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Abstract: This paper presents a geometric-variational approach to continuous and dis-
crete mechanics and field theories. Using multisymplectic geometry, we show that the
existence of the fundamental geometric structures as well as their preservation along
solutions can be obtained directly from the variational principle. In particular, we prove
that a unique multisymplectic structure is obtained by taking the derivative of an action
function, and use this structure to prove covariant generalizations of conservation of
symplecticity and Noether’s theorem. Natural discretization schemes for PDEs, which
have these important preservation properties, then follow by choosing a discrete action
functional. In the case of mechanics, we recover the variational symplectic integrators of
Veselov type, while for PDEs we obtain covariant spacetime integrators which conserve
the corresponding discrete multisymplectic form as well as the discrete momentum map-
pings corresponding to symmetries. We show that the usual notion of symplecticity along
an infinite-dimensional space of fields can be naturally obtained by making a spacetime
split. All of the aspects of our method are demonstrated with a nonlinear sine-Gordon
equation, including computational results and a comparison with other discretization
schemes.
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1. Introduction

The purpose of this paper is to develop the geometric foundations for multisymplectic-
-momentum integrators for variational partial differential equations (PDEs). These in-
tegrators are the PDE generalizations of symplectic integrators that are popular for
Hamiltonian ODEs (see, for example, the articles in Marsden, Patrick and Shadwick
[1996], and especially the review article of McLachlan and Scovel [1996]) in that they
are covariant spacetime integrators which preserve the geometric structures of the sys-
tem.

Because of the covariance of our method which we shall describe below, the resulting
integrators are spacetime localizable in the context of hyperbolic PDEs, and generalize
the notion of symplecticity and symmetry preservation in the context of elliptic problems.
Herein, we shall primarily focus on spacetime integrators; however, we shall remark on
the connection of our method with the finite element method for elliptic problems, as
well as the Gregory and Lin [1991] method in optimal control.

Historically, in the setting of ODEs, there have been many approaches devised for
constructing symplectic integrators, beginning with the original derivations based on
generating functions (see de Vogelaere [1956]) and proceeding to symplectic Runge-
Kutta algorithms, the shake algorithm, and many others. In fact, in many areas of molec-
ular dynamics, symplectic integrators such as the Verlet algorithm and variants thereof
are quite popular, as are symplectic integrators for the integration of the solar system.
In these domains, integrators that are either symplectic or which are adaptations of
symplectic integrators, are amongst the most widely used.

A fundamentally new approach to symplectic integration is that of Veselov [1988],
[1991] who developed a discrete mechanics based on a discretization of Hamilton’s
principle. This method leads in a natural way to symplectic-momentum integrators which
include the shake and Verlet integrators as special cases (see Wendlandt and Marsden
[1997]). In addition, Veselov integrators often have amazing properties with regard to
preservation of integrable structures, as has been shown by Moser and Veselov [1991].
This aspect has yet to be exploited numerically, but it seems to be quite important.

The approach we take in this paper is to develop a Veselov-type discretization for
PDE’s in variational form. The relevant geometry for this situation is multisymplectic
geometry (see Gotay, Isenberg, and Marsden [1997] and Marsden and Shkoller [1998])
and we develop it in a variational framework. As we have mentioned, this naturally leads
to multisymplectic-momentum integrators. It is well-known that such integrators cannot
in general preserve the Hamiltonianexactly(Ge and Marsden [1988]). However, these
integrators have, under appropriate circumstances, very good energy performance in
the sense of the conservation of a nearby Hamiltonian up to exponentially small errors,
assuming small time steps, due to a result of Neishtadt [1984]. See also Dragt and Finn
[1979], and Simo and Gonzales [1993]. This is related to backward error analysis; see
Sanz-Serna and Calvo [1994], Calvo and Hairer [1995], and the recent work of Hyman,
Newman and coworkers and references therein. It would be quite interesting to develop
the links with Neishtadt’s analysis more thoroughly.

An important part of our approach is to understand how the symplectic nature of
the integrators is implied by the variational structure. In this way we are able to identify
the symplectic and momentum conserving properties after discretizing the variational
principle itself. Inspired by a paper of Wald [1993], we obtain a formal method for locat-
ing the symplectic or multisymplectic structures directly from the action function and
its derivatives. We present the method in the context of ordinary Lagrangian mechan-
ics, and apply it to discrete Lagrangian mechanics, and both continuous and discrete
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multisymplectic field theory. While in these contexts our variational method merely un-
covers the well-known differential-geometric structures, our method forms an excellent
pedagogical approach to those theories.

Outline of paper.
Section 2.In this section we sketch the three main aspects of our variational approach in
the familiar context of particle mechanics. We show that the usual symplectic 2-form on
the tangent bundle of the configuration manifold arises naturally as the boundary term in
the first variational principle. We then show that application ofd2 = 0 to the variational
principle restricted to the space of solutions of the Euler–Lagrange equations produces
the familiar concept of conservation of the symplectic form; this statement is obtained
variationally in a non-dynamic context; that is, we do not require an evolutionary flow.
We then show that if the action function is left invariant by a symmetry group, then
Noether’s theorem follows directly and simply from the variational principle as well.
Section 3.Here we use our variational approach to construct discretization schemes
for mechanics which preserve the discrete symplectic form and the associated discrete
momentum mappings.
Section 4.This section defines the three aspects of our variational approach in the
multisymplectic field-theoretic setting. Unlike the traditional approach of defining the
canonical multisymplectic form on the dual of the first jet bundle and then pulling back
to the Lagrangian side using the covariant Legendre transform, we obtain the geometric
structure by staying entirely on the Lagrangian side. We prove the covariant analogue of
the fact that the flow of conservative systems consists of symplectic maps; we call this
result themultisymplectic form formula. After variationally proving a covariant version
of Noether’s theorem, we show that one can use the multisymplectic form formula to
recover the usual notion of symplecticity of the flow in an infinite-dimensional space
of fields by making a spacetime split. We demonstrate this machinery using a nonlinear
wave equation as an example.
Section 5.In this section we develop discrete field theories from which the covariant
integrators follow. We define discrete analogues of the first jet bundle of the configuration
bundle whose sections are the fields of interest, and proceed to define the discrete action
sum. We then apply our variational algorithm to this discrete action function to produce
the discrete Euler–Lagrange equations and the discrete multisymplectic forms. As a
consequence of our methodology, we show that the solutions of the discrete Euler–
Lagrange equations satisfy the discrete version of the multisymplectic form formula as
well as the discrete version of our generalized Noether’s theorem. Using our nonlinear
wave equation example, we develop various multisymplectic-momentum integrators
for the sine-Gordon equations, and compare our resulting numerical scheme with the
energy-conserving methods of Li and Vu-Quoc [1995] and Guo, Pascual, Rodriguez,
and Vazquez [1986]. Results are presented for long-time simulations of kink-antikink
solutions for over 5000 soliton collisions.
Section 6.This section contains some important remarks concerning the variational
integrator methodology. For example, we discuss integrators for reduced systems, the
role of grid uniformity, and the interesting connections with the finite-element methods
for elliptic problems. We also make some comments on future work.

2. Lagrangian Mechanics

Hamilton’s principle. We begin by recalling a problem going back to Euler, Lagrange
and Hamilton in the period 1740–1830. Consider ann-dimensional configuration man-
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ifold Q with its tangent bundleTQ. We denote coordinates onQ by qi and those onTQ
by (qi, q̇i). Consider a LagrangianL : TQ → R. Construct the corresponding action
functionalS onC2 curvesq(t) in Q by integration ofL along the tangent to the curve.
In coordinate notation, this reads

S
(
q(t)
) ≡

∫ b

a

L

(
qi(t),

dqi

dt
(t)

)
dt. (2.1)

The action functional depends ona andb, but this is not explicit in the notation.Hamil-
ton’s principle seeks the curvesq(t) for which the functionalS is stationary under
variations ofq(t) with fixed endpoints; namely, we seek curvesq(t) which satisfy

dS
(
q(t)
) · δq(t) ≡ d

dε

∣∣∣∣
ε=0

S
(
qε(t)

)
= 0 (2.2)

for all δq(t) with δq(a) = δq(b) = 0, whereqε is a smooth family of curves withq0 = q
and (d/dε)|ε=0qε = δq. Using integration by parts, the calculation for this is simply

dS
(
q(t)
) · δq(t) =

d

dε

∣∣∣∣
ε=0

∫ b

a

L

(
qi
ε(t),

dqi
ε

dt
(t)

)
dt

=
∫ b

a

δqi

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
dt +

∂L

∂q̇i
δqi

∣∣∣∣
b

a

. (2.3)

The last term in (2.3) vanishes sinceδq(a) = δq(b) = 0, so that the requirement (2.2) for
S to be stationary yields theEuler–Lagrange equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0. (2.4)

Recall thatL is calledregular when the symmetric matrix [∂2L/∂q̇i∂q̇j ] is everywhere
nonsingular. IfL is regular, the Euler–Lagrange equations are second order ordinary
differential equations for the required curves.

The standard geometric setting.The action (2.1) is independent of the choice of coordi-
nates, and thus the Euler–Lagrange equations are coordinate independent as well. Con-
sequently, it is natural that the Euler–Lagrange equations may be intrinsically expressed
using the language of differential geometry. This intrinsic development of mechanics is
now standard, and can be seen, for example, in Arnold [1978], Abraham and Marsden
[1978], and Marsden and Ratiu [1994].

The canonical 1-form θ0 on the 2n-dimensional cotangent bundle ofQ, T ∗Q is
defined by

θ0(αq)wαq
≡ αq · TπQwαq

, αq ∈ T ∗
q Q, wαq

∈ Tαq
T ∗Q,

whereπQ : T ∗Q → Q is the canonical projection. The LagrangianL intrinsically
defines a fiber preserving bundle mapFL : TQ → T ∗Q, theLegendre transformation,
by vertical differentiation:

FL(vq)wq ≡ d

dε

∣∣∣∣
ε=0

L(vq + εwq).
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We define theLagrange1-form onTQ, the Lagrangian side, by pull-backθL ≡ FL∗θ0,
and theLagrange2-form by ωL = −dθL. We then seek a vector fieldXE (called the
Lagrange vector field) onTQ such thatXE ωL = dE, where theenergyE is defined
by E(vq) ≡ FL(vq)vq − L(vq).

