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Abstract: This paper presents a geometric-variational approach to continuous and dis-
crete mechanics and field theories. Using multisymplectic geometry, we show that the
existence of the fundamental geometric structures as well as their preservation along
solutions can be obtained directly from the variational principle. In particular, we prove
that a unigue multisymplectic structure is obtained by taking the derivative of an action
function, and use this structure to prove covariant generalizations of conservation of
symplecticity and Noether’s theorem. Natural discretization schemes for PDEs, which
have these important preservation properties, then follow by choosing a discrete action
functional. In the case of mechanics, we recover the variational symplectic integrators of
Veselov type, while for PDEs we obtain covariant spacetime integrators which conserve
the corresponding discrete multisymplectic form as well as the discrete momentum map-
pings corresponding to symmetries. We show that the usual notion of symplecticity along
an infinite-dimensional space of fields can be naturally obtained by making a spacetime
split. All of the aspects of our method are demonstrated with a nonlinear sine-Gordon
equation, including computational results and a comparison with other discretization
schemes.
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1. Introduction

The purpose of this paper is to develop the geometric foundations for multisymplectic-
-momentum integrators for variational partial differential equations (PDESs). These in-
tegrators are the PDE generalizations of symplectic integrators that are popular for
Hamiltonian ODEs (see, for example, the articles in Marsden, Patrick and Shadwick
[1996], and especially the review article of McLachlan and Scovel [1996]) in that they
are covariant spacetime integrators which preserve the geometric structures of the sys-
tem.

Because of the covariance of our method which we shall describe below, the resulting
integrators are spacetime localizable in the context of hyperbolic PDEs, and generalize
the notion of symplecticity and symmetry preservation in the context of elliptic problems.
Herein, we shall primarily focus on spacetime integrators; however, we shall remark on
the connection of our method with the finite element method for elliptic problems, as
well as the Gregory and Lin [1991] method in optimal control.

Historically, in the setting of ODEs, there have been many approaches devised for
constructing symplectic integrators, beginning with the original derivations based on
generating functions (see de Vogelaere [1956]) and proceeding to symplectic Runge-
Kutta algorithms, the shake algorithm, and many others. In fact, in many areas of molec-
ular dynamics, symplectic integrators such as the Verlet algorithm and variants thereof
are quite popular, as are symplectic integrators for the integration of the solar system.
In these domains, integrators that are either symplectic or which are adaptations of
symplectic integrators, are amongst the most widely used.

A fundamentally new approach to symplectic integration is that of Veselov [1988],
[1991] who developed a discrete mechanics based on a discretization of Hamilton’s
principle. This method leads in a natural way to symplectic-momentum integrators which
include the shake and Verlet integrators as special cases (see Wendlandt and Marsden
[1997]). In addition, Veselov integrators often have amazing properties with regard to
preservation of integrable structures, as has been shown by Moser and Veselov [1991].
This aspect has yet to be exploited numerically, but it seems to be quite important.

The approach we take in this paper is to develop a Veselov-type discretization for
PDE's in variational form. The relevant geometry for this situation is multisymplectic
geometry (see Gotay, Isenberg, and Marsden [1997] and Marsden and Shkoller [1998])
and we develop itin a variational framework. As we have mentioned, this naturally leads
to multisymplectic-momentum integrators. It is well-known that such integrators cannot
in general preserve the Hamiltoniaractly(Ge and Marsden [1988]). However, these
integrators have, under appropriate circumstances, very good energy performance in
the sense of the conservation of a nearby Hamiltonian up to exponentially small errors,
assuming small time steps, due to a result of Neishtadt [1984]. See also Dragt and Finn
[1979], and Simo and Gonzales [1993]. This is related to backward error analysis; see
Sanz-Serna and Calvo [1994], Calvo and Hairer [1995], and the recent work of Hyman,
Newman and coworkers and references therein. It would be quite interesting to develop
the links with Neishtadt's analysis more thoroughly.

An important part of our approach is to understand how the symplectic nature of
the integrators is implied by the variational structure. In this way we are able to identify
the symplectic and momentum conserving properties after discretizing the variational
principle itself. Inspired by a paper of Wald [1993], we obtain a formal method for locat-
ing the symplectic or multisymplectic structures directly from the action function and
its derivatives. We present the method in the context of ordinary Lagrangian mechan-
ics, and apply it to discrete Lagrangian mechanics, and both continuous and discrete
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multisymplectic field theory. While in these contexts our variational method merely un-
covers the well-known differential-geometric structures, our method forms an excellent
pedagogical approach to those theories.

Outline of paper.

Section 2.In this section we sketch the three main aspects of our variational approach in
the familiar context of particle mechanics. We show that the usual symplectic 2-form on
the tangent bundle of the configuration manifold arises naturally as the boundary termin
the first variational principle. We then show that applicatiod’# 0 to the variational
principle restricted to the space of solutions of the Euler-Lagrange equations produces
the familiar concept of conservation of the symplectic form; this statement is obtained
variationally in a non-dynamic context; that is, we do not require an evolutionary flow.
We then show that if the action function is left invariant by a symmetry group, then
Noether’s theorem follows directly and simply from the variational principle as well.
Section 3.Here we use our variational approach to construct discretization schemes
for mechanics which preserve the discrete symplectic form and the associated discrete
momentum mappings.

Section 4.This section defines the three aspects of our variational approach in the
multisymplectic field-theoretic setting. Unlike the traditional approach of defining the
canonical multisymplectic form on the dual of the first jet bundle and then pulling back
to the Lagrangian side using the covariant Legendre transform, we obtain the geometric
structure by staying entirely on the Lagrangian side. We prove the covariant analogue of
the fact that the flow of conservative systems consists of symplectic maps; we call this
result themultisymplectic form formulafter variationally proving a covariant version

of Noether’s theorem, we show that one can use the multisymplectic form formula to
recover the usual notion of symplecticity of the flow in an infinite-dimensional space
of fields by making a spacetime split. We demonstrate this machinery using a nonlinear
wave equation as an example.

Section 5.In this section we develop discrete field theories from which the covariant
integrators follow. We define discrete analogues of the first jet bundle of the configuration
bundle whose sections are the fields of interest, and proceed to define the discrete action
sum. We then apply our variational algorithm to this discrete action function to produce
the discrete Euler-Lagrange equations and the discrete multisymplectic forms. As a
consequence of our methodology, we show that the solutions of the discrete Euler—
Lagrange equations satisfy the discrete version of the multisymplectic form formula as
well as the discrete version of our generalized Noether’s theorem. Using our nonlinear
wave equation example, we develop various multisymplectic-momentum integrators
for the sine-Gordon equations, and compare our resulting numerical scheme with the
energy-conserving methods of Li and Vu-Quoc [1995] and Guo, Pascual, Rodriguez,
and Vazquez [1986]. Results are presented for long-time simulations of kink-antikink
solutions for over 5000 soliton collisions.

Section 6.This section contains some important remarks concerning the variational
integrator methodology. For example, we discuss integrators for reduced systems, the
role of grid uniformity, and the interesting connections with the finite-element methods
for elliptic problems. We also make some comments on future work.

2. Lagrangian Mechanics

Hamilton’s principle. We begin by recalling a problem going back to Euler, Lagrange
and Hamilton in the period 1740-1830. Considerasimensional configuration man-
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ifold @ with its tangent bundl&Q. We denote coordinates ghby ¢ and those off’Q

by (¢%, ¢°). Consider a Lagrangiah : TQ — R. Construct the corresponding action
functional S on C? curvesq(t) in @ by integration ofL along the tangent to the curve.
In coordinate notation, this reads

Swmz/

a

dq’
o (t)> dt. (2.1)

b .

£ (400
The action functional depends arandb, but this is not explicit in the notatiofdamil-
ton’s principle seeks the curveg(t) for which the functionalS is stationary under
variations ofg(t) with fixed endpoints; namely, we seek curg€8 which satisfy

S(qe(t)) =0 (2.2)

dS(q(t)) -0q(t) = % .

for all §¢(t) with dg(a) = dq(b) = 0, whereg, is a smooth family of curves witly = ¢
and {/de)|=0q. = d¢. Using integration by parts, the calculation for this is simply
ds (¢(t)) - dat) =

d b i dql
L{q(t €(t) ) dt
AN RGOS0
b
. (OL d OL oL _ .
= 0q" - — —— | dt+ —0¢"
Jﬁ ! (aqz dtaql) 9"

The last term in (2.3) vanishes sinéga) = dq(b) = 0, so that the requirement (2.2) for
S to be stationary yields theuler—Lagrange equations

b

(2.3)

a

oL 4oL _, (2.4)

Recall thatl is calledregular when the symmetric matrixof L/0q*0¢’] is everywhere
nonsingular. IfL is regular, the Euler—Lagrange equations are second order ordinary
differential equations for the required curves.

The standard geometric settind.he action (2.1) is independent of the choice of coordi-
nates, and thus the Euler—Lagrange equations are coordinate independent as well. Con-
sequently, it is natural that the Euler—Lagrange equations may be intrinsically expressed
using the language of differential geometry. This intrinsic development of mechanics is
now standard, and can be seen, for example, in Arnold [1978], Abraham and Marsden
[1978], and Marsden and Ratiu [1994].

The canonical 1-form 6y on the Z.-dimensional cotangent bundle &f, T*Q is
defined by

Oo(ag)wa, = ag - TTQWa,, ag €T7Q, wa, € To,T70Q,

whereng : T*Q — @ is the canonical projection. The Lagrangianintrinsically
defines a fiber preserving bundle niap : TQ — T*(Q, theLegendre transformation
by vertical differentiation:

d
FL(vw, = —

e 6:OL('Uq + ewyg).
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We define th&.agrangel-form onT'Q, the Lagrangian side, by pull-ba@k = FL*0o,
and theLagrange2-form by w;, = —df. We then seek a vector field z (called the
Lagrange vector fielflonT'Q) such thatX p 1wy, = dF, where theenergyF is defined
by E(vq) = FL(vq)vg — L(vy).

If FL is alocal diffeomorphism theX g exists and is unique, and its integral curves
solve the Euler-Lagrange equations (2.4). In addition, the Apaf X i preserves;;
thatis,F;wr, = wr. Such maps argymplecticand the formwy, is called asymplecti2-
form. This is an example of symplectic manifolda pair (\/, w) wherel is a manifold
andw is closed nondegenerate 2-form.

Despite the compactness and precision of this differential-geometric approach, it
is difficult to motivate and, furthermore, is not entirely contained on the Lagrangian
side. The canonical 1-forrfl, seems to appear from nowhere, as does the Legendre
transformF L. Historically, after the Lagrangian picture @@ was constructed, the
canonical picture o™ @ emerged through the work of Hamilton, but the modern
approach described above treats the relation between the Hamiltonian and Lagrangian
pictures of mechanics as a mathematical tautology, rather than what & discovery
of the highest order.

The variational approach. More and more, one is finding that there are advantages
to staying on the “Lagrangian side”. Many examples can be given, but the theory of
Lagrangian reduction (the Euler—Poine@quations being an instance) is one example
(see, for example, Marsden and Ratiu [1994] and Holm, Marsden and Ratiu [1998a,b));
another, of many, is the direct variational approach to questions in black hole dynamics
given by Wald [1993]. In such studies, it is the variational principle that is the center of
attention.

