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ABSTRACT

This paper discusses an approach for the classification of ob-

jects in Synthetic Aperture Sonar (SAS) images and its benefit

over other approaches. Our approach fully utilizes raw sonar

waveforms scattered from objects. To do so, we first locate

objects of interest in an image obtained by SAS processing.

Then we extract the portions of the raw sonar waveforms re-

sponsible for forming those imaged objects from the whole

raw sonar data. We align/straighten these extracted wave-

forms for localized discriminant feature analysis from which

we obtain local features used for classification. We demon-

strate the usefulness of our approach using real experimental

sonar data.

Index Terms— Local Discriminant Basis, Synthetic Aper-

ture Sonar, Pattern Classification

1. INTRODUCTION

In a typical Synthetic Aperture Sonar (SAS) image many ob-

jects are present. Some are of interest and others are natural

materials that are not necessarily of interest. In particular, we

are interested in the classification of underwater mines. We

would like to classify objects in the imaged sonar data into

a “mine” class or a “non-mine” class. Within the mine class

we are also interested in the possibility of finer classifications

(e.g., types of mines such as manta, etc.).

Currently, there are systems that are capable of generat-

ing 2-D and 3-D images of the sea floor and detecting objects

on or below the surface of the sea floor. Sonar imaging sys-

tems have seen great improvements with the placement of the

hydrophones and varying of the transmission beam. Such sys-

tems include SAS system [1, 2] and Buried Object Scanning

Sonar (BOSS) system [3, 4]. There are a wide variety of tech-

niques that are being developed to actually detect objects of

interest. Many techniques rely on the signal strength, shape

information of the imaged objects, or the amount of linear de-

pendence (coherence) between two sonar returns of different

grazing angles for the classification of objects [3, 5]. How-

ever there are several problems with using such information

for classification. First, a buried mine will have a weaker sig-

nal than a proud mine. Second, a rock or some other non-mine

objects could have a signal that is just as strong as a mine or

stronger. Also, if one tries to use the shape information, the

shape can change with the strength of the return signal, ori-

entation, and depth of the mine. Furthermore, other non-mine

objects can have similar shapes to mines. Also, while coher-

ence used in [5] will likely classify objects into the classes

such as “simple geometric surface” and “irregular surface”, it

is not likely to distinguish fake mines from real mines or be

able to classify mines into finer classes. Hence, while such

information is useful in determining which objects might be

of interest, it may not be helpful with the classification of the

objects.

In the next section, we propose a new approach that does

not rely solely on the shape information of imaged objects

but on the raw waveforms scattered from such objects. Then

in Section 3, we demonstrate the capabilities of our approach

by applying it to two different SAS datasets. Finally, in Sec-

tion 4, we summarize our results and discuss possible future

research directions.

2. OUR APPROACH

Our approach fully utilizes the scattered wavefield (i.e., the

raw sonar waveforms) from objects of interest by facilitat-

ing the direct analysis of the raw waveforms. Furthermore,

since such waveforms may contain material information (e.g.,

acoustic impedance, etc.), there is a potential to do finer clas-

sification of the objects.

To do so, our procedure first allows the user to interac-

tively select and isolate objects of interest from SAS images

of underwater scenes. Such SAS images are formed from the

raw sonar data using an imaging algorithm (e.g., the ω − k,

the Range-Doppler, etc.; see [1, 2, 4] for the details). For

an object of linear shape, we select two points representing

the ends of the object. The points selected form a line repre-

senting the object selected. We then isolate and individually

extract, from the raw sonar data, the waveforms responsible

for forming the imaged object. This is done by the construc-

tion of an envelope (Figure 1). If we treat every point along

the line corresponding to the object as a point source whose

spreading is described by the equation

(
tc

2

)2

= x2
0 + (y − y0)2, (1)

the envelope attempts to bound all such point sources. Here y
is the cross-range location of the transmitter/receiver, t is the
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Figure 1: Envelope of oriented line. The points p1 and p2 are points

selected by the user. The points p3 and p4 are used to form a line

that will bound most of the point sources that are formed along the

line connecting p1 and p2. The shaded portion is the data that is

extracted.

two-way travel time of the signal, (x0, y0) is the location of

the point source, and c is the speed of sound through water.