If FL is a local diffeomorphism thenXE exists and is unique, and its integral curves
solve the Euler–Lagrange equations (2.4). In addition, the flowFt of XE preservesωL;
that is,F ∗

t ωL = ωL. Such maps aresymplectic, and the formωL is called asymplectic2-
form. This is an example of asymplectic manifold: a pair (M, ω) whereM is a manifold
andω is closed nondegenerate 2-form.

Despite the compactness and precision of this differential-geometric approach, it
is difficult to motivate and, furthermore, is not entirely contained on the Lagrangian
side. The canonical 1-formθ0 seems to appear from nowhere, as does the Legendre
transformFL. Historically, after the Lagrangian picture onTQ was constructed, the
canonical picture onT ∗Q emerged through the work of Hamilton, but the modern
approach described above treats the relation between the Hamiltonian and Lagrangian
pictures of mechanics as a mathematical tautology, rather than what it is – a discovery
of the highest order.

The variational approach. More and more, one is finding that there are advantages
to staying on the “Lagrangian side”. Many examples can be given, but the theory of
Lagrangian reduction (the Euler–Poincaré equations being an instance) is one example
(see, for example, Marsden and Ratiu [1994] and Holm, Marsden and Ratiu [1998a,b]);
another, of many, is the direct variational approach to questions in black hole dynamics
given by Wald [1993]. In such studies, it is the variational principle that is the center of
attention.

We next show that one can derive in a natural way the fundamental differential
geometric structures, including momentum mappings, directly from the variational ap-
proach. This development begins by removing the boundary conditionδq(a) = δq(b) = 0
from (2.3). Eq. (2.3) becomes

dS
(
q(t)
) · δq(t) =

∫ b

a

δqi

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
dt +

∂L

∂q̇i
δqi

∣∣∣∣
b

a

, (2.5)

where the left side now operates on more generalδq (this generalization will be described
in detail in Sect. 4), while the last term on the right side does not vanish. That last term
of (2.5) is a linear pairing of the function∂L/∂q̇i, a function ofqi and ˙qi, with the
tangent vectorδqi. Thus, one may consider it to be a 1-form onTQ; namely the 1-form
(∂L/∂q̇i)dqi. This is exactly the Lagrange 1-form, and we can turn this into a formal
theorem/definition:

Theorem 2.1. Given aCk LagrangianL, k ≥ 2, there exists a uniqueCk−2 mapping
DELL : Q̈ → T ∗Q, defined on the second order submanifold

Q̈ ≡
{

d2q

dt2
(0)

∣∣∣∣ q a C2 curve inQ

}

of TTQ, and a uniqueCk−1 1-formθL onTQ, such that, for allC2 variationsqε(t),

dS
(
q(t)
) · δq(t) =

∫ b

a

DELL

(
d2q

dt2

)
· δq dt + θL

(
dq

dt

)
· δ̂q

∣∣∣∣
b

a

, (2.6)

where
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δq(t) ≡ d

dε

∣∣∣∣
ε=0

qε(t), δ̂q(t) ≡ d

dε

∣∣∣∣
ε=0

d

dt

∣∣∣∣
t=0

qε(t).

The1-form so defined is called theLagrange1-form.

Indeed, uniqueness and local existence follow from the calculation (2.3), and the
coordinate independence of the action, and then global existence is immediate. Here
then, is the first aspect of our method:

Using the variational principle, the Lagrange1-formθL is the “boundary part”
of the the functional derivative of the action when the boundary is varied. The
analogue of the symplectic form is the (negative of) the exterior derivative ofθL.

For the mechanics example being discussed, we imagine a development whereinθL is
so defined and we defineωL ≡ −dθL.

Lagrangian flows are symplectic.One of Lagrange’s basic discoveries was that the
solutions of the Euler–Lagrange equations give rise to a symplectic map. It is a curious
twist of history that he did this without the machinery of either differential forms, of
the Hamiltonian formalism or of Hamilton’s principle itself. (See Marsden and Ratiu
[1994] for an account of some of this history.)

Assuming thatL is regular, the variational principle then gives coordinate indepen-
dent second order ordinary differential equations, as we have noted. We temporarily
denote the vector field onTQ so obtained byX, and its flow byFt. Our further devel-
opment relies on a change of viewpoint: we focus on the restriction ofS to the subspace
CL of solutions of the variational principle. The spaceCL may be identified with the
initial conditions, elements ofTQ, for the flow: tovq ∈ TQ, we associate the integral
curves 7→ Fs(vq), s ∈ [0, t]. The value ofS on that curve is denoted bySt, and again
called theaction. Thus, we define the mapSt : TQ → R by

St(vq) =
∫ t

0
L(q(s), q̇(s)) ds, (2.7)

where (q(s), q̇(s)) = Fs(vq). The fundamental Eq. (2.6) becomes

dSt(vq)wvq = θL

(
Ft(vq)

) · d

dε

∣∣∣∣
ε=0

Ft(v
ε
q) − θL(vq) · wvq ,

whereε 7→ vε
q is an arbitrary curve inTQ such thatv0

q = vq and (d/dε)|0vε
q = wvq

. We
have thus derived the equation

dSt = F ∗
t θL − θL. (2.8)

Taking the exterior derivative of (2.8) yields the fundamental fact that the flow ofX is
symplectic:

0 = ddSt = d(F ∗
t θL − θL) = −F ∗

t ωL + ωL,

which is equivalent to
F ∗

t ωL = ωL.

This leads to the following:

Using the variational principle, the fact that the evolution is symplectic is a
consequence of the equationd2 = 0, applied to the action restricted to the space
of solutions of the variational principle.
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In passing, we note that (2.8) also provides the differential-geometric equations forX.
Indeed, one time derivative of (2.8) and using (2.7) givesdL = LXθL, so that

X ωL = −X dθL = −LXθL + d(X θL) = d(X θL − L) = dE,

if we defineE ≡ X θL − L. Thus, we quite naturally find thatX = XE .
Of course, this set up also leads directly to Hamilton–Jacobi theory, which was one

of the ways in which symplectic integrators were developed (see McLachlan and Scovel
[1996] and references therein.) However, we shall not pursue the Hamilton–Jacobi aspect
of the theory here.

Momentum maps.Suppose that a Lie groupG, with Lie algebrag, acts onQ, and hence
on curves inQ, in such a way that the actionS is invariant. Clearly,G leaves the set of
solutions of the variational principle invariant, so the action ofG restricts toCL, and the
group action commutes withFt. Denoting the infinitesimal generator ofξ ∈ g on TQ
by ξTQ, we have by (2.8),

0 = ξTQ dSt = ξTQ (F ∗
t θL − θL) = F ∗

t (ξTQ θL) − ξTQ θL. (2.9)

Forξ ∈ g, defineJξ : TQ → R by Jξ ≡ ξTQ θL. Then (2.9) says thatJξ is an integral
of the flow ofXE . We have arrived at a version of Noether’s theorem (rather close to
the original derivation of Noether):

Using the variational principle, Noether’s theorem results from the infinitesi-
mal invariance of the action restricted to space of solutions of the variational
principle. The conserved momentum associated to a Lie algebra elementξ is
Jξ = ξTQ θL, whereθL is the Lagrange one-form.

Reformulation in terms of first variations.We have just seen that symplecticity of the
flow and Noether’s theorem result from restricting the action to the space of solutions.
One tacit assumption is that the space of solutions is a manifold in some appropriate
sense. This is a potential problem, since solution spaces for field theories are known to
have singularities (see, e.g., Arms, Marsden and Moncrief [1982]). More seriously there
is the problem of finding a multisymplectic analogue of the statement that the Lagrangian
flow map is symplectic, since for multisymplectic field theory one obtains an evolution
picture only after splitting spacetime into space and time and adopting the “function
space” point of view. Having the general formalism depend either on a spacetime split
or an analysis of the associated Cauchy problem would be contrary to the general thrust
of this article. We now give a formal argument, in the context of Lagrangian mechanics,
which shows how both these problems can be simultaneously avoided.

Given a solutionq(t) ∈ CL, afirst variation atq(t) is a vector fieldV onQ such that
t 7→ FV

ε ◦q(t) is also a solution curve (i.e. a curve inCL). We think of the solution space
CL as being a (possibly) singular subset of the smooth space of all putative curvesC in
TQ, and the restriction ofV to q(t) as being the derivative of some curve inCL at q(t).
WhenCL is a manifold, a first variation is a vector atq(t) tangent toCL. Temporarily
defineα ≡ dS − θL, where by abuse of notationθL is the one form onC defined by

θL

(
q(t)
)
δq(t) ≡ θL(b)δq(b) − θL(a)δq(a).

ThenCL is defined byα = 0 and we have the equation

dS = α + θL,

so if V andW are first variations atq(t), we obtain
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0 = V W d2S = V W dα + V W dθL. (2.10)

We have the identity

dα(V, W )
(
q(t)
)

= V
(
α(W )

)− W
(
α(V )

)− α([V, W ]), (2.11)

which we will use to evaluate (2.10) at the curveq(t). Let FV
ε denote the flow ofV ,

defineqV
ε (t) ≡ FV

ε

(
q(t)
)
, and make similar definitions withW replacingV . For the

first term of (2.11), we have

V
(
α(W )

)(
q(t)
)

=
d

dε

∣∣∣∣
ε=0

α(W )(qV
ε ),

which vanishes, sinceα is zero alongqV
ε for everyε. Similarly the second term of (2.11)

at q(t) also vanishes, while the third term vanishes sinceα
(
q(t)
)

= 0. Consequently,
symplecticity of the Lagrangian flowFt may be written

V W dθL = 0,

for all first variationsV andW . This formulation is valid whether or not the solution
space is a manifold, and it does not explicitly refer to any temporal notion. Similarly,
Noether’s theorem may be written in this way. Summarizing:

Using the variational principle, the analogue of the evolution is symplectic is
the equationd2S = 0 restricted to first variations of the space of solutions of
the variational principle. The analogue of Noether’s theorem is infinitesimal
invariance ofdS restricted to first variations of the space of solutions of the
variational principle.