We next show that one can derive in a natural way the fundamental differential
geometric structures, including momentum mappings, directly from the variational ap-
proach. This development begins by removing the boundary condit{ah = 6¢(b) = 0
from (2.3). Eq. (2.3) becomes

b
, (2.5)

a

b
5 <8L d 8L>dt+ OL, .

dS(q(t)) - 6q(t) = / dgi  dt 9g 9’

a

where the left side now operates on more geniréhis generalization will be described

in detail in Sect. 4), while the last term on the right side does not vanish. That last term
of (2.5) is a linear pairing of the functioL /94, a function ofq’ andq?, with the
tangent vectofq’. Thus, one may consider it to be a 1-formB&; namely the 1-form
(0L/0q")dq*. This is exactly the Lagrange 1-form, and we can turn this into a formal
theorem/definition:

Theorem 2.1. Given aC* LagrangianL, k > 2, there exists a uniqué’*—2 mapping
Dg L : Q — T*Q, defined on the second order submanifold

Q= { %(O) ‘ gaC?curve inQ}

of TTQ, and a uniqueC*~1 1-form§;, on TQ, such that, for allC? variationsg, (),

b
; (2.6)

a

b 2
- dq dg\ =

where



356 J. E. Marsden, G. W. Patrick, S. Shkoller

d

d - d
oq(t) = — (1), ogt) = —
q(t) qe(?) q(t) @t

de| - de
Thel-form so defined is called tHeagrange1-form.

qe(?)-
=0

Indeed, uniqueness and local existence follow from the calculation (2.3), and the
coordinate independence of the action, and then global existence is immediate. Here
then, is the first aspect of our method:

Using the variational principle, the Lagrandeformy, is the “boundary part”
of the the functional derivative of the action when the boundary is varied. The
analogue of the symplectic form is the (negative of) the exterior derivatie of

For the mechanics example being discussed, we imagine a development vherein
so defined and we defing, = —df,.

Lagrangian flows are symplecticOne of Lagrange’s basic discoveries was that the
solutions of the Euler—Lagrange equations give rise to a symplectic map. It is a curious
twist of history that he did this without the machinery of either differential forms, of
the Hamiltonian formalism or of Hamilton’s principle itself. (See Marsden and Ratiu
[1994] for an account of some of this history.)

Assuming thatl is regular, the variational principle then gives coordinate indepen-
dent second order ordinary differential equations, as we have noted. We temporarily
denote the vector field dfiQ so obtained byX, and its flow byF;. Our further devel-
opment relies on a change of viewpoint: we focus on the restrictiéitothe subspace
Cy, of solutions of the variational principle. The spatg may be identified with the
initial conditions, elements dfQ, for the flow: tov, € T'Q), we associate the integral
curves — Fi(vy), s € [0,¢]. The value ofS on that curve is denoted b, and again
called theaction. Thus, we define the mag) : TQ — R by

Si0) = [ L) e ds, @7)
0
where ((s), g(s)) = Fs(vq). The fundamental Eq. (2.6) becomes

45, (vgYwe, = 01 (Filvy) -

Fy(vg) — 01(vg) - wo,,
e=0

wheree — vg is an arbitrary curve if'Q such thawg = v, and {/de)|ovg = w,,. We
have thus derived the equation

dsS, = Fr0, —0r. (2.8)

Taking the exterior derivative of (2.8) yields the fundamental fact that the fla i
symplectic:
0=ddS; = d(Ft*GL - 9L) = —Ft*wL +wy,,

which is equivalent to
Flwp =wp,.
This leads to the following:
Using the variational principle, the fact that the evolution is symplectic is a

consequence of the equatidh= 0, applied to the action restricted to the space
of solutions of the variational principle.
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In passing, we note that (2.8) also provides the differential-geometric equatioXs for
Indeed, one time derivative of (2.8) and using (2.7) giés= £x 0., so that

ijszXJdaL:7£XeL+d(XJ6L)=d(XJ0L7L)=dE,

if we defineFE = X _1 0, — L. Thus, we quite naturally find thaf = Xp.

Of course, this set up also leads directly to Hamilton—Jacobi theory, which was one
of the ways in which symplectic integrators were developed (see McLachlan and Scovel
[1996] and references therein.) However, we shall not pursue the Hamilton—Jacobi aspect
of the theory here.

Momentum mapsSuppose that a Lie group, with Lie algebrag, acts ony, and hence
on curves inR, in such a way that the actigsiis invariant. Clearly(= leaves the set of
solutions of the variational principle invariant, so the actioaestricts taC, and the
group action commutes with;. Denoting the infinitesimal generator &fc g onT'Q
by ¢é7¢, we have by (2.8),

0=¢4rq1dS; =&rq I (Ff0r —01) = F/(§rq 1 0L) —&rqg 1 0. (2.9)

For¢ € g, defineJe : TQ — Rby J: = {rg 101 Then (2.9) says thak is an integral
of the flow of X . We have arrived at a version of Noether’s theorem (rather close to
the original derivation of Noether):

Using the variational principle, Noether’s theorem results from the infinitesi-
mal invariance of the action restricted to space of solutions of the variational
principle. The conserved momentum associated to a Lie algebra elénient
Je = €rg 1 01, wheredy, is the Lagrange one-form.

Reformulation in terms of first variationsWe have just seen that symplecticity of the
flow and Noether’s theorem result from restricting the action to the space of solutions.
One tacit assumption is that the space of solutions is a manifold in some appropriate
sense. This is a potential problem, since solution spaces for field theories are known to
have singularities (see, e.g., Arms, Marsden and Moncrief [1982]). More seriously there
is the problem of finding a multisymplectic analogue of the statement that the Lagrangian
flow map is symplectic, since for multisymplectic field theory one obtains an evolution
picture only after splitting spacetime into space and time and adopting the “function
space” point of view. Having the general formalism depend either on a spacetime split
or an analysis of the associated Cauchy problem would be contrary to the general thrust
of this article. We now give a formal argument, in the context of Lagrangian mechanics,
which shows how both these problems can be simultaneously avoided.

Given a solutiony(t) € Cy, afirst variation atq(t) is a vector field” on @ such that
t — FV oq(t) is also a solution curve (i.e. a curvedp). We think of the solution space
Cr, as being a (possibly) singular subset of the smooth space of all putative Curves
T'Q, and the restriction o to ¢(¢) as being the derivative of some curvelip at ¢(t).
When(Cy, is a manifold, a first variation is a vector @t) tangent taCr. Temporarily
definea = dS — 01, where by abuse of notatidgh, is the one form o defined by

01 (4(1))dq(t) = 0.(b)dq(b) — 01.(a)dq(a).
ThenCy, is defined by = 0 and we have the equation
dS=a+0r,

so if V andW are first variations af(t), we obtain
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0=V IW_Id?S=V_IW Jda+V JW 1dby. (2.10)
We have the identity
de(V, W) (q(t)) =V (a(W)) = W (a(V)) — a([V, W), (2.11)

which we will use to evaluate (2.10) at the cuige). Let £V denote the flow of/,
defineq! (t) = FY (q(t)), and make similar definitions witi’ replacingV’. For the
first term of (2.11), we have

d

V(W) () = 5| o),

which vanishes, since s zero along;! for everye. Similarly the second term of (2.11)
at ¢(t) also vanishes, while the third term vanishes simée(t)) = 0. Consequently,
symplecticity of the Lagrangian flo&; may be written

VW 1dfg =0,

for all first variationsV andW. This formulation is valid whether or not the solution
space is a manifold, and it does not explicitly refer to any temporal notion. Similarly,
Noether's theorem may be written in this way. Summarizing:

Using the variational principle, the analogue of the evolution is symplectic is
the equationd®S = 0 restricted to first variations of the space of solutions of

the variational principle. The analogue of Noether’s theorem is infinitesimal
invariance ofdS restricted to first variations of the space of solutions of the

variational principle.

The variational route to the differential-geometric formalism has obvious pedagogi-
cal advantages. More than that, however, it systematizes searching for the corresponding
formalism in other contexts. We shall in the next sections show how this works in the
context of discrete mechanics, classical field theory and multisymplectic geometry.

3. Veselov Discretizations of Mechanics

The discrete Lagrangian formalism in Veselov [1988], [1991] fits nicely into our varia-
tional framework. Veselov use&3 x @ for the discrete version of the tangent bundle of
a configuration spao@; heuristically, given some a priori choice of time interval, a
point (g1, go) € @ x @ corresponds to the tangent vectgr € o)/ At. Define adiscrete
Lagrangianto be a smooth map : Q x Q = {q1,90} — R, and the corresponding
action to be

S=Y " Ligr qe—1)- (3.2)

k=1

The variational principle is to extremizg for variations holding the endpointg and
g, fixed. This variational principle determines a “discrete floft" Q x Q@ — Q x @
by F'(q1, q0) = (g2, q1), Whereg, is found from thediscrete Euler—Lagrange equations
(DEL equations):
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oL oL
~—(q1,90) + 7—(q2,q1) = 0. (3.2)
oq1 J0qo

In this section we work out the basic differential-geometric objects of this discrete
mechanics directly from the variational point of view, consistent with our philosophy in
the last section.

A mathematically significant aspect of this theory is how it relates to integrable
systems, a point taken up by Moser and Veselov [1991]. We will not explore this aspect
in any detail in this paper, although later, we will briefly discuss the reduction process
and we shall test an integrator for an integrable pde, the sine-Gordon equation.

The Lagrangel-form. We begin by calculating.S for variations that do not fix the
endpoints:

dS(q07 to aqn) . (6(]0, T 75Qn)

n—1

oL oL
=> (a(Qk+17 0k)0a+1 + 5 (Ghe, Qk)5qk)
=0 q1 do

n—1

"~ OL oL
(s )0 + > o (qroet, 1)0
> 90 (qx> qr—1)0s, ; 9% (qr+1, ar)Iar

k=
n—

1
AR

OL oL
(a(q/f, Qe—1) + 87(%”’ %)) dqn
=1 q1 do

oL oL
+ ——(q1,90)090 + 7—(qn> @n—1)9qn. (3.3)
9qo oq
It is the last two terms that arise from the boundary variations (i.e. these are the ones
that are zero if the boundary is fixed), and so these are the terms amongst which we

expect to find the discrete analogue of the Lagrange 1-form. Actually, interpretation of
the boundary terms gives thwo 1-forms on@ x @

_ oL
07 (91, 90) - (0q1,9q0) = 87%(6117%)5(]& (3.4)
and
. oL
67 (q1, 90) - (g1, 6q0) = afql(ql,qoﬁqh (3.5)

and we regardhe pair (60—, 0*) as being the analogue of the one form in this situation.

Symplecticity of the flow.We parameterize the solutions of the variational principle
by the initial conditions 4z, qo), and restrictS to that solution space. Then Eq. (3.3)
becomes

S = 0; + F*0}. (3.6)

We should be able to obtain the symplecticityfofby determining what the equation
ddS = 0 means for the right-hand-side of (3.6). At first, this does not appear to work,
sinceddS = 0 gives

F*(do%) = —doy; , (3.7)



360 J. E. Marsden, G. W. Patrick, S. Shkoller

which apparently says thdt pulls a certain 2-form back to a different 2-form. The
situation is aided by the observation that, from (3.4) and (3.5),

07 +07 =dL, (3.8)
and consequently,
do; +dfy = 0. (3.9)

Thus, there aréwo generally distinct 1-forms, but (up to sign) ordype2-form. If we
make the definition

wr, =df; =—dby,

then (3.7) becomeB*w;, = wy,. EQ. (3.4), in coordinates, gives

L . -
wr, = ~dgg N dq{,

946041
which agrees with the discrete symplectic form found in Veselov [1988], [1991].

Noether’s theorem.Suppose a Lie grou@ with Lie algebrag acts on@, and hence
diagonally on@ x @, and thatL is G-invariant. Clearly,S is alsoG-invariant andG
sends critical points of to themselves. Thus, the action@frestricts to the space of
solutions, the mag’ is G-equivariant, and from (3.6),

0=Eoxq 1 dS =Egxo J0F +Eoxq I (FO7),

for ¢ € g, or equivalently, using the equivariance of
foxq 0 = —F"(€oxq 1 07). (3.10)

Since L is G-invariant, (3.8) giveSgxq J 0; = —foxq -! 63, which in turn con-
verts (3.10) to the conservation equation

Soxq 0L = F*(€gxq 1 07). (3.11)

Defining the discrete momentum to be

J§ = §Q><Q _ 9};,

we see that (3.11) becomes conservation of momentum. A virtually identical derivation
of this discrete Noether theorem is found in Marsden and Wendlant [1997].

