗ = 0, i.e., there is nothing to “learn” in this dataset.

Example 7.3: A Natural Radioactivity Profile of Subsurface Formation. We tested our algorithm on the actual
field data which is a measurement of natural radioactivity of subsurface formation obtained at an oil-producing
well. The length of the data is N = 1024. The results are shown in Figure 4. In this case, our algorithm
selected the D12 best wavelet packet basis (Daubechies’s 12-tap filter with 6 vanishing moments) with k∗ = 77.
The residual error is shown in Figure 4 (c) which consists mostly WGN-like high frequency component. The
compression ratio is 1024/77 ≈ 13.3, i.e., about 92.5% of the data were discarded.

Example 7.4: A Migrated Seismic Section. In this example, the data is a migrated seismic section as shown in
Figure 5 (a). The data consist of 128 traces of 256 time samples. The two-dimensional version of our program
was used. The bases used were D02, C06, C12, C18, C24, C30. (D02 is the wavelet packet best-basis generated
by the Haar-Walsh filter, Cn means the wavelet packet best-basis generated by the n-tap coiflet filter.) Figure 5 (b)
shows the estimate by our algorithm. It automatically selected the filter C30 and the number of term retained
k∗ = 1611. If we were to choose the good threshold in this example, it would be fairly difficult since we do not
know the accurate estimate of σ2. The compression rate, in this case, is (128 × 256)/1611 ≈ 20.34. In other
words, 95.1% of the original data were discarded. Figure 5 (c) shows the residual error between the orignal and
the estimate. We can clearly see that the random noise and some strange high frequency patterns (which are
considered to be numerical artifacts from the migration algorithm applied).

7. DISCUSSIONS

Our algorithm is intimately connected to the “denoising” algorithm described in9 and.6 However, the decision
mechanism for signal/noise separation is quite different from9 and6 where the “theoretical compression rate” was
used as the threshold for such a separation.

Our algorithm can also be viewed as a simple yet flexible and efficient realization of the complexity regu-
larization method for estimation of functions proposed by,2 or the automatic version of the Donoho-Johnstone



denoising algorithm via wavelet shrinkage.14

The main differences between our algorithm and that of Donoho and Johnstone are

• Our method automatically select the most suitable basis from a collection of bases whereas their method
only uses a fixed basis specified by the user.

• Our method includes adaptive expansion by means of wavelet packets and local trigonometric bases
whereas their method only uses a wavelet transform.

• The Donoho-Johnstone method requires the user to set the coarsest scale parameter J ≤ n and a good
estimate of σ2, and the resulting quality depends on these parameters. On the other hand, our method
does not require any such parameter setting.

• The Donoho-Johnstone method thresholds the coefficients softly whereas our method can be said to
threshold sharply. This might cause some Gibbs-like effects in the reconstruction using our method.

The future direction of this research is to incorporate noise models other than Gaussian noise, extend the
algorithm for highly nonstationary signals by segmenting those smoothly and adaptively, and investigate the
effect of sharp thresholding.

8. CONCLUSIONS

We have described an algorithm for simultaneously suppressing the additive WGN component in the data and
compressing the signal component in the data. One or more of the bases in the library, consisting of wavelets,
wavelet packets, and local trigonometric bases, compress the signal component quite well, whereas the WGN
component cannot be compressed by any basis in the library. Based on this observation, we have tried to estimate
the “best” basis and the “best” number of terms to retain for estimating the signal component in the data using
the MDL criterion. Both synthetic and real field data examples have shown the wide applicability and usefulness
of this algorithm.
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Figure 2. Results for the synthetic blocky function: (a) Original blocky function. (b) Noisy
observation with ‖f‖/‖n‖ = 7. (c) Estimation by the Donoho-Johnstone method using coiflets
C06. (d) Estimation by the Donoho-Johnstone method using Haar basis. (e) Estimation by the
proposed method.
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Figure 3. The AMDL curves of the White Gaussian Noise data for all bases. For each basis,
k = 0 is the minimum value. The vertical dotted line indicates the upper limit of the search
range for k.
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Figure 4. The estimate of the natural radioactivity profile of subsurface formation: (a) Original
data which was measured in the borehole of an oil-producing well. (b) Estimation by our
algorithm with 77 terms of D12 best wavelet packet basis. (c) Residual error between (a) and
(b).
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Figure 5. Results for the migrated seismic section: (a) Original seismic section with 128 traces
and 256 time samples. (b) Estimation by the proposed method. (c) Residual error between (a)
and (b). (Dynamic range of display (c) is different from those of (a) and (b).)