The variational route to the differential-geometric formalism has obvious pedagogi-
cal advantages. More than that, however, it systematizes searching for the corresponding
formalism in other contexts. We shall in the next sections show how this works in the
context of discrete mechanics, classical field theory and multisymplectic geometry.

3. Veselov Discretizations of Mechanics

The discrete Lagrangian formalism in Veselov [1988], [1991] fits nicely into our varia-
tional framework. Veselov usesQ × Q for the discrete version of the tangent bundle of
a configuration spaceQ; heuristically, given some a priori choice of time interval1t, a
point (q1, q0) ∈ Q×Q corresponds to the tangent vector (q1 − q0)/1t. Define adiscrete
Lagrangian to be a smooth mapL : Q × Q = {q1, q0} → R, and the corresponding
action to be

S ≡
n∑

k=1

L(qk, qk−1). (3.1)

The variational principle is to extremizeS for variations holding the endpointsq0 and
qn fixed. This variational principle determines a “discrete flow”F : Q × Q → Q × Q
by F (q1, q0) = (q2, q1), whereq2 is found from thediscrete Euler–Lagrange equations
(DEL equations):
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∂L

∂q1
(q1, q0) +

∂L

∂q0
(q2, q1) = 0. (3.2)

In this section we work out the basic differential-geometric objects of this discrete
mechanics directly from the variational point of view, consistent with our philosophy in
the last section.

A mathematically significant aspect of this theory is how it relates to integrable
systems, a point taken up by Moser and Veselov [1991]. We will not explore this aspect
in any detail in this paper, although later, we will briefly discuss the reduction process
and we shall test an integrator for an integrable pde, the sine-Gordon equation.

The Lagrange1-form. We begin by calculatingdS for variations that do not fix the
endpoints:

dS(q0, · · · , qn) · (δq0, · · · , δqn)

=
n−1∑
k=0

(
∂L

∂q1
(qk+1, qk)δqk+1 +

∂L

∂q0
(qk+1, qk)δqk

)

=
n∑

k=1

∂L

∂q1
(qk, qk−1)δqk +

n−1∑
k=0

∂L

∂q0
(qk+1, qk)δqk

=
n−1∑
k=1

(
∂L

∂q1
(qk, qk−1) +

∂L

∂q0
(qk+1, qk)

)
δqk

+
∂L

∂q0
(q1, q0)δq0 +

∂L

∂q1
(qn, qn−1)δqn. (3.3)

It is the last two terms that arise from the boundary variations (i.e. these are the ones
that are zero if the boundary is fixed), and so these are the terms amongst which we
expect to find the discrete analogue of the Lagrange 1-form. Actually, interpretation of
the boundary terms gives thetwo1-forms onQ × Q

θ−
L (q1, q0) · (δq1, δq0) ≡ ∂L

∂q0
(q1, q0)δq0, (3.4)

and

θ+
L(q1, q0) · (δq1, δq0) ≡ ∂L

∂q1
(q1, q0)δq1, (3.5)

and we regardthe pair(θ−, θ+) as being the analogue of the one form in this situation.

Symplecticity of the flow.We parameterize the solutions of the variational principle
by the initial conditions (q1, q0), and restrictS to that solution space. Then Eq. (3.3)
becomes

dS = θ−
L + F ∗θ+

L. (3.6)

We should be able to obtain the symplecticity ofF by determining what the equation
ddS = 0 means for the right-hand-side of (3.6). At first, this does not appear to work,
sinceddS = 0 gives

F ∗(dθ+
L) = −dθ−

L , (3.7)



360 J. E. Marsden, G. W. Patrick, S. Shkoller

which apparently says thatF pulls a certain 2-form back to a different 2-form. The
situation is aided by the observation that, from (3.4) and (3.5),

θ−
L + θ+

L = dL, (3.8)

and consequently,

dθ−
L + dθ+

L = 0. (3.9)

Thus, there aretwo generally distinct 1-forms, but (up to sign) onlyone2-form. If we
make the definition

ωL ≡ dθ−
L = −dθ+

L,

then (3.7) becomesF ∗ωL = ωL. Eq. (3.4), in coordinates, gives

ωL =
∂2L

∂qi
0∂qj

1

dqi
0 ∧ dqj

1,

which agrees with the discrete symplectic form found in Veselov [1988], [1991].

Noether’s theorem.Suppose a Lie groupG with Lie algebrag acts onQ, and hence
diagonally onQ × Q, and thatL is G-invariant. Clearly,S is alsoG-invariant andG
sends critical points ofS to themselves. Thus, the action ofG restricts to the space of
solutions, the mapF is G-equivariant, and from (3.6),

0 = ξQ×Q dS = ξQ×Q θ−
L + ξQ×Q (F ∗θ+

L),

for ξ ∈ g, or equivalently, using the equivariance ofF ,

ξQ×Q θ−
L = −F ∗(ξQ×Q θ+). (3.10)

SinceL is G-invariant, (3.8) givesξQ×Q θ−
L = −ξQ×Q θ+

L, which in turn con-
verts (3.10) to the conservation equation

ξQ×Q θ+
L = F ∗(ξQ×Q θ+). (3.11)

Defining the discrete momentum to be

Jξ ≡ ξQ×Q θ+
L,

we see that (3.11) becomes conservation of momentum. A virtually identical derivation
of this discrete Noether theorem is found in Marsden and Wendlant [1997].

Reduction. As we mentioned above, this formalism lends itself to a discrete version
of the theory of Lagrangian reduction (see Marsden and Scheurle [1993a,b], Holm,
Marsden and Ratiu [1998a] and Cendra, Marsden and Ratiu [1998]). This theory is not
the focus of this article, so we shall defer a brief discussion of it until the conclusions.
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4. Variational Principles for Classical Field Theory

Multisymplectic geometry.We now review some aspects of multisymplectic geometry,
following Gotay, Isenberg and Marsden [1997] and Marsden and Shkoller [1997].

We letπXY : Y → X be a fiber bundle over an oriented manifoldX. Denote the
first jet bundle overY by J1(Y ) or J1Y and identify it with theaffinebundle overY
whose fiber overy ∈ Yx := π−1

XY (x) consists of Aff(TxX, TyY ), those linear mappings
γ : TxX → TyY satisfying

TπXY ◦ γ = Identity onTxX.

We let dimX = n + 1 and the fiber dimension ofY beN . Coordinates onX are
denotedxµ, µ = 1, 2, . . . , n, 0, and fiber coordinates onY are denoted byyA, A =
1, . . . , N . These induce coordinatesvA

µ on the fibers ofJ1(Y ). If φ : X → Y is a
section ofπXY , its tangent map atx ∈ X, denotedTxφ, is an element ofJ1(Y )φ(x).
Thus, the mapx 7→ Txφ defines a section ofJ1(Y ) regarded as a bundle overX. This
section is denotedj1(φ) or j1φ and is called the first jet ofφ. In coordinates,j1(φ) is
given by

xµ 7→ (xµ, φA(xµ), ∂νφA(xµ)), (4.1)

where∂ν = ∂/∂xν .
Higher order jet bundles ofY , Jm(Y ), then follow asJ1(· · ·(J1(Y )). Analogous to

the tangent map of the projectionπY,J1(Y ), TπY,J1(Y ) : TJ1(Y ) → TY , we may define
the jet map of this projection which takesJ2(Y ) ontoJ1(Y )

Definition 4.1. Letγ ∈ J1(Y ) so thatπX,J1(Y )(γ) = x. Then

JπY,J1(Y ) : Aff( TxX, TγJ1(Y )) → Aff( TxX, TπY,J1(Y ) · TγJ1(Y )).

We define the subbundleY ′′ ofJ2(Y ) overX which consists of second-order jets so that
on each fiber

Y ′′
x = {s ∈ J2(Y )γ | JπY,J1(Y )(s) = γ}.

In coordinates, ifγ ∈ J1(Y ) is given by (xµ, yA, vA
µ), and s ∈ J2(Y )γ is given

by (xµ, yA, vA
µ, wA

µ, κA
µν), then s is a second-order jet ifvA

µ = wA
µ. Thus,

the second jet ofφ ∈ 0(πXY ), j2(φ), given in coordinates by the mapxµ 7→
(xµ, φA, ∂νφA, ∂µ∂νφA), is an example of a second-order jet.

Definition 4.2. Thedual jet bundleJ1(Y )? is the vector bundle overY whose fiber at
y ∈ Yx is the set of affine maps fromJ1(Y )y to3n+1(X)x, the bundle of(n+1)-forms on
X. A smooth section ofJ1(Y )? is therefore an affine bundle map ofJ1(Y ) to 3n+1(X)
coveringπXY .