Reduction. As we mentioned above, this formalism lends itself to a discrete version
of the theory of Lagrangian reduction (see Marsden and Scheurle [1993a,b], Holm,
Marsden and Ratiu [1998a] and Cendra, Marsden and Ratiu [1998]). This theory is not
the focus of this article, so we shall defer a brief discussion of it until the conclusions.
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4. Variational Principles for Classical Field Theory

Multisymplectic geometryWe now review some aspects of multisymplectic geometry,

following Gotay, Isenberg and Marsden [1997] and Marsden and Shkoller [1997].
We letrxy : Y — X be a fiber bundle over an oriented manifofld Denote the

first jet bundle ove®” by JX(Y) or J'Y and identify it with theaffinebundle overy

whose fiber ovey € Y, := 77;(%/(33) consists of Aff(, X, T,Y), those linear mappings

v : T, X — T,Y satisfying

Trxy o~ = ldentity onT,, X.

We let dimX = n + 1 and the fiber dimension &f be N. Coordinates orX are
denotedz*,n = 1,2,...,n,0, and fiber coordinates o¥i are denoted by“, A =
1,...,N. These induce coordinat@ré‘u on the fibers of/}(Y). If ¢ : X — Y isa
section ofrxy, its tangent map at € X, denotedl’, ¢, is an element off(Y) ().
Thus, the map: — T,¢ defines a section of1(Y) regarded as a bundle ov&r. This
section is denoteg(¢) or j1¢ and is called the first jet af. In coordinates;'(¢) is
given by

e (o, 7 @), 0,07 (), (4.1)

whered, = 9/9z".

Higher order jet bundles af, J™(Y), then follow as/(- - -(J1(Y)). Analogous to
the tangent map of the projectiay. jiyy, 'y, ji(yy TJYY) — TY, we may define
the jet map of this projection which takeg$(Y") onto J*(Y)

Definition 4.1. Lety € JX(Y) so thatry j1y(7) = 2. Then
Iy vy L AT X, Ty JHY)) — AT X, Ty gy - Ty JHY)).

We define the subbundi&’ of J2(Y") over X which consists of second-order jets so that
on each fiber

Y] ={s € JAY), | Jry, nevy(s) =7}

In coordinates, ify € JX(Y) is given by ¢*,y*,v4,), ands € J2(Y), is given
by (z#,y?,v4,, w4, k*,,), thens is a second-order jet it#, = w#,. Thus,
the second jet ofp € T'(rxy), j2(¢), given in coordinates by the map* +—
(z", 9™, 0,04, 0,0,¢"), is an example of a second-order jet.

Definition 4.2. Thedual jet bundleJ(Y)* is the vector bundle oveér whose fiber at
y € Y, is the set of affine maps fraft(Y"), to A™(X),, the bundle ofn+1)-forms on

X. A smooth section of}(Y)* is therefore an affine bundle map £f(Y") to A"*(X)
coveringmxy .

Fiber coordinates od*(Y)* are , p4*), which correspond to the affine map given in
coordinates by

v, = (p+paho? )d" e, 4.2)

whered™ 1z = dzl A -+ Adz™ A daC.
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Analogous to the canonical one- and two-forms on a cotangent bundle, there exist
canonical f + 1)- and ¢ + 2)-forms on the dual jet bundI&*(Y)*. In coordinates, with
d"x, := 9, 1 d"*'z, these forms are given by

O = patdy? A d"z, +pd™ 'z and Q = dy? A dpa* A d"x, —dp A d" .
(4.3)

A Lagrangian density : JX(Y) — A™(X) is a smooth bundle map ovéf. In
coordinates, we write

L() = Lty vt ) d" . (4.4)

The corresponding covariant Legendre transformationffas a fiber preserving
map overY, FL : JY(Y) — JY(Y)*, expressed intrinsically as the first order vertical
Taylor approximation taC:

d
FLO) -~ =L+ | LO+e0' =), (4.5)
e=0
wherey, v’ € JL(Y),. A straightforward calculation shows that the covariant Legendre
transformation is given in coordinates by
oL 4

oL
pat = JuA ,and p=1L-—
I

We can then define th@artan form as the { + 1)-form®, on J(Y") given by
O, =FL) O, 4.7)

(4.6)

and the ¢ + 2)-form Q. by
Qr=—-dO, = (FL)*Q, (4.8)

with local coordinate expressions

oL | 4 oL “
"x,+ | L— n
(%Audy Nd "z, ( (%A#U u) d""x,

@gz

oL oL “9
Qe =dy* Nd <8vA ) ANd'z, —d [L - WUAM] Ad™ .
I Iz

This is the differential-geometric formulation of the multisymplectic structure. Sub-
sequently, we shall show how we may obtain this structure directly from the variational
principle, staying entirely on the Lagrangian siéfgY").

The multisymplectic form formulaln this subsection we prove a formula that is the
multisymplectic counterpart to the fact that in finite-dimensional mechanics, the flow
of a mechanical system consists of symplectic maps. Again, we do this by studying the
action function.

Definition 4.3. LetU be a smooth manifold with (piecewise) smooth closed boundary.
We define the set of smooth maps

C*={¢p:U—>Y |nxyo¢:U — X isan embedding

Foreachg € C>,wesetpy :=nmxyopandUx :=nxyop(U)sothatpx : U — Ux
is a diffeomorphism.
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We may then define the infinite-dimensional manif@lie be the closure @ in either

a Hilbert space or Banach space topology. For example, the madifolty be given the
topology of a Hilbert manifold of bundle mappingd; (U, Y), (U considered a bundle
with fiber a point) for any integer > (n+1)/2, so that the Hilbert sectiorso gb)_(l inY

are those whose distributional derivatives up to osde square-integrable in any chart.
With our condition ons, the Sobolev embedding theorem makes such mappings well
defined. Alternately, one may wish to consider the Banach margfalsithe closure of

C* in the usualC*-norm, or more generally, in a Holder spac&*-norm. See Palais
[1968] and Ebin and Marsden [1970] for a detailed account of manifolds of mappings.
The choice of topology fof€ will not play a crucial role in this paper.

Definition 4.4. Let G be the Lie group ofrxy-bundle automorphismsy- covering
diffeomorphismgx , with Lie algebrag. We define thaction® : G x C — C by

D(ny,¢) =ny o ¢t

Furthermore, if¢ o ¢3! € D(myy.y), then®(ny, @) € T(m,y wy).y)- Thetangent
spaceto the manifoldC at a pointg is the setl,C defined by

{VelC®X,TY) | ryry oV = ¢,&Trnxy o V = Vx, avector field onX } .
(4.10)

Of course, when these objects are topologized as we have described, the definition of
the tangent space becomes a theorem, but as we have mentioned, this functional analytic
aspect plays a minor role in what follows.

Given vectorsV, W e T,C we may extend them to vector field5)V onC by
fixing vector fieldsy, w € TY suchthal/ = vo (¢ o ¢x*) andW = wo (¢ o ¢%), and
letting), =wvo(po p)_(l) andW, =wo(po p)_(l). Thus, the flow of onC is given by
®(ny, p), wherens. coveringny is the flow ofv. The definition of the bracket of vector
fields using their flows, then shows that

[V, WI(p) = [v,w] o (p o pxY.
Whenever it is contextually clear, we shall, for convenience, Wfifer v o (¢ o ¢;(1).

Definition 4.5. Theaction functionS on(C is defined as follows:
S(¢) = / LG (b o p3h)) forall ¢ € C. (4.12)
Ux

Let A — 73 be an arbitrary smooth path fhsuch that)?. = e, and letV € T,C be
given by

v=12

d
| ®,0), andVy = | koo, (4.12)

A=0 dA A=0

Definition 4.6. We say that is a stationary point, critical point, or extremunof S if

d

| S@@y. o) =0. (4.13)

A=0

1 We shall also use the notatish(ny , ¢) to denote the sectiomy o (¢ o ¢3 *) o ny .
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Then,

d
d\
a
d\

dS¢-V:

/ LE D, 9) (4.14)
=0 /0% 09x (U)

/ P60 o3 ) Or,
A=0 /¢ x(U)

where we have used the fact thatz) = 2*® for all holonomic sections of J(Y)
(see Corollary 4.2 below), and that

FHy 0 g0 oyt o) = jHny) 0 jH(d 0 93 ok
Using the Cartan formula, we obtain that

dSy -V = /U 7Hd 0 o) L510)Or
= /U 60 o UMV 2 2]

+ / P60 o3 V) 1 O], (4.15)
oUx

Hence, a necessary condition fore C to be an extremum of is that the first
term in (4.15) vanishes. One may readily verify that the integrand of the first term in
(4.15) is equal to zero whenevgt(1) is replaced byl € T J(Y) which is either
Ty, j(y)-vertical or tangent tg*(¢ o o%") (see Marsden and Shkoller [1998]), so that
using a standard argument from the calculus of variatigh(s, o qb;(l)*[WJ Q] must
vanish for all vectorg?y” on J*(Y) in order for¢ to be an extremum of the action. We
shall call such elements € C coveringg x, solutions of the Euler—Lagrange equations.
Definition 4.7. We let

P={pecC|ipod) [WIQc]=0 foral WeTJ(Y)}. (4.16)
In coordinates(¢ o ¢>)_(1)A is an element oP if

oL , . _ 0 oL . _ .
ayﬁ(ﬁ(ﬂm ¢X1)) T o ((%;j‘ (G oo ¢Xl)> =0inUx.

We are now ready to prove the multisymplectic form formula, a generalization
of the symplectic flow theorem, but we first make the following remarkP Ifs a
submanifold ofC, then for any¢ € P, we may identifyT,P with the set{V ¢
T,C | jl(qsoqb;(l)*sjl(v)[WJ Qc] =0 forall W e TJYY)} since such vectors
arise by differentiatin%f—e =07 (€ o ¢§{‘1)*[WJ Q] = 0, whereg*© is a smooth curve
of solutions of the Euler-Lagrange equationgfir{when such solutions exist). More
generally, we do not requir® to be a submanifold in order to define the first variation
solution of the Euler—Lagrange equations.

Definition 4.8. For any¢ € P ,we define the set

F={V e TyC | j ¢ o ¢") Lixn[W 1 Q,] =0 forall W e TJHY)}.
(4.17)

Elements of* solve the first variation equations of the Euler—Lagrange equations.



Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs 365
Theorem 4.1 (Multisymplectic form formula). If ¢ € P, then for allV andW in F,
| oo syt s im e =o. (4.18)
Ux
Proof. We define the 1-forme&; anda, onC by
(@) V= [ =00 oy L) Il
Ux
and
ox@) V= [ o0 V) L,
so that by (4.15),
dSe -V =01(¢) -V +ao(g) -V forall V e TyC. (4.19)
Recall that for any 1-forna: onC and vector fields’, W onC,

da(V, W) = VIa(W)] — W[a(V)] — a(V, W]). (4.20)

We leto. = 15 o ¢ be a curve irC throughe, wherens, is a curve inG through the
identity such that

d
W= —6|6:077§/ andW e F,

d
and consider Eq. (4.19) restricted to Hlle F.
Thus,
d
d(az(V))(9) - W = (a2(V)(0))

& e=0
4
de| _

/ 46 0 o5 05V 2 O]
0 OUx

/ 46 0 679 Sam V) 2 O]

oU x

= /6 00 GV L) 0c)

+ / 6 0 6 LAWY 2 7AV) 1 O],
oU x

where the last equality was obtained using Cartan’s formula. Using Stoke’s theorem,
noting thatooU is empty, and applying Cartan’s formula once again, we obtain that

do@)(V)) - W = /8 =0 AN ) 1]
+ / 60 6 V) 1 S0Oc],
OUx

and
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(2 $)WY) - V = / Mo LMV LAY L )

aUx
o[ 00 s L) S Lol
oU x
Also, since [j*(V), j2(W)] = jX([V, W1), we have

az(o)([V, W]) = / 7@ 0 o) V), i (V)] J O

oUx

Now
V), 7T O] 2 Oz = Laan (T W) 2 Or) — 7 (W) J L1 O,
so that

da(@)(V, W) = 2 / 60 63 V) 1 W) 1 2]

OUx
+ / 760 O V) 1 L5201 O — Ly GHV) L OL)].
oU x
But
Lo W) 10,) =d(H (V) 1 75 W) 1 ©,) + 55 (V) 1 d(H (W) 1 ©r)
and
FHV) 2 L1 O, = jH(V) 1 d(HW) 1 ©,) — j1(V) 1 51 W) 2 Q.