The envelope is formed from the hyperbolas corresponding to

the point sources at the ends of the object and a line joining

these hyperbolas. It is easy and straightforward to generalize

this envelope computation for a line segment to that of a rect-

angle whose edges are parallel to the cross-range and range

axes. By combining the envelopes corresponding to the left

and right vertical edges, we have a very simple 2D envelope

for the extraction of 2D objects.

Next, we align (or straighten) the extracted waveforms so

that the time shifts of these waveforms are not used as a dis-

criminating feature. We align the waveforms by applying a

variation of the Range-Doppler algorithm [1, Chap. 4] which

consists of the following steps: 1) Take the Fourier transform

in the cross-range direction; 2) Apply the coordinate transfor-

mation

x(t, ku)
�
=

c

2
t

⎡
⎢⎢⎣2− 1√
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(

ku

2k0

)2

⎤
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ky(t, ku)
�
= ku

to the Fourier transformed data; 3) Take the inverse Fourier

transform in the cross-range direction. Here ku and k0 are the

cross-range and carrier frequency wavenumbers. The coordi-

nate transform straightens the range migration and decouples

the rows and columns of the range-Doppler matrix [8]. Fur-

ther, the coordinate transformation reflects a scaling from a

temporal to spatial ordinate [1, Chap. 4].

Once the extracted waveforms are aligned, we apply the

method called Local Discriminant Basis (LDB) [6, 7]. LDB

automatically and computationally efficiently extracts local

waveform features that are different among the signal classes

of interest so that one can use these features to build a good

classifier. The extracted local waveform features consist of lo-

calized amplitudes, phase, and frequency information at var-

ious time locations, which are often physically interpretable.

These extracted features are then fed to a favorite classifier

(e.g., linear discriminant analysis, neural networks, support

vector machines, etc.).

3. RESULTS

3.1. Dataset 1: Controlled experimental data in a test pond

As a first example, we consider data that was collected in a

fresh water test pond at Naval Surface Warfare Center (NSWC),

Panama City, FL. A sinusoidal pulse with a period of 0.2
ms and carrier frequency 20 kHz sampled at 500 kHz (i.e.,

Δt = 2μs) was used. There are 442 waveforms in total cov-

ering the 10.8 m of cross-range area. Each waveform has

8192 time samples, i.e., a time duration of 16.38 ms. There

are two significant objects present in the image. The first is a

10 inch diameter steel sphere filled with air that is on the sur-

face of the bottom of the pond at a range of approximately 7.6
m from the path of the transmitter/receiver and at cross-range

about 4.5 m. The second, which is at a cross-range about 3.9
to 5.3 m, is a solid aluminum cylinder with a 30.5 cm diam-

eter and 1.52 m length that is buried approximately 10 cm

below the sand surface at a range of almost 10.3 m from the

path of the transmitter/receiver. For more information see [9].

In Figure 2 (a) we show the imaged data. The size (or res-

olution) of each pixel is 0.15 cm along range by 2.54 cm along

the cross-range. We extracted 81 waveforms corresponding to

the cylinder and another 81 corresponding to the sphere and

aligned them by the method described above. Figure 3 (a), (b)

show the averaged aligned waveforms. Note that we extracted

these waveforms from raw unprocessed sonar data (i.e., nei-

ther pulse compressed nor demodulated). The waveforms are

clearly distinct.

In Figure 2 (b) we show another image where the cylin-

der was placed on the surface of the bottom of the pond. Let

us call this dataset the “proud” dataset and the previous one

the “buried” dataset for convenience. The proud data was

recorded in a similar manner to the buried data, but on a dif-

ferent day. Moreover, a sphere was also present in this dataset

but this sphere was different from the one in the buried dataset

in two aspects: 1) the diameter is 14 inches; and 2) it contains

silicone oil inside. Similarly to the buried cylinder dataset, we

extracted and aligned 81 cylinder waveforms and 81 sphere

waveforms.