Fiber coordinates onJ1(Y )? are (p, pA
µ), which correspond to the affine map given in

coordinates by

vA
µ 7→ (p + pA

µvA
µ)dn+1x, (4.2)

wheredn+1x = dx1 ∧ · · · ∧ dxn ∧ dx0.
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Analogous to the canonical one- and two-forms on a cotangent bundle, there exist
canonical (n + 1)- and (n + 2)-forms on the dual jet bundleJ1(Y )?. In coordinates, with
dnxµ := ∂µ dn+1x, these forms are given by

2 = pA
µdyA ∧ dnxµ + pdn+1x and � = dyA ∧ dpA

µ ∧ dnxµ − dp ∧ dn+1x.
(4.3)

A Lagrangian densityL : J1(Y ) → 3n+1(X) is a smooth bundle map overX. In
coordinates, we write

L(γ) = L(xµ, yA, vA
µ)dn+1x. (4.4)

The corresponding covariant Legendre transformation forL is a fiber preserving
map overY , FL : J1(Y ) → J1(Y )?, expressed intrinsically as the first order vertical
Taylor approximation toL:

FL(γ) · γ′ = L(γ) +
d

dε

∣∣∣∣
ε=0

L(γ + ε(γ′ − γ)), (4.5)

whereγ, γ′ ∈ J1(Y )y. A straightforward calculation shows that the covariant Legendre
transformation is given in coordinates by

pA
µ =

∂L

∂vA
µ
, and p = L − ∂L

∂vA
µ
vA

µ. (4.6)

We can then define theCartan formas the (n + 1)-form2L onJ1(Y ) given by

2L = (FL)∗2, (4.7)

and the (n + 2)-form�L by

�L = −d2L = (FL)∗�, (4.8)

with local coordinate expressions

2L =
∂L

∂vA
µ
dyA ∧ dnxµ +

(
L − ∂L

∂vA
µ
vA

µ

)
dn+1x,

�L = dyA ∧ d

(
∂L

∂vA
µ

)
∧ dnxµ − d

[
L − ∂L

∂vA
µ
vA

µ

]
∧ dn+1x.

(4.9)

This is the differential-geometric formulation of the multisymplectic structure. Sub-
sequently, we shall show how we may obtain this structure directly from the variational
principle, staying entirely on the Lagrangian sideJ1(Y ).

The multisymplectic form formula.In this subsection we prove a formula that is the
multisymplectic counterpart to the fact that in finite-dimensional mechanics, the flow
of a mechanical system consists of symplectic maps. Again, we do this by studying the
action function.

Definition 4.3. LetU be a smooth manifold with (piecewise) smooth closed boundary.
We define the set of smooth maps

C∞ = {φ : U → Y | πXY ◦ φ : U → X is an embedding}.

For eachφ ∈ C∞, we setφX := πXY ◦φ andUX := πXY ◦φ(U ) so thatφX : U → UX

is a diffeomorphism. .
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We may then define the infinite-dimensional manifoldC to be the closure ofC∞ in either
a Hilbert space or Banach space topology. For example, the manifoldC may be given the
topology of a Hilbert manifold of bundle mappings,Hs(U, Y ), (U considered a bundle
with fiber a point) for any integers ≥ (n+1)/2, so that the Hilbert sectionsφ ◦ φ−1

X in Y
are those whose distributional derivatives up to orders are square-integrable in any chart.
With our condition ons, the Sobolev embedding theorem makes such mappings well
defined. Alternately, one may wish to consider the Banach manifoldC as the closure of
C∞ in the usualCk-norm, or more generally, in a Holder spaceCk+α-norm. See Palais
[1968] and Ebin and Marsden [1970] for a detailed account of manifolds of mappings.
The choice of topology forC will not play a crucial role in this paper.

Definition 4.4. Let G be the Lie group ofπXY -bundle automorphismsηY covering
diffeomorphismsηX , with Lie algebrag. We define theaction8 : G × C → C by

8(ηY , φ) = ηY ◦ φ.1

Furthermore, ifφ ◦ φ−1
X ∈ 0(πUX ,Y ), then8(ηY , φ) ∈ 0(πηX (UX ),Y ). The tangent

spaceto the manifoldC at a pointφ is the setTφC defined by

{V ∈ C∞(X, TY ) | πY,TY ◦ V = φ, &TπXY ◦ V = VX , a vector field onX} .
(4.10)

Of course, when these objects are topologized as we have described, the definition of
the tangent space becomes a theorem, but as we have mentioned, this functional analytic
aspect plays a minor role in what follows.

Given vectorsV, W ∈ TφC we may extend them to vector fieldsV,W on C by
fixing vector fieldsv, w ∈ TY such thatV = v ◦ (φ ◦ φ−1

X ) andW = w ◦ (φ ◦ φ−1
X ), and

lettingVρ = v ◦ (ρ ◦ ρ−1
X ) andWρ = w ◦ (ρ ◦ ρ−1

X ). Thus, the flow ofV onC is given by
8(ηλ

Y , ρ), whereηλ
Y coveringηλ

X is the flow ofv. The definition of the bracket of vector
fields using their flows, then shows that

[V,W](ρ) = [v, w] ◦ (ρ ◦ ρ−1
X ).

Whenever it is contextually clear, we shall, for convenience, writeV for v ◦ (φ ◦ φ−1
X ).

Definition 4.5. Theaction functionS onC is defined as follows:

S(φ) =
∫

UX

L(j1(φ ◦ φ−1
X )) for all φ ∈ C. (4.11)

Let λ 7→ ηλ
Y be an arbitrary smooth path inG such thatη0

Y = e, and letV ∈ TφC be
given by

V =
d

dλ

∣∣∣∣
λ=0

8(ηλ
Y , φ), andVX =

d

dλ

∣∣∣∣
λ=0

ηλ
X ◦ φ. (4.12)

Definition 4.6. We say thatφ is astationary point, critical point, or extremumof S if

d

dλ

∣∣∣∣
λ=0

S(8(ηλ
Y , φ)) = 0. (4.13)

1 We shall also use the notation8(ηY , φ) to denote the sectionηY ◦ (φ ◦ φ−1
x ) ◦ η−1

x .
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Then,

dSφ · V =
d

dλ

∣∣∣∣
λ=0

∫
ηλ

X
◦φX (U )

L(∂18(ηλ
Y , φ)) (4.14)

=
d

dλ

∣∣∣∣
λ=0

∫
φX (U )

j1(φ ◦ φ−1
X )∗j1(ηλ

Y )∗2L,

where we have used the fact thatL(z) = z∗2L for all holonomic sectionsz of J1(Y )
(see Corollary 4.2 below), and that

j1(ηY ◦ φ ◦ φ−1
X ◦ η−1

X ) = j1(ηY ) ◦ j1(φ ◦ φ−1
X ) ◦ η−1

X .

Using the Cartan formula, we obtain that

dSφ · V =
∫

UX

j1(φ ◦ φ−1
X )∗Lj1(V )2L

=
∫

UX

−j1(φ ◦ φ−1
X )∗[j1(V ) �L]

+
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) 2L]. (4.15)

Hence, a necessary condition forφ ∈ C to be an extremum ofS is that the first
term in (4.15) vanishes. One may readily verify that the integrand of the first term in
(4.15) is equal to zero wheneverj1(V ) is replaced byW ∈ TJ1(Y ) which is either
πY,J1(Y )-vertical or tangent toj1(φ ◦ φ−1

X ) (see Marsden and Shkoller [1998]), so that
using a standard argument from the calculus of variations,j1(φ ◦ φ−1

X )∗[W �L] must
vanish for all vectorsW on J1(Y ) in order forφ to be an extremum of the action. We
shall call such elementsφ ∈ C coveringφX , solutions of the Euler–Lagrange equations.

Definition 4.7. We let

P = {φ ∈ C | j1(φ ◦ φ−1
X )∗[W �L] = 0 for all W ∈ TJ1(Y )}. (4.16)

In coordinates,(φ ◦ φ−1
X )A is an element ofP if

∂L

∂yA
(j1(φ ◦ φ−1

X )) − ∂

∂xµ

(
∂L

∂vA
µ

(j1(φ ◦ φ−1
X )

)
= 0 in UX .

We are now ready to prove the multisymplectic form formula, a generalization
of the symplectic flow theorem, but we first make the following remark. IfP is a
submanifold ofC, then for anyφ ∈ P, we may identifyTφP with the set{V ∈
TφC | j1(φ ◦ φ−1

X )∗Lj1(V )[W �L] = 0 for all W ∈ TJ1(Y )} since such vectors
arise by differentiatingd

dε |ε=0j
1(φε ◦φε

X
−1)∗[W �L] = 0, whereφε is a smooth curve

of solutions of the Euler–Lagrange equations inP (when such solutions exist). More
generally, we do not requireP to be a submanifold in order to define the first variation
solution of the Euler–Lagrange equations.

Definition 4.8. For anyφ ∈ P ,we define the set

F = {V ∈ TφC | j1(φ ◦ φ−1
X )∗Lj1(V )[W �L] = 0 for all W ∈ TJ1(Y )}.

(4.17)

Elements ofF solve the first variation equations of the Euler–Lagrange equations.
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Theorem 4.1 (Multisymplectic form formula). If φ ∈ P, then for allV andW in F ,∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) j1(W ) �L] = 0. (4.18)

Proof. We define the 1-formsα1 andα2 onC by

α1(φ) · V :=
∫

UX

−j1(φ ◦ φ−1
X )∗[j1(V ) �L]

and

α2(φ) · V :=
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) 2L],

so that by (4.15),

dSφ · V = α1(φ) · V + α2(φ) · V for all V ∈ TφC. (4.19)

Recall that for any 1-formα onC and vector fieldsV, W onC,

dα(V, W ) = V [α(W )] − W [α(V )] − α([V, W ]). (4.20)

We letφε = ηε
Y ◦ φ be a curve inC throughφ, whereηε

Y is a curve inG through the
identity such that

W =
d

dε
|ε=0η

ε
Y andW ∈ F ,

and consider Eq. (4.19) restricted to allV ∈ F .
Thus,

d(α2(V ))(φ) · W =
d

dε

∣∣∣∣
ε=0

(α2(V )(φε))

=
d

dε

∣∣∣∣
ε=0

∫
∂UX

j1(φ ◦ φ−1
X )∗j1(ηε

Y )[j1(V ) 2L]

=
∫

∂UX

j1(φ ◦ φ−1
X )∗Lj1(W )[j

1(V ) 2L]

=
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(W ) d(j1(V ) 2L)]

+
∫

∂UX

j1(φ ◦ φ−1
X )∗d[j1(W ) j1(V ) 2L],

where the last equality was obtained using Cartan’s formula. Using Stoke’s theorem,
noting that∂∂U is empty, and applying Cartan’s formula once again, we obtain that

d(α2(φ)(V )) · W =
∫

∂UX

− j1(φ ◦ φ−1
X )∗[j1(W ) j1(V ) �L]

+
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(W ) Lj1(V )2L],

and
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d(α2(φ)(W )) · V =
∫

∂UX

− j1(φ ◦ φ−1
X )∗[j1(V ) j1(W ) �L]

+
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) Lj1(W )2L].