Hence,

/8 00 T L0 — LV 1 02)
. /6 RSN GREAUPRES

- /aU 70 93 G (V) L 5HW) 1 Or).

The last term once again vanishes by Stokes theorem together with the faththe
empty, and we obtain that

daa(9)(V, W) = / 7@ 0 o) GHV) L W) J Q). (4.21)

Ux

We now use (4.20) on;. A similar computation as above yields
dlos(@)- V) W= [ 460 6309 Spanls*(0) I ]
Ux

which vanishes for alb € P andW € F. Similarly, d(a1(¢) - W) -v =0forall¢ € P
andV € F. Finally, a1(¢) = O for all ¢ € P.
Hence, since

0 =ddS(¢)(V, W) = don(9)(V, W) + dexa(d)(V, W),
we obtain the formula (4.18). O
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Symplecticity revisited. Let ¥ be a compact oriented connected boundaryless
manifold which we think of as our reference Cauchy surface, and consider the space of
embeddings oE into X, Emb(Z, X); again, although itis unnecessary for this paper, we
may topologize EmI, X) by completing the space in the appropri@teor H*-norm.

Let B be anm-dimensional manifold. For any fiber bundtg; : K — B, we
shall, in addition to' (75 k), use the corresponding script letférto denote the space
of sections ofrg . The space of sections of a fiber bundle is an infinite-dimensional
manifold; in fact, it can be precisely defined and topologized as the maifofdhe
previous section, where the diffeomorphisms on the base manifold are taken to be the
identity map, so that the tangent spacé&tat o is given simply by

Tg’C:{W:BﬁVK‘ﬂ'K’TKOW:J},

where VK denotes the vertical tangent bundle &f. We let mx r(v i amB):
L(VK,A™(B)) — K bethe vector bundle ovéf whose fiberak € K,z = mpx(k),
is the set of linear mappings frol, K to A™(B),.. Then the cotangent spacekfcat o
is defined as

T;K={n:B— L(VK,A"(B) | 7k (v K am1(B) O T =0}
Integration provides the natural pairingBf C with 77, K:

<7T,V>:/B7T-V.

In practice, the manifold3 will either be X or some ¢ + 1)-dimensional subset of,
or then-dimensional manifold ., where for eachr € Emb(Z, X), , = 7(X). We
shall use the notatiolr’- for the bundlers y, and); for sections of this bundle. For
the remainder of this section, we shall set the manibidtroduced earlier tQ/.

The infinite-dimensional manifo®; is called the--configuration spaceits tangent
bundle is called the-tangent spaceand its cotangent bundle* ). is called ther-phase
space Just as we described in Sect. 2, the cotangent bundle has a canonical@.-form
and a canonical 2-form... These differential forms are given by

0-(p,m) -V = / m(Try, ry, - V) andw; = —db,, (4.22)
P

where (o, ) € V;, V € T, nT*Y,, andrmy_ 1y, : T*Y. — Y. is the cotangent
bundle projection map.

An infinitesimal slicing of the bundle xy consists ol together with a vector field
¢ which is everywhere transverseg, and coverg x which is everywhere transverse
to X,. The existence of an infinitesimal slicing allows us to invariantly decompose
the temporal from the spatial derivatives of the fields. et ), ¢ = ¢|s_, and let
ir : £, — X be the inclusion map. Then we may define the mapaking j1()), to

7Y(V:) x T(rs, vy,) overY, by
Be(H(8) o ir) = (j1(p), ¢) Wherey = £.¢. (4.23)

In our notation,j1()), is the collection of restrictions of holonomic sections/d{Y’)

to ., while j1(),) are the holonomic sections of_ v Itis easy to see that, is

an isomorphism; it then follows thak is an isomorphism of*()), with TY,, since

j1() is completely determined by. This bundle map is called the jet decomposition
map, and its inverse is called the jet reconstruction map. Using this map, we can define
the instantaneous Lagrangian.
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Definition 4.9. The instantaneous Lagrangidn. . : 7Y, — R is given by

Lol )= [ i2lox 107G, 9) (4.24)

.

forall (p,¢) € TY:.

The instantaneous Lagrangién . has an instantaneous Legendre transform
]FLT,C CTYr = TV (p,0) = (p,7)

which is defined in the usual way by vertical fiber differentiatiorlef. (see, for exam-
ple, Abraham and Marsden [1978]). Using the instantaneous Legendre transformation,
we can pull-back the canonical 1- and 2-formsiGry..

Definition 4.10. Denote, respectively, the instantaneous Lagrahgand 2-forms on
TY- by

0L =FL* .0, andw! = —doL. 4.25
T 7,C T T

Alternatively, we may definél using Theorem 2.1, in which case no reference to the
cotangent bundle is necessary.

We will show that our covariant multisymplectic form formula can be used to recover
the fact that the flow of the Euler-Lagrange equations in the bundle
TEMB(E, X),U, cemex, T~ 1S SYymplectic with respect ta”. To do so, we must relate
the multisymplectic Cartam(+ 2)-form . on J(Y") with the symplectic 2-fornuv
onTY.,.

Theorem 4.2. Let ®F be the canonical-form onj()), given by

OL(H(d) oir) -V = /2 )V 1 O, (4.26)
whereji(¢) o i- € j1 (V) V € Tiygyoi, i1 V)~
(a) If the 2-form Q% on j()), is defined byQ: = —d®~, then forV,W ¢
Ti(ayoi 5 1
QLGHA o VN = [ MWV IRl @)
.

(b) Let the diffeomorphismy : ¥ x R — X be a slicing ofX such that for\ € R,
Xy = Sx(z X {)\}) andx, := T)\(E),

wherery, € Emb(Z, X) is given byr\(x) = sx(x, A). Forany¢ € P, letV,WW €
T,Y N F so that for eachr € Emb(Z, X), j1V;, j1W. € Tjyg)oi, 51 (V)-, and let
Tap, Th, € EMb(E, X). Then

L -1 -1 —0fL (;1 -1
Q"')\l(j VT>\17.7 WTxl) _QTAZ(J VT J WTAZ)' (428)

Ap?
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Proof. Part (a) follows from the Cartan formula together with Stokes theorem using an
argument like that in the proof of Theorem 4.1.

For part (b), we recall that the multisymplectic form formula)dstates that for any
subseUx C X with smooth closed boundary and vectdtdV € T,V N F, ¢ € ),

/8 BERCH R GREEUPRERED) (4.29)

Let
Ux = Uxe[ag,2o] Za-
ThendUx = £,, — X,,, So that (4.29) can be written as

0= / b0 in ) Ve, 1 W, 19
2)\2

- / Mo in ) ﬁlnlwﬁlma]
Zkl

- QL (.7 T)\lﬂj WTA ) - Q (J T)\z TAZ))
which proves (4.28). O
Theorem 4.3. The identity®s = 36~ holds.

Proof. Let W € le(d,)o“jl(y)ﬁ which we identify withw o ¢ o i, wherew is a
Tx,jiy)-vertical vector. Choose a coordinate chart which is adapted to the slicing so
thatdoly, = ¢. With w = (0, W4, W), we see that

ef. W= / ot (@7, 0" JWAd x0.
Now, from (4.24) we get
LT
0L (e, ¢) = Cdy

/ —— i[O L(a*, ¢*, " )d" e @ dy ]

vA (67,07 )dy* @ d"zo,

where we arrived at the last equality using the fact grat v4 in this adapted chart.
Since ('8, - W)4 = W4, we see tha®% - W = 0L - (T8, - W), and this completes the
proof. O

Let the instantaneous energy - associated witlL - be given by
Er (@, 0) =FLr () - 0 = Lrc(p,9), (4.30)
and define the “time”-dependent Lagrangian vector figlg . by
Xp, = w =dE- <o

SinceU-cembz, x)1'Y>- over EmbE, X) is infinite-dimensional and;f is only weakly
nondegenerate, the second-order vector fiejg = does not, in general, exist. In the
case that it does, we obtain the following result.
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Corollary 4.1. AssumeXg_ . exists and lef’; be its semiflow, defined on some subset
D of the bundleJ, cemp, x)1'Y- over EmEE, X). Fix 7 o thatF=(¢1, ¢1) = (92, ¢2),
where(p1, ¢1) € TY,, and(p2, $2) € TY,. ThenFzwk = wk

1"

Proof. This follows immediately from Theorem 4.2(b) and Theorem 4.3 and the fact
that3; induces an isomorphism betweg)), andT);. O

Example: Nonlinear wave equatiorfo illustrate the geometry that we have developed,
let us consider the scalar nonlinear wave equation given by

8¢ 1Ay =

90 —A¢p—N'(#)=0, ¢ € I'rxy), (4.31)

X
whereA is the Laplace-Beltrami operator aiMd is a real-valued” function of one
variable. For concreteness, fix1 so that the spacetime manifald := R?, the config-
uration bundle)” := 7 g, and the first jet bundlg!(Y) := TR2 R3.
Equation (4.31) is governed by the Lagrangian density

_J1los? 09?2 1 0
E—{Z [8:&0 —M]+N(¢)}dﬂc Adz”. (4.32)

Using coordinatesaC, 1, ¢, ¢ o, ¢ 1) for JY(Y'), we write the multisymplectic 3-form
for this nonlinear wave equation @®? in coordinates as

Q= —dpNdpoAdxt —dp Adp g Adx® — N'(¢)de A dat A da®
+¢ odd o A dzt A da® — ¢ 1dg 1 A dat A da®; (4.33)

a short computation verifies that solutions of (4.31) are elemeri® of that;j(¢ o
(;S;(l)*[W 1Qr]=0forall W e TJY(Y) (see Marsden and Shkoller [1998]).

We will use this example to demonstrate that our multisymplectic form formula
generalizes the notion of symplecticity given by Bridges [1997]. Since the Lagrangian
(4.32) does not explicitly depend on time, it is convenient to identify sections a$
mappings fronR? into R, and similarly, sections of}(Y") as mappings fronR? into
R3. Thus, forg € T(rxy), j1(@) (") = (d(x), ¢ o(z™), ¢ 1(x*)) € R3, and if we set
p* = ¢, then (4.31) can be reformulated to

Jojloo+Jdijto s =

0 10] [ ¢ 00-17 [ ¢ N'(¢)
—100| [p°| +|00 O |p°| =] —p° |. (4.34)
000] [pt], [L00]|p], pt

To each degenerate matrll,, we associate the contact forat' on R*® given by
wt(ug, uz) = (Jyua, uz), whereus,up € R? and (-, -) is the standard inner product
onR3. Bridges obtains the following conservation of symplecticity:

o (PG00, MO + 5y [0 e =0 (435)

This result is interesting, but has somewhat limited scope in that the vector fields in
(4.35) upon which the contact forms act are not general solutions to the first variation
equations; rather, they are the specific first variation solutipnsBridges obtains this
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result by crucially relying on the multi-Hamiltonian structure of (4.31); in particular,
the vector (V/(¢), —p°, pt) on the right-hand-side of (4.34) is the gradient of a smooth
multi-Hamiltonian functionf (¢, p°, p*) (although the multi-Hamiltonian formalism is
not important for this article, we refer the reader to Marsden and Shkoller [1998] for
the Hamiltonian version of our covariant framework, and to Bridges [1997]). Using
Eq. (4.34), itis clear that

H =Y (¢0), 510 1) andH 1 = —w'(51(6.0), 1 (0.1))
so that (4.35) follows from the relatioi o 1 = H 1 0.