Let C1, S1, C2, S2 be the set of the waveforms corre-

sponding to the cylinder and the sphere in the buried dataset

and those in the proud dataset, respectively. It is clear that
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(a) Buried Cylinder

(b) Proud Cylinder

Figure 2: Buried and proud cylinders with spheres imaged with the

ω − k algorithm.

Figure 3: (a) Average cylinder waveform. (b) Average sphere wave-

form. (c) Top three LDB vectors for cylinder and sphere.

Figure 4: The top three LDB coordinates of the extracted waveforms.

The LDB was computed on the (C1, S1) dataset. Blue, red, cyan,

and magenta points represent the waveforms belonging to C1, S1,

C2, and S2, respectively.

we can form four possible training datasets, i.e., (C1, S1),
(C1, S2), (C2, S1), and (C2, S2), on which we want to con-

struct classifiers to discriminate the cylinder waveforms from

the sphere waveforms and vice versa. The corresponding test

datasets become: (C2, S2), (C2, S1), (C1, S2), and (C1, S1),
on which we want to test the performance of the classifiers.

For each training dataset, we applied time-frequency LDB

[6] algorithm with a symmetric discriminant measure (i.e.,

relative entropy) and ‘Coiflet’ 30-tap conjugate quadrature fil-

ter [10, Chap. 8] for developing a wavelet packet tree. We

selected the three most discriminant LDB coordinates as the

features to be used in classification. These three LDB vec-

tors computed on the (C1, S1) dataset are displayed in Fig-

ure 3 (c). We can easily see that specific localized time and

frequency information of these LDB vectors indicates the dis-

tinguishing features of the cylinder and sphere waveforms

whose averages are shown in Figure 3 (a), (b). For exam-

ple, the 1st LDB vector (blue) checks the information around

the time index 780 where the main energy of the both cylin-

der and the sphere waveforms are found. Around this time

location, the energy and the phase of the sphere waveforms

are quite uniform and coherent whereas those of the cylinder

waveforms are slightly varying. The 2nd LDB vector (green)

checks the information around the time index 700 where the

difference between the cylinder and the sphere waveforms are

quite clear from these figures. Figure 4 shows all the signals in

these three LDB coordinates. It is clear that we can discrim-

inate the cylinder signals (both C1 and C2) from the sphere

signals in S1. However, those in S2 are not well separated

from the rest.

Finally, for each classification experiment, we used Linear

Discriminant Analysis (LDA) and Classification Tree (CT) as

classifiers. Table 1 summarizes the misclassification rates of

the test datasets.
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Test set C2 S2 C2 S1 C1 S2 C1 S1
LDA 0.00 100 0.00 100 0.00 100 20.9 0.00

CT 1.23 100 0.00 100 0.00 100 0.00 100

Table 1: Misclassification rates (%) of the four experiments.

Test set L2 R2 L2 R1 L1 R2 L1 R1
LDA 59.5 52.1 39.7 38.8 83.5 11.6 60.3 28.1

CT 37.2 56.2 24.0 42.3 33.9 33.9 13.2 61.2

Table 2: Misclassification rates (%) of the four experiments for the

field SAS data.

As we can see from Table 1, we could almost perfectly

discriminate the cylinder waveforms regardless of whether

buried or proud. On the other hand, we almost always failed

to classify the sphere waveforms correctly. This is under-

standable since the acoustic characteristics of these two spheres

are quite different (air vs silicone oil). The exception is the

case of the test dataset (C1, S1) using the top three LDB vec-

tors computed on the training dataset (C2, S2) with LDA as

a classifier. In this case, the misclassification rate of the cylin-

der waveforms is 20.9% while that of the sphere waveforms is

0%, i.e., it was a perfect classification for the sphere, but not

for the cylinder. This is because these two sphere waveforms

happen to be on the same side of the LDA hyperplane in these

top three LDB coordinates.