Also, since [j1(V ), j1(W )] = j1([V, W ]), we have

α2(φ)([V, W ]) =
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ), j1(W )] 2L.

Now

[j1(V ), j1(W )] 2L = Lj1(V )(j
1(W ) 2L) − j1(W ) Lj1(V )2L,

so that

dα2(φ)(V, W ) = 2
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) j1(W ) �L]

+
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) Lj1(W )2L − Lj1(V )(j

1(W ) 2L)].

But

Lj1(V )(j
1(W ) 2L) = d(j1(V ) j1(W ) 2L) + j1(V ) d(j1(W ) 2L)

and

j1(V ) Lj1(W )2L = j1(V ) d(j1(W ) 2L) − j1(V ) j1(W ) �L.

Hence, ∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) Lj1(W )2L − Lj1(V )(j

1(W ) 2L)]

=
∫

∂UX

− j1(φ ◦ φ−1
X )∗(j1(V ) j1(W ) �L)

−
∫

∂UX

j1(φ ◦ φ−1
X )∗d(j1(V ) j1(W ) 2L).

The last term once again vanishes by Stokes theorem together with the fact that∂∂U is
empty, and we obtain that

dα2(φ)(V, W ) =
∫

∂UX

j1(φ ◦ φ−1
X )∗(j1(V ) j1(W ) �L). (4.21)

We now use (4.20) onα1. A similar computation as above yields

d(α1(φ) · V ) · W =
∫

UX

j1(φ ◦ φ−1
X )∗Lj1(W )[j

1(V ) �L]

which vanishes for allφ ∈ P andW ∈ F . Similarly,d(α1(φ) · W ) · v = 0 for all φ ∈ P
andV ∈ F . Finally,α1(φ) = 0 for all φ ∈ P.

Hence, since

0 = ddS(φ)(V, W ) = dα1(φ)(V, W ) + dα2(φ)(V, W ),

we obtain the formula (4.18). �
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Symplecticity revisited. Let 6 be a compact oriented connected boundarylessn-
manifold which we think of as our reference Cauchy surface, and consider the space of
embeddings of6 intoX, Emb(6, X); again, although it is unnecessary for this paper, we
may topologize Emb(6, X) by completing the space in the appropriateCk orHs-norm.

Let B be anm-dimensional manifold. For any fiber bundleπBK : K → B, we
shall, in addition to0(πBK), use the corresponding script letterK to denote the space
of sections ofπBK . The space of sections of a fiber bundle is an infinite-dimensional
manifold; in fact, it can be precisely defined and topologized as the manifoldC of the
previous section, where the diffeomorphisms on the base manifold are taken to be the
identity map, so that the tangent space toK atσ is given simply by

TσK = {W : B → V K |πK,TK ◦ W = σ},

where V K denotes the vertical tangent bundle ofK. We let πK,L(V K,3m(B)) :
L(V K, 3m(B)) → K be the vector bundle overK whose fiber atk ∈ Kx, x = πBK(k),
is the set of linear mappings fromVkK to 3m(B)x. Then the cotangent space toK atσ
is defined as

T ∗
σK = {π : B → L(V K, 3m(B)) | πK,L(V K,3n+1(B)) ◦ π = σ}.

Integration provides the natural pairing ofT ∗
σK with TσK:

〈π, V 〉 =
∫

B

π · V.

In practice, the manifoldB will either beX or some (n + 1)-dimensional subset ofX,
or then-dimensional manifold6τ , where for eachτ ∈ Emb(6, X), 6τ := τ (6). We
shall use the notationYτ for the bundleπ6τ ,Y , andYτ for sections of this bundle. For
the remainder of this section, we shall set the manifoldC introduced earlier toY.

The infinite-dimensional manifoldYτ is called theτ -configuration space, its tangent
bundle is called theτ -tangent space, and its cotangent bundleT ∗Yτ is called theτ -phase
space. Just as we described in Sect. 2, the cotangent bundle has a canonical 1-formθτ

and a canonical 2-formωτ . These differential forms are given by

θτ (ϕ, π) · V =
∫

6τ

π(TπYτ ,T ∗Yτ
· V ) andωτ = −dθτ , (4.22)

where (ϕ, π) ∈ Yτ , V ∈ T(ϕ,π)T
∗Yτ , andπYτ ,T ∗Yτ : T ∗Yτ → Yτ is the cotangent

bundle projection map.
An infinitesimal slicing of the bundleπXY consists ofYτ together with a vector field

ζ which is everywhere transverse toYτ , and coversζX which is everywhere transverse
to 6τ . The existence of an infinitesimal slicing allows us to invariantly decompose
the temporal from the spatial derivatives of the fields. Letφ ∈ Y, ϕ := φ|6τ

, and let
iτ : 6τ → X be the inclusion map. Then we may define the mapβζ takingj1(Y)τ to
j1(Yτ ) × 0(π6τ ,V Yτ ) overYτ by

βζ(j1(φ) ◦ iτ ) = (j1(ϕ), ϕ̇) whereϕ̇ := Lζφ. (4.23)

In our notation,j1(Y)τ is the collection of restrictions of holonomic sections ofJ1(Y )
to 6τ , while j1(Yτ ) are the holonomic sections ofπ6τ ,J1(Y ). It is easy to see thatβζ is
an isomorphism; it then follows thatβζ is an isomorphism ofj1(Y)τ with TYτ , since
j1(ϕ) is completely determined byϕ. This bundle map is called the jet decomposition
map, and its inverse is called the jet reconstruction map. Using this map, we can define
the instantaneous Lagrangian.
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Definition 4.9. The instantaneous LagrangianLτ,ζ : TYτ → R is given by

Lτ,ζ(ϕ, ϕ̇) =
∫

6τ

i∗τ [ζX L(β−1
ζ (j1(ϕ), ϕ̇)] (4.24)

for all (ϕ, ϕ̇) ∈ TYτ .

The instantaneous LagrangianLτ,ζ has an instantaneous Legendre transform

FLτ,ζ : TYτ → T ∗Yτ ; (ϕ, ϕ̇) 7→ (ϕ, π)

which is defined in the usual way by vertical fiber differentiation ofLτ,ζ (see, for exam-
ple, Abraham and Marsden [1978]). Using the instantaneous Legendre transformation,
we can pull-back the canonical 1- and 2-forms onT ∗Yτ .

Definition 4.10. Denote, respectively, the instantaneous Lagrange1- and 2-forms on
TYτ by

θL
τ = FL∗

τ,ζθτ andωL
τ = −dθL

τ . (4.25)

Alternatively, we may defineθL
τ using Theorem 2.1, in which case no reference to the

cotangent bundle is necessary.
We will show that our covariant multisymplectic form formula can be used to recover

the fact that the flow of the Euler–Lagrange equations in the bundle
πEmb(6,X),∪τ∈Emb(6,X)TYτ

is symplectic with respect toωL
τ . To do so, we must relate

the multisymplectic Cartan (n + 2)-form�L on J1(Y ) with the symplectic 2-formωL
τ

onTYτ .

Theorem 4.2. Let2L
τ be the canonical1-form onj1(Y)τ given by

2L
τ (j1(φ) ◦ iτ ) · V =

∫
6τ

i∗τ j1(φ)∗[V 2L], (4.26)

wherej1(φ) ◦ iτ ∈ j1(Y)τ , V ∈ Tj1(φ)◦iτ
j1(Y)τ .

(a) If the 2-form �L
τ on j1(Y)τ is defined by�L

τ := −d2L
τ , then for V, W ∈

Tj1(φ)◦iτ
j1(Y)τ ,

�L
τ (j1(φ) ◦ iτ )(V, W ) =

∫
6τ

i∗τ j1(φ)∗[W V �L]. (4.27)

(b) Let the diffeomorphismsX : 6 × R → X be a slicing ofX such that forλ ∈ R,

6λ := sX (6 × {λ}) and6λ := τλ(6),

whereτλ ∈ Emb(6, X) is given byτλ(x) = sX (x, λ). For anyφ ∈ P, let V, W ∈
TφY ∩ F so that for eachτ ∈ Emb(6, X), j1Vτ , j1Wτ ∈ Tj1(φ)◦iτ

j1(Y)τ , and let
τλ1, τλ2 ∈ Emb(6, X). Then

�L
τλ1

(j1Vτλ1
, j1Wτλ1

) = �L
τλ2

(j1Vτλ2
, j1Wτλ2

). (4.28)



Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs 369

Proof. Part (a) follows from the Cartan formula together with Stokes theorem using an
argument like that in the proof of Theorem 4.1.

For part (b), we recall that the multisymplectic form formula onY states that for any
subsetUX ⊂ X with smooth closed boundary and vectorsV, W ∈ TφY ∩ F , φ ∈ Y,∫

∂UX

j1(φ)∗[j1(V ) j1(W ) �L] = 0. (4.29)

Let
UX = ∪λ∈[λ1,λ2]6λ.

Then∂UX = 6λ1 − 6λ2, so that (4.29) can be written as

0 =
∫

6λ2

j1(φ ◦ iτλ2
)∗[j1Vτλ2

j1Wτλ2
�L]

−
∫

6λ1

j1(φ ◦ iτλ1
)∗[j1Vτλ1

j1Wτλ1
�L]

= �L
τλ1

(j1Vτλ1
, j1Wτλ1

) − �L
τλ2

(j1Vτλ2
, j1Wτλ2

),

which proves (4.28). �
Theorem 4.3. The identity2L

τ = β∗
ζ θL

τ holds.