Proposition 4.1. The multisymplectic form formula is an intrinsic generalization of the
conservation law (4.35); namely, for ahy W € F that arerrx ji(y)-vertical,

9
0z0

Proof. Let (V) and j}(W) have the coordinate expression¥, {° V1) and
(W, W°, W1, respectively. Using (4.33), we compute

FWV) 27V 2Q = (VWO = VOW) da + (VIVE — VW) dt,

[WOGHV), 5 )] + % (WG V). 5 W) = 0. (4.36)

so that with Theorem 4.1 and the definitionugf, we have, folUx C X,
[ RGOV — N, Ve =0
oUx
and hence by Green’s theorem,

| {8 2GR0 + 5 [AGH0. )] st =0

SinceUx is arbitrary, we obtain the desired result. [J

In general, whelV is 7xy-vertical, j1(V) has the coordinate expressidr ¥, +
oV/d¢ - ¢ ), but for the special case thet= ¢ ,, j*(¢,) = (j¢) ., and Proposition
4.1 gives

0 0
970 (600,01 — D10,00] — el [pog11 — d1001] =0,

which simplifies to the trivial statement that

$oN(#) 1 — ¢ 1N () 0= 0.

The variational route to the Cartan formWe may alternatively define the Cartan form
by beginning with Eq. (4.14). Using the infinitesimal generators defined in (4.12), we
obtain that

d
d. . = —
Sy -V N

d

S0 9)

A=0

LG @R
5 oy SO )

/ 4
vy A

LG @M, 0)) + / Svy [LGH G0 dxD)] . (4.37)

A=0 Ux
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Using the natural splitting df'Y’, any vectort € T,C may decomposed as
V=Vh+V? whereV" =T(po ) - Vx andVV =V — V" (4.38)

where we recall thaVy = Trxy - V.

Lemma 4.1. ForanyV e T,C,

dSy -V = ; Vx LGNS 0 o], (4.39)
Ux
and

- LG @03, 9))). (4.40)

d
dS .Vv:/ il
¢ v dA

Proof. The equality (4.40) is obvious, since the second term in (4.37) clearly vanishes
for all vertical vectors. For vectorg”, the first term in (4.37) vanishes; indeed, using
the chain rule, we need only compute that

o (o) oy =V —T(podd) - Vx,
=0

X

which is zero by (4.38). We then apply the Cartan formula to the second term in (4.37)
and note thatl£ is an { + 2)-form on the 4 + 1)-dimensional manifold’x so that we
obtain (4.39). O

Theorem 4.4. Given a smooth Lagrangian densify: J%(Y) — A""}(X), there exist
a unique smooth sectidBz; £ € C®°(Y”, A™(X)®T*Y)) and a unique differential
form®, € A"(JX(Y)) such that for any’ e T,C, and any open subséty such that
ﬁx NoxX =10,

05, V= Deil(po sV + / 6o b V) 1 O],
Ux oUx (4.42)
Furthermore,
DprL(%(do dxN)) -V = jH o o o) [1H(V) 2 Qc] in Ux. (4.42)

In coordinates, the action of the Euler—Lagrange derivafivg; £ onY" is given by
oL 0L
-2 —1y) — -1 -1 -1 -1
DeL L0065 = | 5300 030) = GG 0 030)

0%L
~ayout, (G (@0 dxD) - (P o XD
0L i1 -1 —1\B A n+1
~ o 00005 o o )] dy A d i, (4.43)

while the form® , matches the definition of the Cartan form given in (4.9) and has the
coordinate expression

oL

O, =
£ o4,

L
dy* Nd"x, + <L _ 0 < UAH,) d" . (4.44)
ov4,
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Proof. Choosd/x = ¢x(U) small enough so that it is contained in a coordinate chart,
sayO;. Inthese coordinates, et = (1'*, V4) so that along) o ¢;(1, our decomposition
(4.38) may be written as

Vx = v“i andV”—(V”)A 8 = (VA

yudldod D) 9
Ox#

Oxk oy’
and Eq. (4.40) gives

5‘(V )

K

ASy - V¥ = /U |:8[:4(31(¢ 09y - (V) + a0, 5o 6 0 63 ] (4.45)

where we have used the fact that in coordinates ajdgo gb;(l),

{7 O, = 0.V G 0 oxX ]
Integrating (4.45) by parts, we obtain

s, vi= [ | 256000 - g g Gieo st v L

oL -1 1 A gn
+/ax{av (60 03 VAT

1%

LA
a A, L (o dx ))M V”d”x,,}. (4.46)

Let o be then-form integrand of the boundary integral in (4.46); thﬁg}]x a =
fajl((bo(b)_{l)wx) since« is invariant under this lift. Additionally, from Eq. (4.39), we
obtain the horizontal contribution

dS, -V = / (V*9,) 1 (Ld™*'x) = / VELd x,, (4.47)
oUx 0jH (o)X ~1)(Ux)

so combining Egs. (4.46) and (4.47), a simple computation verifies that

oL o oL .
a5,v = [ {55000 00 - shom e s s gt v

oL . - n
«/ v { (60 6Ny A,
840 NUx) U

A
[L LS »‘W] dnﬂz}. (4.48)

The vectorV in the second term of (4.48) may be replaced;jbil/) sinceny, ji(yy-
vertical vectors are clearly in the kernel of the form tiais acting on. This shows that
(4.43) and (4.44) hold, and hence that the boundary integral in (4.48) may be written as

/ 760 o) V) 2 O],
oU x
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Now, if we choose another coordinate ch@ast the coordinate expressionsiof; £
and® . mustagree onthe overldah NO- since the left-hand-side of (4.41) is intrinsically
defined. Thus, we have uniquely definégd; £ and® . foranyUx such that/ x NoX =
0.

Finally, (4.42) holds, sinc€, = d© is also intrinsically defined and both sides of
the equation yield the same coordinate representation, the Euler—Lagrange equations in
Ux. O

Remark.To prove Theorem 4.4 for the caBg = X, we must modify the proof to take
into account the boundary conditions which are prescribedon

Corollary 4.2. The @ + 1)-form ® defined by the variational principle satisfies the
relationship

L(z) =20,
for all holonomic sections € I'(7x j1y))-

Proof. This follows immediately by substituting (4.42) into (4.41) and integrating by
parts using Cartan’s formula. O

Remark.We have thus far focused on holonomic sectiong "), those that are the
first jets of sections oY, and correspondingly, we have restricted the general splitting
of T'Y given by

TY =imagey @ VY for anyy € I'(JY(Y)),

toTY = Top®d VY, ¢ € I'(Y) as we specified in (4.38). For general sections
v € T(JY(Y)), the horizontal bundle is given by image and the Frobenius theo-
rem guarantees thatis locally holonomic if the connection is flat, or equivalently if the
curvature of the connectiaR, vanishes. Since this is a local statement, we may assume
thatY = U x RY, whereU c R"*!is open, and that yy is simply the projection
onto the first factor. Fop € I'(Y), andy € T'(JX(Y)), v(z, #(z)) : R"™* — RV is a
linear operator which is holonomicdf (z) = v(x, ¢(x)), whered'(z) is the differential

of ¢, and this is the case whenever the operatl{r) is symmetric. Equivalently, the
operator

S’Y(xay) : (U7w) = Dl’y(xay) : (’U,’lU) + Dz’y(l‘,y) ) (’Y(xvy) U, w)

is symmetric for alb, w € R™*1. One may easily verify that the local curvature is given
by
R’y(za y) : (v,w) = S,y(lli,y) : (va) - S’Y(xa y) : (w,v)

and thaty = j1(¢) locally for someyp € I'(Y), if and only if R, = 0.

The variational route to Noether’s theorenSuppose the Lie groug acts onC and
leaves the actio§ invariant so that

S(@(ny, 9)) = S(¢) forall 7y € G. (4.49)

This implies that for eaclyy € G, ®(ny,$) € P wheneverp € P. We restrict the
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action ofG to P, and let¢¢ be the corresponding infinitesimal generatoiCamstricted
to points inP; then

0= (€ 1 dS), = / 60 3 ) 1 O]

oUx

= [ Feeody o,
Ux
sinceL ;1O = 0 by (4.49) and Corollary 4.2.

We denote the covariant momentum map/d(y’) by 7% € L(g, A™(J*(Y")) which
we define as

7€) J Q= dTE (). (4.50)

Using (4.50), we find thaf,, d[j*(¢ o oxD)* T4(€)] = 0, and since this must hold
for all infinitesimal generator&: at¢ € C, the integrand must also vanish so that

d[j* (¢ 0 ox)* TE(€)] =0, (4.51)

which is precisely a restatement of the covariant Noether Theorem.

5. Veselov-type Discretizations of Multisymplectic Field Theory

5.1. General theoryWe now generalize the Veselov discretization given in Sect. 3 to
multisymplectic field theory, by discretizing the spacetimeFor simplicity we restrict

to the discrete analogue of dif = 2; i.e.n = 1. Thus, we takeX = Z x Z = {(z, 5)}

and the fiber bundl& to be X x F for some smooth manifold.

Notation. The development in this section is aided by a small amount of notation and
terminology. Elements df over the base poini ;) are written ag;; and the projection
Txy actsony” by mxy (yi;) = (¢, j). The fiber overq, j) € X is denoted;;. A triangle

A of X is an ordered triple of the form

A=((0,9),0,5+1),(G+1,5+1)).

The firstcomponent(j) of A is thefirst vertexof the triangle, denoted?, and similarly

for thesecondandthird vertices.The set of all triangles ikX is denotedX”. By abuse

of notation the same symbol is used for a triangle and the (unordered) set of its vertices.
A point (i, j) € X istouchedby a triangle if it is a vertex of that triangle. If C X,

then ¢, ) € U is aninterior point of U if U contains all three triangles of that touch

(4, 7). Theinterior int U of U is the collection of the interior points &f. Theclosure

clU of U is the union of all triangles touching interior points@f A boundary point

of U is a point inU and clU which is not an interior point. Theoundaryof U is the

set of boundary points df, so that

aU = (U NclU) \ intU.

Generally,U properly contains the union of its interior and boundary, and wel¢all
regular if it is exactly that union. Asectionof Y isamapy : U C X — Y such that
XYy © (b = IdU
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yi+1j+1

Fig. 5.1.Depiction of the heuristic interpretation of an element/dt” when X is discrete

Multisymplectic phase spaceéle define thdirst jet bundle® of Y to be

JY = {(ij, vi j+1, yin1j+1) | (5 5) € X, yij, Yijors Yirrjer € F)
= X% x F°.
Heuristically (see Fig. 5.1)X corresponds to some grid of elememnis in continuous
spacetime, say, and (y;;, yi j+1, yi+1j+1) € J'Y corresponds tgl¢(z), wherea is
“inside” the triangle bounded by;;, z; j+1, Ti+1+1, and¢ is some smooth section of

XxF interpolating the field valueg ;, y; j+1, yi+1 j+1. Thefirstjet extensiorof a section
¢ of Y is the mapjle : X4 — JY defined by

Fre(A) = (A, p(AY), p(A%), 9(A?)).