3.2. Dataset 2: Real field SAS data

For our second example, we use the SAS data that was col-

lected at Buzzard’s Bay, Cape Cod. A ‘tone burst’ pulse with

a carrier frequency 120 kHz sampled at 31 kHz was used.

There are 900 waveforms in total covering the 18 m of cross-

range area. Each waveform has 2016 samples, i.e., a time du-

ration of 65.3 ms. The imaged data can be seen in Figure 5.

Down the center of the image are several rocks. Among the

rocks are two lobster traps. For this data set we do not have

access to the raw unprocessed data. Therefore, we use the

real part of the pulse compressed and demodulated data. We

concentrate on two types of objects: lobster traps and rocks.

We use the time-frequency version of LDB with the symmet-

ric discriminant measure and the ‘Coiflet’ 12-tap conjugate

quadrature filter for a wavelet packet tree. Waveforms for

two lobster traps and rocks are extracted with an envelope

for a rectangular object. Let L1, L2, R1, R2 be the sets of

the waveforms corresponding to the two lobster traps and two

rocks, respectively. For this field SAS dataset, we use the five

most discriminant LDB coordinates for our classification ex-

periments. The five LDB vectors computed on the (L1, R1)
dataset are shown in Figure 6. The testing is done in the same

way as our first example, and the results are shown in Table 2.

As the results indicate, it is much more difficult to clas-

sify objects from the pulse compressed and demodulated data.

Contrary to the pond dataset, each waveform scattered from

Figure 5: Imaged sonar data with objects labeled. The blue rect-

angles indicate the lobster traps while the red rectangles are rock

regions.

Figure 6: (a) Average lobster trap signal. (b) Average rock signal.

(c) Top five LDB vectors for lobster trap and rock.

436



the same object varies considerably with respect to the others.

This results in a complex distribution of the LDB coefficients,

which can be seen in the large variation of results between

LDA and CT. Linear hyperplanes are not able to separate lob-

ster traps and rocks in these LDB coordinates. Further, the

variation of results among training sets exhibits the need for

a larger training set. The discriminant features selected vary

greatly with the objects selected; thus, classification results

are less stable between training sets.

Although classification results are expected to improve to

some extent with a larger training set, a more fitted envelope

(i.e., one for a rotated rectangle or a polygon), and a version

of LDB accepting complex-valued waveforms, it is more im-

portant to take the whole scattered wavefield generated by an

object into consideration when classifying. We will discuss

this further in Section 4.

4. CONCLUSION

Our proposed approach could successfully discriminate the

cylinder waveforms buried or proud from the sphere wave-

forms. The sphere waveforms could not be discriminated very

well, which is understandable considering the difference in

the sphere size and in particular the material inside of these

spheres (air vs silicone oil): the acoustic characteristics be-

tween these two spheres are quite different. This in fact con-

firms our expectation that the raw sonar waveforms contain

information about the material inside of targets. On the other

hand, discrimination of the lobster traps from the natural rocks

in the real field SAS data was quite difficult due to the con-

siderable variation in time-frequency features in these wave-

forms.

In this paper, we use the local waveform features to clas-

sify and discriminate each waveform into two possible cate-

gories (i.e., cylinder vs sphere, or lobster trap vs rock). How-

ever, it is more natural to view the whole extracted wave-

forms corresponding to an object (i.e., the waveforms scat-

tered from that object) as one signal (or more precisely an

image). For example, we should view the cylinder dataset

C1 as a single point in R
2048×81 rather than as 81 signals

of length 2048. Therefore, we should investigate feature ex-

traction, discrimination, and classification of the higher di-

mensional datasets. Our preliminary investigation along this

direction can be found in our recent paper [11].

Finally, our current approach requires the user to locate

and isolate objects of interest in SAS images interactively. We

plan to investigate how to automate this object detection stage

in the near future.
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