Proof. Let W ∈ Tj1(φ)◦iτ
j1(Y)τ , which we identify withw ◦ φ ◦ iτ , wherew is a

πX,J1(Y )-vertical vector. Choose a coordinate chart which is adapted to the slicing so
that∂0|Yτ = ζ. With w = (0, WA, WA

µ ), we see that

2L
τ · W =

∫
6τ

∂L

∂vA
0
(φB , φB

,µ)WAdnx0.

Now, from (4.24) we get

θL
τ (ϕ, ϕ̇) =

∂Lτ,ζ

∂ẏA
dyA

=
∫

6τ

∂

∂ẏA
i∗τ [∂0 L(xµ, φA, φA

,µ)dn+1x ⊗ dyA]

=
∫

6τ

∂L

∂vA
0
(φB , φB

,µ)dyA ⊗ dnx0,

where we arrived at the last equality using the fact that ˙yA = vA
0 in this adapted chart.

Since (Tβζ · W )A = WA, we see that2L
τ · W = θL

τ · (Tβζ · W ), and this completes the
proof. �

Let the instantaneous energyEτ,ζ associated withLτ,ζ be given by

Eτ,ζ(ϕ, ϕ̇) = FLτ,ζ(ϕ̇) · ϕ̇ − Lτ,ζ(ϕ, ϕ̇), (4.30)

and define the “time”-dependent Lagrangian vector fieldXEτ,ζ
by

XEτ,ζ
ωL

τ = dEτ,ζ .

Since∪τ∈Emb(6,X)TYτ over Emb(6, X) is infinite-dimensional andwL
τ is only weakly

nondegenerate, the second-order vector fieldXEτ,ζ
does not, in general, exist. In the

case that it does, we obtain the following result.
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Corollary 4.1. AssumeXEτ,ζ
exists and letFτ be its semiflow, defined on some subset

D of the bundle∪τ∈Emb(6,X)TYτ over Emb(6, X). Fix τ̄ so thatFτ̄ (ϕ1, ϕ̇1) = (ϕ2, ϕ̇2),
where(ϕ1, ϕ̇1) ∈ TYτ1 and(ϕ2, ϕ̇2) ∈ TYτ2. ThenF ∗

τ̄ ωL
τ2

= ωL
τ1

.

Proof. This follows immediately from Theorem 4.2(b) and Theorem 4.3 and the fact
thatβζ induces an isomorphism betweenj1(Y)τ andTYτ . �
Example: Nonlinear wave equation.To illustrate the geometry that we have developed,
let us consider the scalar nonlinear wave equation given by

∂2φ

∂x02 − 4φ − N ′(φ) = 0, φ ∈ 0(πXY ), (4.31)

where4 is the Laplace-Beltrami operator andN is a real-valuedC∞ function of one
variable. For concreteness, fixn=1 so that the spacetime manifoldX := R

2, the config-
uration bundleY := πR2,R, and the first jet bundleJ1(Y ) := πR2,R3.

Equation (4.31) is governed by the Lagrangian density

L =

{
1
2

[
∂φ

∂x0

2

− ∂φ

∂x1

2
]

+ N (φ)

}
dx1 ∧ dx0. (4.32)

Using coordinates (x0, x1, φ, φ,0, φ,1) for J1(Y ), we write the multisymplectic 3-form
for this nonlinear wave equation onR2 in coordinates as

�L = −dφ ∧ dφ,0 ∧ dx1 − dφ ∧ dφ,1 ∧ dx0 − N ′(φ)dφ ∧ dx1 ∧ dx0

+φ,0dφ,0 ∧ dx1 ∧ dx0 − φ,1dφ,1 ∧ dx1 ∧ dx0; (4.33)

a short computation verifies that solutions of (4.31) are elements ofP, or thatj1(φ ◦
φ−1

X )∗[W �L] = 0 for all W ∈ TJ1(Y ) (see Marsden and Shkoller [1998]).
We will use this example to demonstrate that our multisymplectic form formula

generalizes the notion of symplecticity given by Bridges [1997]. Since the Lagrangian
(4.32) does not explicitly depend on time, it is convenient to identify sections ofY as
mappings fromR

2 into R, and similarly, sections ofJ1(Y ) as mappings fromR2 into
R

3. Thus, forφ ∈ 0(πXY ), j1(φ)(xµ) := (φ(xµ), φ,0(xµ), φ,1(xµ)) ∈ R
3, and if we set

pµ := φ,µ, then (4.31) can be reformulated to

J0j
1φ,0 + J1j

1φ,1 :=
 0 1 0

−1 0 0
0 0 0




 φ

p0

p1




,0

+


0 0 −1

0 0 0
1 0 0




 φ

p0

p1




,1

=


N ′(φ)

−p0

p1


 . (4.34)

To each degenerate matrixJµ, we associate the contact formωµ on R
3 given by

ωµ(u1, u2) = 〈Jµu1, u2〉, whereu1, u2 ∈ R
3 and 〈·, ·〉 is the standard inner product

onR
3. Bridges obtains the following conservation of symplecticity:

∂

∂x0

[
ω0(j1(φ,0), j1(φ,1))

]
+

∂

∂x1

[
ω1(j1(φ,0), j1(φ,1))

]
= 0. (4.35)

This result is interesting, but has somewhat limited scope in that the vector fields in
(4.35) upon which the contact forms act are not general solutions to the first variation
equations; rather, they are the specific first variation solutionsφ,µ. Bridges obtains this
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result by crucially relying on the multi-Hamiltonian structure of (4.31); in particular,
the vector (N ′(φ),−p0, p1) on the right-hand-side of (4.34) is the gradient of a smooth
multi-Hamiltonian functionH(φ, p0, p1) (although the multi-Hamiltonian formalism is
not important for this article, we refer the reader to Marsden and Shkoller [1998] for
the Hamiltonian version of our covariant framework, and to Bridges [1997]). Using
Eq. (4.34), it is clear that

H,0 = ω0(j1(φ,0), j1(φ,1)) andH,1 = −ω1(j1(φ,0), j1(φ,1))

so that (4.35) follows from the relationH,0,1 = H,1,0.

Proposition 4.1. The multisymplectic form formula is an intrinsic generalization of the
conservation law (4.35); namely, for anyV, W ∈ F that areπX,J1(Y )-vertical,

∂

∂x0

[
ω0(j1(V ), j1(W ))

]
+

∂

∂x1

[
ω1(j1(V ), j1(W ))

]
= 0. (4.36)

Proof. Let j1(V ) and j1(W ) have the coordinate expressions (V, V 0, V 1) and
(W, W 0, W 1), respectively. Using (4.33), we compute

j1(W ) j1(V ) �L =
(
V W 0 − V 0W

)
dx +

(
V W 1 − V 1W

)
dt,

so that with Theorem 4.1 and the definition ofωµ, we have, forUX ⊂ X,∫
∂UX

ω0(j1(V ), j1(W ))dx − ω1(j1(V ), j1(W ))dt = 0,

and hence by Green’s theorem,∫
UX

{
∂

∂x0

[
ω0(j1(V ), j1(W ))

]
+

∂

∂x1

[
ω1(j1(V ), j1(W ))

]}
dx1 ∧ dx0 = 0.

SinceUX is arbitrary, we obtain the desired result. �

In general, whenV is πXY -vertical,j1(V ) has the coordinate expression (V, V,µ +
∂V/∂φ · φ,µ), but for the special case thatV = φ,µ, j1(φµ) = (j1φ),µ, and Proposition
4.1 gives

∂

∂x0

[
φ0φ,0,1 − φ1φ,0,0

]− ∂

∂x1

[
φ0φ,1,1 − φ1φ,0,1

]
= 0,

which simplifies to the trivial statement that

φ,0N (φ),1 − φ,1N (φ),0 = 0.

The variational route to the Cartan form.We may alternatively define the Cartan form
by beginning with Eq. (4.14). Using the infinitesimal generators defined in (4.12), we
obtain that

dSφ · V =
d

dλ

∣∣∣∣
λ=0

S(8(ηλ
Y , φ))

=
d

dλ

∣∣∣∣
λ=0

∫
ηλ

X
(UX )

L(j1(8(ηλ
Y , φ)))

=
∫

UX

d

dλ

∣∣∣∣
λ=0

L(j1(8(ηλ
Y , φ))) +

∫
UX

LVX

[L(j1(φ ◦ φ−1
X ))

]
. (4.37)
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Using the natural splitting ofTY , any vectorV ∈ TφC may decomposed as

V = V h + V v, whereV h = T (φ ◦ φ−1
X ) · VX andV v = V − V h, (4.38)

where we recall thatVX = TπXY · V .

Lemma 4.1. For anyV ∈ TφC,

dSφ · V h =
∫

∂UX

VX [L(j1(φ ◦ φ−1
X ))], (4.39)

and

dSφ · V v =
∫

UX

d

dλ

∣∣∣∣
λ=0

L(j1(8(ηλ
Y , φ))). (4.40)

Proof. The equality (4.40) is obvious, since the second term in (4.37) clearly vanishes
for all vertical vectors. For vectorsV h, the first term in (4.37) vanishes; indeed, using
the chain rule, we need only compute that

d

dλ

∣∣∣∣
λ=0

ηλ
Y ◦ (φ0φ

−1
X ) ◦ ηλ

X

−1
= V h − T (φ ◦ φ−1

X ) · VX ,

which is zero by (4.38). We then apply the Cartan formula to the second term in (4.37)
and note thatdL is an (n + 2)-form on the (n + 1)-dimensional manifoldUX so that we
obtain (4.39). �

Theorem 4.4. Given a smooth Lagrangian densityL : J1(Y ) → 3n+1(X), there exist
a unique smooth sectionDELL ∈ C∞(Y ′′,3n+1(X)⊗T ∗Y )) and a unique differential
form2L ∈ 3n+1(J1(Y )) such that for anyV ∈ TφC, and any open subsetUX such that
UX ∩ ∂X = ∅,

dSφ · V =
∫

UX

DELL(j2(φ ◦ φ−1
X )) · V +

∫
∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) 2L].