Given avector field onY’, we denote its restriction to the fibEy; by Z;;, and similarly
for vector fields on/1Y. Thefirst jet extensionof a vector fieldZ onY is the vector
field j1Z on J'Y defined by

le(yA17 Yaz, Ya3) = (ZAl(yAl)v Zn2(Ya2), ZA3(yA3))a
for any triangleA.
The variational principle. Let us posit aiscrete LagrangianL : J'Y — R. Given a
triangle A, define the functio, : 73 — R by
La(y1,y2,y3) = L(A, y1, Y2, y3),

so that we may view the Lagrangiéras being a choice of a functidi, for each triangle
A of X. The variables on the domain bf, will be labeledy?, 42, 43, irrespective of the
particularA. LetU be regular and lef; be the set of sections &f onU, soCy is the
manifold 7!V!. Theactionwill assign real numbers to sectionsdp by the rule

S@)= Y Loj'e(a). (5.1)
A ACU

2 Using three vertices is the simplest choice for approximating the two partial derivatives of the,field
but may not lead to a good numerical scheme. Later, we shall also use four vertices together with averaging
to define the partial derivatives of the fields.
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i+1))|@+1j+1

./
A

(i.i-1) ) 1G,i+1

(i-1j-1 (i-1))

Fig. 5.2.The triangles which touch (5)

Given¢ € Cy and a vector field/, there is the 1-parameter family of sections
(FY 9)G. j) = F/ (60, ),

whereFVii denotes the flow oF;; on . Thevariational principle is to seek those
for which

4 sy =0
d€ e=0

for all vector fieldsl/.

The discrete Euler—-Lagrange equation3.he variational principle gives certain field
equations, theiscrete Euler—Lagrange field equatio®ELF equations), as follows.
Focus upon somé,(j) € int U, and abuse notation by writing(4, j) = y;;. The action,
written with its summands containing; explicitly, is (see Fig. 5.2)

S =+ LWijs Yi j+1, Yirrj+1) ¥ LWij—1, Yij, Yierj) ¥ LYi-1-1,Yi-15, Yig) + -
so by differentiating iry;;, the DELF equations are

oL OL oL B
aT/l(yip Yi j+1, Yir1 j+1) + Tyz(yijfla Yij, Yir15) + 872/3(.%—1]'71, Yi—1j,Yij) = 0,

for all (i, j) € intU. Equivalently, these equations may be written

oL
Z TZA(ZIA% Yaz,Yaz) = 0, (5.2)
LA (6,5)=A

forall (i, j) € intU.

The discrete Cartan formNow suppose we allow nonzero variations on the boundary
0U, so we consider the effect ghof a vector fieldl” which does not necessarily vanish
onoU. For each{, j) € oU find the triangles iV touching ¢, j). There is at least one
such triangle sincei(j) € clU; there are not three such triangles sincg) & int U.

For each such triangla, (i, ) occurs as thé" vertex, for one or two of = 1, 2, 3, and
thosel™ expressions from the list
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oL
aTJl(yij, Yi j+1s Yird j+1) Vii (Wis)s

oL
aiyg(yijfla Yijs Yi+15)Vii Wij),

OL
aiyg(yifljfb Yi—155Yij)Vii i),

yielding one or two numbers. The contributionds from the boundary is the sum of all
such numbers. To bring this into a recognizable format, we take our cue from discrete
Lagrangian mechanics, which featureeb 1-forms. Here the above list suggests the
three1-forms onJ'Y’, the first of which we define to be

1
®L(yija Yi j+1, yi+lj+l) : (vyij y Uy, G+ vyi+1_7’+1)
oL

= aTJl(yij s Yi j+1, Yir1j+1) - (Vy,;,0,0),

©7 and®? being defined analogously. With these notations, the contributiési tmm
the boundary can be writtehy, (¢) - V, wherefy, is the 1-form on the space of sections
Cy defined by

0L(d) V= > > (Gt Gtvaen) () |. (5.3)

A ANOUA) \1;AledU

Incomparing (5.3) with (4.41), the analogy with the multisymplectic formalism of Sect. 4
is immediate.

The discrete multisymplectic form formulaGiven a triangleA in X, we define the
projectionr, : Cy — J'Y by
7TA(¢) = (A7 YA, Yaz, yA3)'

In this notation, it is easily verified that (5.3) takes the convenient form

o= > mel . (5.4)

AN ANOUAD \1;AL€edU

A first-variation at a solution¢ of the DELF equations is a vertical vector field
such that the associated fldd¥” mapse to other solutions of the DELF equations. Set
QL = —de! . Since

ol +0? +03 =dL, (5.5)

one obtains
Ql+02 +q8 =0,

so that only two of the three 2-forngg} , | = 1,2, 3 are essentially distinct. Exactly as
in Sect. 2, the equatia#?'S = 0, when specialized to two first-variatioWsand W now
gives, by taking one exterior derivative of (5.4),
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0=doL(@)(V. W)= > Y Vawamel |,
A ANOUA \1;ALedU

which in turn is equivalent to

S [ 3 (GG astwaeh) ) | =o (5.6)

A ANOUAD \1;ALedU

Again, the analogy with the multisymplectic form formula for continuous space-
time (4.18) is immediate.

The discrete Noether theorensuppose that a Lie grou@ with Lie algerag acts onF'
by vertical symmetries in such a way that the Lagrandias G-invariant. Then acts
onY andJY in the obvious ways. Since there are three Lagrange 1-forms, there are
three momentum map¥, I = 1, 2, 3, each one g*-valued function on triangles i,
and defined by
Jt=Eny 16,

for any¢ € g. Invariance of and (5.5) imply that
Jr+ 2+ 3 =0,

S0, as in the case of the 1-forms, only two of the three momenta are essentially distinct.
For any¢, the infinitesimal generatay- is a first-variation, so invariance 6f, namely

&y 1dS =0, becomesy _16, = 0. By leftinsertion into (5.3), this becomes the discrete
version of Noether’s theorem:

> > Jia) | =o (5.7)

A;ANOUAD \ ;AL edU

Conservation in a space and time splifo understand the significance of (5.6) and (5.7)
consider a discrete field theory with space a discrete version of the circle and time the
real line, as depicted in Fig. 5.3, where space is split into space and time, with “constant
time” being constanj and the “space index” ¥ ¢ < N being cyclic. Applying (5.7)

to the region{(,j) | j = 0,1,2} shown in the figure, Noether's theorem takes the
conservation form

N N
Z Jl(yio, Vi1, Yir11) = — Z (Jz(ym Yi2, Yir12) + J3(y1-1, Yi2; Yi+l 2))
i=1 i=1

N
= Z Jl(yil; Yi2, Yi+12)-
i=1

Similarly, the discrete multisymplectic form formula also takes a conservation form.
When there is spatial boundary, the discrete Noether theorem and the discrete multi-
symplectic form formulas automatically account for it, and thus form nontrivial gener-
alizations of these conservation results.
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Fig. 5.3.Symplectic flow and conservation of momentum from the discrete Noether theorem when the spatial
boundary is empty and the temporal boundaries agree

Furthermore, as in the continuous case, we can achieve “evolution type” symplectic
systems (i.e. discrete Moser—\Veselov mechanical systems) if we dgfisethe space
of fields at constant, soQ = F%, and take as the discrete Lagrangian

N
LA [g) = > (¢, ¢, gha)-
i=1

Then the Moser—Veselov DEL evolution-type equations (3.2) are equivalent to the DELF
equations (5.2), the multisymplectic form formula implies symplecticity of the Moser—
Veselov evolution map, and conservation of momentum gives identical results in both
the “field” and “evolution” pictures.

Example: Nonlinear wave equationTo illustrate the discretization method we have
developed, let us consider the Lagrangian (4.32) of Sect. 4, which describes the nonlinear
sine-Gordon wave equation. This is a completely integrable system with an extremely
interesting hierarchy of soliton solutions, which we shall investigate by developing for
it a variational multisymplectic-momentum integrator; see the recent article by Palais
[1997] for a wonderful discussion on soliton theory.

To discretize the continuous Lagrangian, we visualize each triangkehaving base
lengthh and heightt, and we think of the discrete jeg (1, y2, ya3) as corresponding
to the continuous jet

0d — | _ Yij+l — Yij 0d — | _ Yirlj+1 — Yij+l
@(ym) =T oat Yij) = B

wherey;; is the center of the triangfé This leads to the discrete Lagrangian

2 2
1/ -y 1/ys—u2 y1+y2+y3)

L=_ ——|(=—) +N|(—/—F—
2( h ) 2( k (%3 !

with corresponding DELF equations

3 Other discretizations based on triangles are possible; for example, one could use the;Valuesertion
into the nonlinear term instead 9f; .
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Yirj — 2¥ij tYi-1;  Yijvr — 205 YY1

k2 h?
+ }N’ (yu T Yt yi+lj+l)
1
3

3
N (yij—l + Yij +yi+lj>
3

1, (yicrj—1tyio1; Yy _
+3N ( : ) =0, (5.8)

WhenN = 0 (wave equation) this gives the explicit method

h2
Yije1 = ﬁ(yﬁlj = 2y Y Yim15) ¥ 2Yi5 — Yij-1,
which is stable whenever the Courant stability condition is satisfied.

Extensions: Jets from rectangles and other polygo@sir choice of discrete jet bundle
is obviously not restricted to triangles, and can be extended to rectangles or more general
polygons (left of Fig. 5.4). Aectangleis a quadruple of the form,

A= ((i,5), 3G, +1),G+1,5+1),3+1,5)),

a point is arninterior point of a subset/ of rectangles ifJ contains all four rectangles
touching that point, the discrete Lagrangian depends on varighles ,y4, and the
DELF equations become

oL oL
aT/l(yij, Yi j+1, Yi+lj+1, yi+1j) + aiyz(yij—la Yij, Yi+ls, yi+1j—1)

oL oL _
+87y3(yi—1j—17 Yi—15,Yij, yij—l) + 374(%—1]‘, Yi—1;5+1, Yi j+1, yij) =0.

The extension to polygons with even higher numbers of sides is straightforward; one
example is illustrated on the right of Fig. 5.4. The motivation for consideration of these

(i+1,j-1) (i+1,j)
(i+1,j+1)
(i,j-1)
(i,j+1)
(i-1,j-1)
(i-1.j) (i-1,j+1)

Fig. 5.4.0n the leff the method based on rectangles;the right a possible method based on hexagons

extensions is enhancing the stability of the triangle-based method in the nonlinear wave
example just above.
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Example: Nonlinear wave equation, rectangleBhink of each rectanglé as having
lengthh and heightt, and each discrete jei (1, yaz, ya3, ya2) being associated to the
continuous jet

90 ho 7 0al k k
wherep is a the center of the rectangle. This leads to the discrete Lagrangian
p=1(v2—n 2_} Ya— Y1, Y3 — Y2 ?
2 h 2 2k 2k
Yyrty2tystuya
+N ( " ) .