(4.41)

Furthermore,

DELL(j2(φ ◦ φ−1
X )) · V = j1(φ ◦ φ−1

X )∗[j1(V ) �L] in UX . (4.42)

In coordinates, the action of the Euler–Lagrange derivativeDELL onY ′′ is given by

DELL(j2(φ ◦ φ−1
X )) =

[
∂L

∂yA
(j1(φ ◦ φ−1

X )) − ∂2L

∂xµ∂vA
µ

(j1(φ ◦ φ−1
X ))

− ∂2L

∂yB∂vA
µ

(j1(φ ◦ φ−1
X )) · (φ ◦ φ−1

X )B,µ

− ∂2L

∂vB
ν∂vA

µ
(j1(φ ◦ φ−1

X )) · (φ ◦ φ−1
X )B,µν

]
dyA ∧ dn+1x, (4.43)

while the form2L matches the definition of the Cartan form given in (4.9) and has the
coordinate expression

2L =
∂L

∂vA
µ
dyA ∧ dnxµ +

(
L − ∂L

∂vA
µ
vA

µ

)
dn+1x. (4.44)
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Proof. ChooseUX := φX (U ) small enough so that it is contained in a coordinate chart,
sayO1. In these coordinates, letV = (V µ, V A) so that alongφ ◦ φ−1

X , our decomposition
(4.38) may be written as

VX = V µ ∂

∂xµ
andV v = (V v)A

∂

∂yA
:=

(
V A − V µ ∂(φ ◦ φ−1

X )A

∂xµ

)
∂

∂yA
,

and Eq. (4.40) gives

dSφ · V v =
∫

UX

[
∂L

∂yA
(j1(φ ◦ φ−1

X )) · (V v)A +
∂L

∂vA
µ

(j1(φ ◦ φ−1
X )) · ∂(V v)A

∂xµ

]
dn+1x,
(4.45)

where we have used the fact that in coordinates alongj1(φ ◦ φ−1
X ),

{j1(V )}A
µ = ∂µ[(V v)A(j1(φ ◦ φ−1

X ))].

Integrating (4.45) by parts, we obtain

dSφ · V v =
∫

UX

{[
∂L

∂yA
(j1(φ ◦ φ−1

X )) − ∂

∂xµ

∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

]
· V A

}
dn+1x

+
∫

∂UX

{
∂L

∂vA
µ

(j1(φ ◦ φ−1
X )) · V Adnxµ

+
∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

∂(φ ◦ φ−1
X )A

∂xν
· V νdnxµ

}
. (4.46)

Let α be then-form integrand of the boundary integral in (4.46); then
∫

∂UX
α =∫

∂j1(φ◦φ−1
X

)(UX ) sinceα is invariant under this lift. Additionally, from Eq. (4.39), we

obtain the horizontal contribution

dSφ · V h =
∫

∂UX

(V µ∂µ) (Ldn+1x) =
∫

∂j1(φ◦φ)X−1)(UX )
V µLdnxµ, (4.47)

so combining Eqs. (4.46) and (4.47), a simple computation verifies that

dSφ · V =
∫

UX

{[
∂L

∂yA
(j1(φ ◦ φ−1

X )) − ∂

∂xµ

∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

]
dn+1x ⊗ dyA

}
· V

+
∫

∂j1(φ◦φ−1
X

)(UX )
V

{
∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))dyA ∧ dnxµ

+

[
L − ∂L

∂vA
µ

(j1(φ ◦ φ−1
X ))

∂(φ ◦ φ−1
X )A

∂xµ

]
dn+1x

}
. (4.48)

The vectorV in the second term of (4.48) may be replaced byj1(V ) sinceπY,J1(Y )-
vertical vectors are clearly in the kernel of the form thatV is acting on. This shows that
(4.43) and (4.44) hold, and hence that the boundary integral in (4.48) may be written as∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(V ) 2L].
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Now, if we choose another coordinate chartO2, the coordinate expressions ofDELL
and2L must agree on the overlapO1∩O2 since the left-hand-side of (4.41) is intrinsically
defined. Thus, we have uniquely definedDELL and2L for anyUX such thatUX∩∂X =
∅.

Finally, (4.42) holds, since�L = d2L is also intrinsically defined and both sides of
the equation yield the same coordinate representation, the Euler–Lagrange equations in
UX . �

Remark.To prove Theorem 4.4 for the caseUX = X, we must modify the proof to take
into account the boundary conditions which are prescribed on∂X.

Corollary 4.2. The (n + 1)-form 2L defined by the variational principle satisfies the
relationship

L(z) = z∗2L

for all holonomic sectionsz ∈ 0(πX,J1(Y )).

Proof. This follows immediately by substituting (4.42) into (4.41) and integrating by
parts using Cartan’s formula. �

Remark.We have thus far focused on holonomic sections ofJ1(Y ), those that are the
first jets of sections ofY , and correspondingly, we have restricted the general splitting
of TY given by

TY = imageγ ⊕ V Y for anyγ ∈ 0(J1(Y )),

to TY = Tφ ⊕ V Y , φ ∈ 0(Y ) as we specified in (4.38). For general sections
γ ∈ 0(J1(Y )), the horizontal bundle is given by imageγ, and the Frobenius theo-
rem guarantees thatγ is locally holonomic if the connection is flat, or equivalently if the
curvature of the connectionRγ vanishes. Since this is a local statement, we may assume
that Y = U × R

N , whereU ⊂ R
n+1 is open, and thatπXY is simply the projection

onto the first factor. Forφ ∈ 0(Y ), andγ ∈ 0(J1(Y )), γ(x, φ(x)) : R
n+1 → R

N is a
linear operator which is holonomic ifφ′(x) = γ(x, φ(x)), whereφ′(x) is the differential
of φ, and this is the case whenever the operatorφ′′(x) is symmetric. Equivalently, the
operator

Sγ(x, y) · (v, w) := D1γ(x, y) · (v, w) + D2γ(x, y) · (γ(x, y) · v, w)

is symmetric for allv, w ∈ R
n+1. One may easily verify that the local curvature is given

by

Rγ(x, y) · (v, w) := Sγ(x, y) · (v, w) − Sγ(x, y) · (w, v)

and thatγ = j1(φ) locally for someφ ∈ 0(Y ), if and only if Rγ = 0.

The variational route to Noether’s theorem.Suppose the Lie groupG acts onC and
leaves the actionS invariant so that

S(8(ηY , φ)) = S(φ) for all ηY ∈ G. (4.49)

This implies that for eachηY ∈ G, 8(ηY , φ) ∈ P wheneverφ ∈ P. We restrict the
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action ofG to P, and letξC be the corresponding infinitesimal generator onC restricted
to points inP; then

0 = (ξC dS)φ =
∫

∂UX

j1(φ ◦ φ−1
X )∗[j1(ξ) 2L]

=
∫

UX

j1(φ ◦ φ−1
X )∗[j1(ξ) �L],

sinceLj1(ξ)2L = 0 by (4.49) and Corollary 4.2.
We denote the covariant momentum map onJ1(Y ) byJ L ∈ L(g,3n(J1(Y )) which

we define as

j1(ξ) �L = dJ L(ξ). (4.50)

Using (4.50), we find that
∫

UX
d[j1(φ ◦ φ−1

X )∗J L(ξ)] = 0, and since this must hold
for all infinitesimal generatorsξC atφ ∈ C, the integrand must also vanish so that

d[j1(φ ◦ φ−1
X )∗J L(ξ)] = 0, (4.51)

which is precisely a restatement of the covariant Noether Theorem.

5. Veselov-type Discretizations of Multisymplectic Field Theory

5.1. General theory.We now generalize the Veselov discretization given in Sect. 3 to
multisymplectic field theory, by discretizing the spacetimeX. For simplicity we restrict
to the discrete analogue of dimX = 2; i.e.n = 1. Thus, we takeX = Z × Z = {(i, j)}
and the fiber bundleY to beX × F for some smooth manifoldF .

Notation. The development in this section is aided by a small amount of notation and
terminology. Elements ofY over the base point (i, j) are written asyij and the projection
πXY acts onY byπXY (yij) = (i, j). The fiber over (i, j) ∈ X is denotedYij . A triangle
1 of X is an ordered triple of the form

1 =
(
(i, j), (i, j + 1), (i + 1, j + 1)

)
.

The first component (i, j) of 1 is thefirst vertexof the triangle, denoted11, and similarly
for thesecondandthird vertices.The set of all triangles inX is denotedX1. By abuse
of notation the same symbol is used for a triangle and the (unordered) set of its vertices.
A point (i, j) ∈ X is touchedby a triangle if it is a vertex of that triangle. IfU ⊆ X,
then (i, j) ∈ U is aninterior point of U if U contains all three triangles ofX that touch
(i, j). The interior int U of U is the collection of the interior points ofU . Theclosure
cl U of U is the union of all triangles touching interior points ofU . A boundary point
of U is a point inU and clU which is not an interior point. Theboundaryof U is the
set of boundary points ofU , so that

∂U ≡ (U ∩ cl U ) \ int U.

Generally,U properly contains the union of its interior and boundary, and we callU
regular if it is exactly that union. Asectionof Y is a mapφ : U ⊆ X → Y such that
πXY ◦ φ = idU .
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x
(i,j)

y

yi,j
y 1i+  j+1

i j+1

(i+ ,j+ )1 1

(i,j+ )1

Fig. 5.1.Depiction of the heuristic interpretation of an element ofJ1Y whenX is discrete

Multisymplectic phase space.We define thefirst jet bundle2 of Y to be

J1Y ≡ {(yij , yi j+1, yi+1j+1) | (i, j) ∈ X, yij , yi j+1, yi+1j+1 ∈ F}
≡ X1 × F3.