0o ) = Yij+1 — Yij 0¢ ) = % <yi+lj —Yij + Yi+lj+1 — yij+l> ’

(5.9)

If, for brevity, we set

Yij Y Yij+1 T Yir1j+1 T Yiv1
4 ’
then one verifies that the DELF equations become

Yij =

2 k2 4 k2

LY =2yt i1 | (Y — 29 i
4 K2 02

{1 Yirlj — 2Yi5 Y Vi1 + Lyivaje1 — 2y e+ yim1jn

1 _ _ _ _
+ 2 [N/(yij) + N'(y; j—1) + N'(yi—1j-1) + N/(yilj):| =0,

which, if we make the definitions
Dvij = Yijr1— 20ij Y Vij—1,  Opyij = Yirrj — 20ij + Yi-1j,
F) = § [NV + NG+ N Gioay ) NG
is (more compactly)

1(1 1 1 1 _
k2 [43£yu+1 + S0k + 45;3%]'1} - ﬁaﬁyu +N'(5)=0.  (5.10)

These are implicit equations which must be solvedyfori, 1 < @ < N, giveny; ;,
vij—1, 1 < i < N; rearranging, an iterative form equivalent to (5.10) is

h? h?
_ (2(h2+2k2)> Yi+1j+1 T Yij+1 — (2(h2+2k2)> Yi—1j+1

h? 1
=TT o2 ((yi+1j —2yi; +yi—1j) + é(yiﬂj—l — 2yt yi—lj—l))
2k?
+ 2t o2 (2yij - yij—l)
h2k?2

* 2(h2 + 2k2) (V'(yis) + N'(ij-1) + N'(gi—1j-1) + N'(9i-1))-
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In the case of the sine-Gordon equation the values of the field ought to be considered
as lying inS?, by virtue of the vertical symmetry — y + 2. Soliton solutions for
example will have a jump of2and the method will fail unless field values at close-
together spacetime points are differenced moduloA% a result it becomes important

to calculate using integral multiples of small field-dependent quantities, so thatitis clear
when to discard multiples ofi2 and for this the above iterative form is inconvenient.
But if we define

8}1%‘3‘ = Yij+1 — Yij, %yij = Yi+15 — Yij,
then there is the following iterative form, again equivalent to (5.10),

Yija = yij + Ohyij, and

h’2 1 1 h2 1
- (z(hz + 2k2)> ahyi+lj + ahy’bj - <2(h2 + 2]4;2)) ahy’iffl.j
h? 2k?
= 557530k + Ofyij 1) + 724082

1
12+ 212 Onvi
N'(5)- (5.11)

h2)2
Y207+ 22)

One can also modify (5.9) so as to treat space and time symmetrically, which leads
to the discrete Lagrangian

1y — —u\? 1 [ ys— —\?
L:(yz i, Y3 y4) _(y4 v1, ys yz)

2 2h 2h 2 2k 2k
Yy1+1y2+ystys
oN (PR,

and one verifies that the DELF equations become

11 1 1
72 [45§yz‘j+1 + Qaiyz‘j + 45§yml]
1

1 1 1 —
T2 [4afzzyi+lj + Ealzzyij + 45;212/1‘13'] +N'(y:;) =0, (5.12)

an equivalent iterative form of which is
Yij+1 = Yij + aiyij, and

h2 o k2 1 1 hZ _ k2 1
- <2(h2+k2)> ahyi+1j + 8hyij - (2(h2+k2)) ahyi—lj
2
T 22+ K3
h2
+
2(h2 + k2
h2k?
+
2(h2 + k2)

(30%yis + Ofyij—1)
(zaijy:yij + aijiyﬁlj + a;llyz;lj)

N'(3)- (5.13)
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6. -~ OM M

-.002

40

Time

6. 28

0 Space 40 1 Space grid points 16

Fig. 5.5. Top left: the wave forms for a two soliton kink and antikink collision using (5.12)p right: the
energy errorBottom left:the wave form at time ~ 11855 .Bottom right:the portion of the bottom left graph
for spatial grid points 1. .16

5.2. Numerical checksWhile the focus of this article is not the numerical implementa-
tion of the integrators which we have derived, we have, nevertheless, undertaken some
preliminary numerical investigations of our multisymplectic methods in the context of
the sine-Gordon equation with periodic boundary conditions.

The rectangle-based multisymplectic meth@te top half of Fig. 5.5 shows a simulation

of the collision of “kink” and “antikink” solitons for the sine-Gordon equation, using
the rectangle-based multisymplectic method (5.12). In the bottom half of that figure we
show the result of running that simulation until the solitons have undergone about 460
collisions; shortly after this the simulation stops because the iteration (5.13) diverges. The
anomalous spatial variations in the waveform of the bottom left of Fig. 5.5 have period 2
spatial grid divisions and are shown in finer scale on the bottom right of that figure. These
variations are reminiscent of those found in Ablowitz, Herbst and Schober [1996] for
the completely integrable discretization of Hirota, where the variations are attributed to
independent evolution of waveforms supported on even vs. odd grid points. Observation
of (5.12) indicates what is wrong: the nonlinear teircontributes to (5.12) in a way

that will average out these variations, and consequently, once they have begun, (5.12)
tends to continue such variations via the linear wave equation. In Ablowitz et. al., the
situation is rectified when the number of spatial grid points is not even, and this is the case
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for (5.12) as well. This is indicated on the left of Fig. 5.6, which shows the waveform
after about 5000 soliton collisions whe¥i = 255 rather thanV = 256. Figure 5.7
summarizes the evolution of energy efréor that simulation.

6. 28 6.28

0
40 0 Space 40

0

0 Space

Fig. 5.6.0n theleft, the final wave form (after about 5000 soliton collisiong at 129133) obtained using

the rectangle-based multisymplectic method (5.12). Onigi#, the final waveform (at ~ 129145) from

the energy-conserving method (5.14) of Vu-Quoc and Li. In both simulations, temporal drift is occurring. For
this reason the waveforms are inverted with respect to one another; moreover, the separate solitons are drifting

at slightly different rates, as indicated by the off-center waveforms

O 0
Ener gy Ener gy
-.002
-.002
0 Ti me 120000 129130 1/ e 129155

Fig. 5.7.0n theleft, the energy error corresponding to our multisymplectic method (5.13) for 5000 solition
collisions; the three graphs correspond to the minimum, average, and maximum energy error over consecutive
5000 time step regions. On thight, the final energy error (i.e. the energy error after about 5000 soliton
collisions), which can be compared with the initial energy error plot in the top left of Fig. 5.5

4 The discrete energy that we calculated was

N 2
Z 1 (yij+1 ~Yij , YitlgHl — yi+lj)
2 2h 2h

i=1
1 (Yi+1j — Yij | Yi+lj+l — Yi j+1>2 —
+ = + — N (i) |.

2 ( 2k 2k (vi5)
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Initial data. For the two-soliton-collision simulations, we used the following initial
data:h = k/8 (excepth = k/16 where noted), where = 40/N and N = 255 spatial
grid points (except Fig. 5.5 wheré = 256). The circle that is space should be visualized
as having circumferenck = 40. Lets = 1 — ¢, wheree = 1075, L. = /4 = 10,

1/k 1 EZ
P=2 dy ~ 15.90, c=\|1— ——= ~ 7773
0 1-y2/1- k2?2 k2P?
and
~ . X
x) = 2arcsin| sn| ———— k& .
#l) < <m/1— ? >)

Then&(x — ct) is a kink solution if space has a circumferencelofThis kink and an
oppositely moving antikink (but placed on the last quarter of space) made up the initial
field, so thaty,o = ¢(40¢@ — 1)/N),i=1,... , N, where

P(x) 0<z<L/4
¢(x) = { 2m L/4<x<3L/4,
27 — ¢p(xr —3L/4) 3L/A<z < L

while yi1 = ;0 + $(40G — 1)/N)h, where

. (p(x — he) = ¢(x))/h 0<z < L/4
Ppz)=< 0 L/A<xz<3L/4.
—(¢p(x — he) — d(x))/h 3L/A<x < L

Comparison with energy-conserving methods an example of how our method com-
pares with an existing method, we considered the energy-conserving method of Vu-Quoc
and Li[1993], p. 354:

11 1 1 1

2 [4513%]41 + Eaiyij + 431%:1/”—1} - ﬁa;z,yij

k
1 (N(yij+1) — Nyiy) |, Nyig) — N(yij—l)> -0
2 Yij+1 — Yij Yij —Yij—1

+ (5.14)

This has an iterative form similar to (5.13) and is quite comparable with (5.10) and (5.12)
in terms of the computation required. Our method seems to preserve the soliton waveform
better than (5.14), as is indicated by comparison of the left and right Fig. 5.6.

In regards to the closely related papers Vu-Quoc and Li [1993] and Li and Vu-
Quoc [1995], we could not verify in our simulations that their method conserves energy,
nor could we verify theiproofthat their method conserves energy. So, as a further check,
we implemented the following energy-conserving method of Guo, Pascual, Rodriguez,
and Vazquez [1986]:

N(yi j+1) — N(yi j—
Oy — Ohyij + (yy?fﬂ_y,(_yf 2} (5.15)
1] O

which conserves the discrete energy

N
}(yijﬂ — Yii)Wij — Yij—1) + } Yi+1j — Yij ? — N(yiy)
2 h? 2 k wr

J=1
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Fig. 5.8.Along-time simulation using the energy-conserving method (5.15) of GuoAtbale leftthe initial
energy errorAbove right:the average energy error over consecutive 5000 time step regions (the maximum
and minimum closely parallel the averag@glow left:the final energy erroBelow right:the final waveform

att ~ 129149

This method diverged after just 345 soliton collisions. As can be seen from (5.15), the
nonlinear potentialN enters as a difference over two grid spacings, which suggests that
halving the time step might resultin a fairer comparison with the methods (5.12) or (5.14).
With this advantage, method (5.15) was able to simulate 5000 soliton collisions, with a
waveform degradation similar to the energy-conserving method (5.14), as shown at the
bottom right of Fig. 5.8. The same figure also shows that, although the energy behavior
of (5.15) is excellent for short time simulations, it drifts significantly over long times,
and the final energy error has a peculiar appearance. Figure 5.9 shows the time evolution
of the waveform through the soliton collision that occurs just before the simulation stops.
Apparently, at the soliton collisions, significant high frequency oscillations are present,
and these are causing the jumps in the energy error in the bottom left plot of Fig. 5.8.
This error then accumulates due to the energy-conserving property of the method. In
these simulations, so as to guard against the possibility that this behavior of the energy
was due to inadequately solving the implicit Eq. (5.15), we imposed a minimum limit
of 3 iterations in the corresponding iterative loop, whereas this loop would otherwise
have converged after just 1 iteration.

Comparison with the triangle-based multisymplectic methothe discrete second
derivatives in the method (5.15) are the same as in the triangle-based multisymplectic
method (5.8); these derivatives are simpler than either our rectangle-based multisym-
plectic method (5.12) or the energy-conserving method of Vu-Quoc and Li (5.14). To
explore this we implemented the triangle-based multisymplectic method (5.8). Even
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3 2.3 1.2
0 0 01 WP/
12 6.3 6.2
-.08 5.2 4.2

Fig. 5.9.The soliton collision at time ~ 129130, after the energy-conserving method (5.15) of Guo et al. has
simulated about 5000 soliton collisions. The solitons collide beginning at the top left and proceed to the top
right, then to the bottom left, and finally to the bottom right. The vertical scales are not constant and visually
exaggerate the high frequency oscillations, which are small on the scaletO to 2

with the less complicated discrete second derivatives our triangle-based multisymplec-
tic method simulated 5000 soliton collisions with comparable erfeagyl waveform
preservation properties as the rectangle-based multisymplectic method (5.12), as shown
in Fig. 5.11. Figure 5.10 shows the time evolution of the waveform through the soliton
collision just before the simulation stops, and may be compared to Fig. 5.9. As can
be seen, the high frequency oscillations that are present during the soliton collisions
are smaller and smoother for the triangle-based multisymplectic method than for the
energy-conserving method (5.15). A similar statement is true irrespective which of the
two multisymplectic or two energy conserving methods we tested, and is true all along
the waveform, irrespective of whether or not a soliton collision is occurring.

Summary. Our multisymplectic methods are finite difference methods that are com-
putationally competitive with existing finite difference methods. Our methods show
promise for long-time simulations of conservative partial differential equations, in that,
for long-time simulations of the sine-Gordon equation, our method 1) had superior
energy-conserving behaviayen when compared with energy-conserving met)ds
better preserved the waveform than energy-conserving methods; and 3) exhibited su-
perior stability, in that our methods excited smaller and more smooth high frequency
oscillations than energy-conserving methods. However, further numerical investigation
is certainly necessary to make any lasting conclusions about the long-time behavior of
our integrator.

5 The discrete energy that we calculated was

XN: 1 (yij+1*yij)2+} (yi+1j *yij)z_N(___)
2 h 2 2k Yial ) -

=1
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Fig. 5.10.Similar to the above plot but for our triangle-based multisymplectic method (5.8)
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Fig. 5.11. A simulation of 5000 soliton collisions using the triangle-based multisymplectic method (5.8).
Above left:The initial energy errorAbove right:The minimum, average and maximum energy as in the left
of Fig. 5.7.Below left:the final waveform (at ~ 129130).Below right:the final energy error
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The programs.The programs that were used in the preceding simulations are “C” lan-
guage implementations of the various methods. A simple tridiagonal LUD method
was used to solve the linear equations (e.g. the left side of (5.13)), as in Vu-Quoc
and Li [1993], p. 379. An 8 order extrapolator was used to provide a seed for the im-
plicit step. All calculations were performed in double precision while the implicit step
was terminated when the fields ceased to change to single precision; the program’s out-
put was in single precision. The extrapolation usually provided a seed accurate enough
so that the methods became practicabplicit, in that for many of the time-steps the

first or second run through the iterative loops solving the implicit equations solved those
equations to single precision. However, in the absence of a regular spacetime grid the
expenses of the extrapolation and solving the linear equation would grow. Our programs
are freely available at URhttp://www.cds.caltech.edu/shkoller/mps .

6. Concluding Remarks

Here we make a few miscellaneous comments and remark on some work planned for
the future.

Lagrangian reduction As mentioned in the text, it is useful to have a discrete counterpart
to the Lagrangian reduction of Marsden and Scheurle [1993a,b], Holm, Marsden and
Ratiu [1998a] and Cendra, Marsden and Ratiu [1998]. We sketch briefly how this theory
might proceed. This reduction can be done for both the case of “particle mechanics” and
for field theory.

For particle mechanics, the simplest case to start with is an invariant (say left)
Lagrangian on the tangent bundle of a Lie grolip:7T’'G — R. The reduced Lagrangian
isl : g — Randthe corresponding Euler—Poineaguations have a variational principle
of Lagrange d’Alembert type in that there are constraints on the allowed variations. This
situation is described in Marsden and Ratiu [1994].

The discrete analogue of this would be to replace a discrete Lagrdngiéh< G —
R by a reduced discrete LagrangianG — R related toL. by

(9195 ) = L(g1, 92)-

In this situation, the algorithm fro® x G to G x G reduces to one fror& to G and it
is generated byin a way that is similar to that fdt. In addition, the discrete variational
principle forlL which states that one should find critical points of

(g1, 92) + L(g2, g3)

with respect tay, to implicitly define the mapds, g») — (g2, g3), reduces naturally to

the following principle: Find critical points of(g) + ¢(h) with respect to variations of

g andh of the formg¢ := L, andéh = Ry, whereL, and R;, denote left and right
translation and wherg € g. In other words, one sets to zero, the derivative of the sum
U(gg= 1) + £(g.h) with respect tc ate = O for a curveg, in G that passes through the
identity ate = 0. This defines (with caveats of regularity as before) a map tf itself,

which is the reduced algorithm. This algorithm can then be used to advance points in
G x @G itself, by advancing each component by the reduced trajectory, reproducing the
algorithm onG x G. In addition, this can be used with the adjoint or coadjoint action
to advance points ig* to approximate the Lie—Poisson dynamics.
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These equations for a discrete map, 8ay G — G generated by on G are called
thediscrete Euler—Poincag equationsas they are the discrete analogue of the Euler—
Poincag equations op. Notice that, at least in theory, computation can be done for this
map first and then the dynamics 6hx G is easily reconstructed by simply advancing
each pair as followsif, g2) — (hg1, hgo), whereh = gbg(g;lgz) = ¢e(h).

If one identifies the discrete Lagrangians with generating functions (as explained
in Wendlandt and Marsden [1997]) then the reduced Lagrangian generates the reduced
algorithm in the sense of Ge and Marsden [1988], and this in turn is closely related to
the Lie—Poisson—Hamilton—Jacobi theory.

Next, consider the more general casel@) with its discretization) x @ with a
group action (assumed to be free and proper) by a Lie géauhe reduction of'Q by
the action ofGG is TQ /G, which is a bundle ovef(Q/G) with fiber isomorphic tqg.

The discrete analogue of this i§ & Q) /G which is a bundle overd /G) x (Q/G) with

fiber isomorphic taz itself. The projection map : (Q x Q)/G — (Q/G) x (Q/G)

is given by [@1,¢2)] — ([q1],[q2]) where [ ] denotes the relevant equivalence class.
Notice that in the case in whia) = G this bundle is “all fiber”. The reduced discrete
Euler-Lagrange equations are similar to those in the continuous case, in which one has
shape equations coupled with a version of the discrete Euler—Peiagaations.

Of course all of the machinery in the continuous case can be contemplated here
too, such as stability theory, geometric phases, etc. In addition, it would be useful to
generalize this Lagrangian reduction theory to the multisymplectic case. All of these
topics are planned for other papers.

Role of uniformity of the grid. Consider an autonomous, continuous Lagrandlan
TQ — R where, for simplicityQ is an open submanifold of Euclidean space. Imagine
somenot necessarily uniforremporal grid {o, t1, - - - ) of R, so thatg < t; <tp < ---.

In this situation, it is natural to consider the discrete action

= ~ (Gt a1 g~ G
S= Li(gr, 1) = Z£< a zk :, t: — t:_ll) (tp —tr-1). (6.1)
k=1 k=1

This action principle deviates from the action principle (3.1) of Sect. 3 in that the dis-
crete Lagrangian density depends explicitlyko®f course honautonomous continuous
Lagrangians also yielé-dependent discrete Lagrangian densities, irrespective of uni-
formity of the grid. Thus, nonuniform temporal grids or nonautonomous Lagrangians
give rise to discrete Lagrangian densities which are more general than those we have
considered in Sect. 3. For field theories, the Lagrangian in the action (5.1) depends on the
spacetime variables already, through its explicit dependence on the trisridtvever,
itis only in the context of a uniform grid that we have experimented numerically and only
in that context that we have discussed the significance of the discrete multisymplectic
form formula and the discrete Noether theorem.

Using (6.1) as an example, will now indicate why the issue of grid uniformity may
not be serious. The DEL equations corresponding to the action (6.1) are

aLk aLk

g 1) F S (g1, k) =0, k=12, (6.2)
oq1 0q2

and this gives evolution magg.+1, : @ x Q@ — @ x @ defined so that

Fk+l,k(Qk7 qkfl) = (Qk+l7 Qk?)7 k= 17 2) U
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when (6.2) holds. For the canonical 1-forms corresponding to (3.4) and (3.5) we have
the k-dependent one forms

_ oL
1101, 00) - (601, 000) = 5 (a1, 40)00 (6.3)
and
oL
07,.1(q1, 90) - (9q1, 0g0) = qu((h’ q0)4q1, (6.4)

and Eqgs. (3.7) and (3.9) become
Fug od0], ) = —dO7 g, O, +d6}, 5 =0 (6.5)
respectively. Together, these two equations give
Fl:+1,k(dez,k) = daz,lﬁla (6.6)

and if we set
Fp=Fyp 10F,_1-20---0F5;

then (6.6) chain together to imply;: (a6} ;) = d@ik. This appears less than adequate
since it merely says that the pull back by the evolution of a certain 2-form is, in gen-
eral, a different 2-form. The significant point to note, however, isttiiatsituation may

be repaired at any: simply by choosind., = L;. It is easily verified that the analo-

gous statement is true with respect to momentum preservation via the discrete Noether
theorem.

Specifically, imagine integrating a symmetric autonomous mechanical system in a
timestep adaptive way with Egs. (6.2). As the integration proceeds, various timesteps
are chosen, and if momentum is monitored it will show a dependence on those choices.
A momentum-preserving symplectic simulation may be obtained by simply choosing the
last timestep to be of equal duration to the firBhis is the highly desirable situation
which gives us some confidence that grid uniformity is a nonissue. There is one caveat:
symplectic integration algorithms are evolutions which are high frequency perturbations
of the actual system, the frequency being the inverse of the timestep, which is generally
far smaller than the time scale of any process in the simulation. However, timestep
adaptation schemes will make choices on a much larger time scale than the timestep
itself, and then driftin the energy will appear on this larger time scale. A meaningful long-
time simulation cannot be expected in the unfortunate case that the timestep adaptation
makes repeated choices in a way that resonates with some process of the system being
simulated.

The sphere. The sphere cannot be generally uniformly subdivided into spherical tri-
angles; however, a good approximately uniform grid is obtained as follows: start from
an inscribed icosahedron which produces a uniform subdivision into twenty spherical
isosceles triangles; these are further subdivided by halving their sides and joining the
resulting points by short geodesics.

Elliptic PDEs. The variational approach we have developed allows us to examine the
multisymplectic structure of elliptic boundary value problems as well. For a given La-
grangian, we form the associated action function, and by computing its first variation,
we obtain the unigue multisymplectic form of the elliptic operator. The multisymplectic
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form formula contains information on how symplecticity interacts with spatial bound-
aries. In the case of two spatial dimensioAs= R?, Y = R3, we see that Eq. (4.36)
gives us the conservation law

divt =0,

where the vecto&’ = (WO(j1V, j1W), w(j1V, j1W)).

Furthermore, using our generalized Noether theory, we may define momentum-
mappings of the elliptic operator associated with its symmetries. It turns out that for
important problems of spatial complexity arising in, for example, pattern formation
systems, the covariant Noether current intrinsically contains the constrained toral vari-
ational principles whose solutions are the complex patterns (see Marsden and Shkoller
[1998])).

There is an interesting connection between our variational construction of multi-
symplectic-momentum integrators and the finite element method (FEM) for elliptic
boundary value problems. FEM is also a variationally derived numerical scheme, funda-
mentally differing from our approach in the following way: whereas we form a discrete
action sum and compute its first variation to obtain the discrete Euler—Lagrange equa-
tions, in FEM, itis the original continuum action function which is used together with a
projection of the fields and their variations onto appropriately chosen finite-dimensional
spaces. One varies the projected fields and integrates such variations over the spatial
domain to recover the discrete equations. In general, the two discretization schemes do
not agree, but for certain classes of finite element bases with particular integral approx-
imations, the resulting discrete equations match the discrete Euler—Lagrange equations
obtained by our method, and are hence naturally multisymplectic.

To illustrate this concept, we consider the Gregory and Lin method of solving two-
point boundary value problems in optimal control. In this scheme, the discrete equations
are obtained using a finite element method with a basis of linear interpolants. Over
each one-dimensional element, Mét and N, be the two linear interpolating functions.

As usual, we define the action function KYq) = foT L(q(?), q(t))dt. Discretizing the
interval [0, T into N+1 uniform elements, we may write the action with fields projected
onto the linear basis as

k+1

N-1
S@)=) /k L({N1¢ + NaGpsa}, { N1k + Nogpeer})dt.
k=0

Since the Euler-Lagrange equations are obtained by linearizing the action and hence the
Lagrangian, and as the functions are linear, one may easily check that by evaluating

the integrals in the linearized equations using a trapezoidal rule, the discrete Euler—
Lagrange equations given in (3.3) are obtained. Thus, the Gregory and Lin method is
actually a multisymplectic-momentum algorithm.

Applicability to fluid problems.Fluid problems are not literally covered by the theory
presented here because their symmetry groups (particle relabeling symmetries) are not
vertical. A generalization is needed to cover this case and we propose to work out such
a generalization in a future paper, along with numerical implementation, especially for
geophysical fluid problems in which conservation laws such as conservation of enstrophy
and Kelvin theorems more generally are quite important.

Other types of integrators.It remains to link the approaches here with other types of
integrators, such as volume preserving integrators (see, e.g., Kang and Shang [1995],
Quispel [1995]) and reversible integrators (see, e.g., Stoffer [L995]). In particular since
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volume manifolds may be regarded as multisymplectic manifolds, it seems reasonable
that there is an interesting link.

Constraints. One of the very nice things about the Veselov construction is the way

it handles constraints, both theoretically and numerically (see Wendlandt and Marsden
[1997]). For field theories one would like to have a similar theory. For example, it is
interesting that for fluids, the incompressibility constraint can be expressed as a pointwise
constraint on the first jet of the particle placement field, namely that its Jacobian be unity.
When viewed this way, it appears as a holonomic constraint and it should be amenable to
the present approach. Under reduction by the particle relabeling group, such a constraint
of course becomes the divergence free constraint and one would like to understand how
these constraints behave under both reduction and discretization.
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