Heuristically (see Fig. 5.1),X corresponds to some grid of elementsxij in continuous
spacetime, saỹX, and

(
yij , yi j+1, yi+1j+1

) ∈ J1Y corresponds toj1φ(x̄), wherex̄ is
“inside” the triangle bounded byxij , xi j+1, xi+1j+1, andφ is some smooth section of
X̃×F interpolating the field valuesyij , yi j+1, yi+1j+1. Thefirst jet extensionof a section
φ of Y is the mapj1φ : X1 → J1Y defined by

j1φ(1) ≡ (1, φ(11), φ(12), φ(13)
)
.

Given a vector fieldZ onY , we denote its restriction to the fiberYij byZij , and similarly
for vector fields onJ1Y . Thefirst jet extensionof a vector fieldZ on Y is the vector
field j1Z onJ1Y defined by

j1Z(y11, y12, y13) ≡ (Z11(y11), Z12(y12), Z13(y13)
)
,

for any triangle1.

The variational principle. Let us posit adiscrete LagrangianL : J1Y → R. Given a
triangle1, define the functionL1 : F3 → R by

L1(y1, y2, y3) ≡ L(1, y1, y2, y3),

so that we may view the LagrangianL as being a choice of a functionL1 for each triangle
1 of X. The variables on the domain ofL1 will be labeledy1, y2, y3, irrespective of the
particular1. Let U be regular and letCU be the set of sections ofY onU , soCU is the
manifoldF |U |. Theactionwill assign real numbers to sections inCU by the rule

S(φ) ≡
∑

1;1⊆U

L ◦ j1φ(1). (5.1)

2 Using three vertices is the simplest choice for approximating the two partial derivatives of the fieldφ,
but may not lead to a good numerical scheme. Later, we shall also use four vertices together with averaging
to define the partial derivatives of the fields.
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(i − 1, j − 1)

(i, j − 1)

(i − 1, j)

(i, j)

(i + 1, j) (i + 1, j + 1)

(i, j + 1)

Fig. 5.2.The triangles which touch (i, j)

Givenφ ∈ CU and a vector fieldV , there is the 1-parameter family of sections

(FV
ε φ)(i, j) ≡ FVij

ε (φ(i, j)),

whereFVij denotes the flow ofVij on F . Thevariational principle is to seek thoseφ
for which

d

dε

∣∣∣∣
ε=0

S(FV
ε φ) = 0

for all vector fieldsV .

The discrete Euler–Lagrange equations.The variational principle gives certain field
equations, thediscrete Euler–Lagrange field equations(DELF equations), as follows.
Focus upon some (i, j) ∈ int U , and abuse notation by writingφ(i, j) ≡ yij . The action,
written with its summands containingyij explicitly, is (see Fig. 5.2)

S = · · · + L(yij , yi j+1, yi+1j+1) + L(yi j−1, yij , yi+1j) + L(yi−1j−1, yi−1j , yij) + · · ·
so by differentiating inyij , the DELF equations are

∂L

∂y1
(yij , yi j+1, yi+1j+1) +

∂L

∂y2
(yi j−1, yij , yi+1j) +

∂L

∂y3
(yi−1j−1, yi−1j , yij) = 0,

for all (i, j) ∈ int U . Equivalently, these equations may be written

∑
l;1;(i,j)=1l

∂L1

∂yl
(y11, y12, y13) = 0, (5.2)

for all (i, j) ∈ int U .

The discrete Cartan form.Now suppose we allow nonzero variations on the boundary
∂U , so we consider the effect onS of a vector fieldV which does not necessarily vanish
on∂U . For each (i, j) ∈ ∂U find the triangles inU touching (i, j). There is at least one
such triangle since (i, j) ∈ cl U ; there are not three such triangles since (i, j) 6∈ int U .
For each such triangle1, (i, j) occurs as thelth vertex, for one or two ofl = 1, 2, 3, and
thoselth expressions from the list
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∂L

∂y1
(yij , yi j+1, yi+1j+1)Vij(yij),

∂L

∂y2
(yi j−1, yij , yi+1j)Vij(yij),

∂L

∂y3
(yi−1j−1, yi−1j , yij)Vij(yij),

yielding one or two numbers. The contribution todS from the boundary is the sum of all
such numbers. To bring this into a recognizable format, we take our cue from discrete
Lagrangian mechanics, which featuredtwo 1-forms. Here the above list suggests the
three1-forms onJ1Y , the first of which we define to be

21
L(yij , yi j+1, yi+1j+1) · (vyij

, vyi j+1, vyi+1 j+1)

≡ ∂L

∂y1
(yij , yi j+1, yi+1j+1) · (vyij

, 0, 0),

22
L and23

L being defined analogously. With these notations, the contribution todS from
the boundary can be writtenθL(φ) · V , whereθL is the 1-form on the space of sections
CU defined by

θL(φ) · V ≡
∑

1;1∩∂U 6=∅


 ∑

l;1l∈∂U

[
(j1φ)∗(j1V 2l

L)
]

(1)


 . (5.3)

In comparing (5.3) with (4.41), the analogy with the multisymplectic formalism of Sect. 4
is immediate.

The discrete multisymplectic form formula.Given a triangle1 in X, we define the
projectionπ1 : CU → J1Y by

π1(φ) ≡ (1, y11, y12, y13).

In this notation, it is easily verified that (5.3) takes the convenient form

θL =
∑

1;1∩∂U 6=∅


 ∑

l;1l∈∂U

π∗
12l

L


 . (5.4)

A first-variation at a solutionφ of the DELF equations is a vertical vector fieldV
such that the associated flowFV mapsφ to other solutions of the DELF equations. Set
�l

L = −d2l
L. Since

21
L + 22

L + 23
L = dL, (5.5)

one obtains
�1

L + �2
L + �3

L = 0,

so that only two of the three 2-forms�l
L, l = 1, 2, 3 are essentially distinct. Exactly as

in Sect. 2, the equationd2S = 0, when specialized to two first-variationsV andW now
gives, by taking one exterior derivative of (5.4),
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0 = dθL(φ)(V, W ) =
∑

1;1∩∂U 6=∅


 ∑

l;1l∈∂U

V W π∗
1�l

L


 ,

which in turn is equivalent to

∑
1;1∩∂U 6=∅


 ∑

l;1l∈∂U

[
(j1φ)∗(j1V j1W �l

L)
]

(1)


 = 0. (5.6)

Again, the analogy with the multisymplectic form formula for continuous space-
time (4.18) is immediate.

The discrete Noether theorem.Suppose that a Lie groupG with Lie algerag acts onF
by vertical symmetries in such a way that the LagrangianL is G-invariant. ThenG acts
on Y andJ1Y in the obvious ways. Since there are three Lagrange 1-forms, there are
three momentum mapsJ l, l = 1, 2, 3, each one ag∗-valued function on triangles inX,
and defined by

J l
ξ ≡ ξJ1Y 2l

L,

for anyξ ∈ g. Invariance ofL and (5.5) imply that

J1 + J2 + J3 = 0,

so, as in the case of the 1-forms, only two of the three momenta are essentially distinct.
For anyξ, the infinitesimal generatorξY is a first-variation, so invariance ofS, namely
ξY dS = 0 , becomesξY θL = 0. By left insertion into (5.3), this becomes the discrete
version of Noether’s theorem:

∑
1;1∩∂U 6=∅


 ∑

l;1l∈∂U

J l(1)


 = 0. (5.7)

Conservation in a space and time split.To understand the significance of (5.6) and (5.7)
consider a discrete field theory with space a discrete version of the circle and time the
real line, as depicted in Fig. 5.3, where space is split into space and time, with “constant
time” being constantj and the “space index” 1≤ i ≤ N being cyclic. Applying (5.7)
to the region{(i, j) | j = 0, 1, 2} shown in the figure, Noether’s theorem takes the
conservation form

N∑
i=1

J1(yi0, yi1, yi+1 1) = −
N∑
i=1

(
J2(yi1, yi2, yi+1 2) + J3(yi1, yi2, yi+1 2)

)

=
N∑
i=1

J1(yi1, yi2, yi+1 2).

Similarly, the discrete multisymplectic form formula also takes a conservation form.
When there is spatial boundary, the discrete Noether theorem and the discrete multi-
symplectic form formulas automatically account for it, and thus form nontrivial gener-
alizations of these conservation results.
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Time

Space

j=
j=j=

0
1 2

i

i- 1

i+1

Fig. 5.3.Symplectic flow and conservation of momentum from the discrete Noether theorem when the spatial
boundary is empty and the temporal boundaries agree

Furthermore, as in the continuous case, we can achieve “evolution type” symplectic
systems (i.e. discrete Moser–Veselov mechanical systems) if we defineQ as the space
of fields at constantj, soQ ≡ FN , and take as the discrete Lagrangian

L̃([q0
j ], [q1

j ]) ≡
N∑
i=1

L(q0
i , q

1
i , q

1
i+1).

Then the Moser–Veselov DEL evolution-type equations (3.2) are equivalent to the DELF
equations (5.2), the multisymplectic form formula implies symplecticity of the Moser–
Veselov evolution map, and conservation of momentum gives identical results in both
the “field” and “evolution” pictures.

Example: Nonlinear wave equation.To illustrate the discretization method we have
developed, let us consider the Lagrangian (4.32) of Sect. 4, which describes the nonlinear
sine-Gordon wave equation. This is a completely integrable system with an extremely
interesting hierarchy of soliton solutions, which we shall investigate by developing for
it a variational multisymplectic-momentum integrator; see the recent article by Palais
[1997] for a wonderful discussion on soliton theory.

To discretize the continuous Lagrangian, we visualize each triangle1 as having base
lengthh and heightk, and we think of the discrete jet (y11, y12, y13) as corresponding
to the continuous jet

∂φ

∂x0
(ȳij) =

yi j+1 − yij

h
,

∂φ

∂x1
(ȳij) =

yi+1j+1 − yi j+1

k
,

where ¯yij is the center of the triangle3. This leads to the discrete Lagrangian

L =
1
2

(
y2 − y1

h

)2

− 1
2

(
y3 − y2

k

)2

+ N
(y1 + y2 + y3

3

)
,

with corresponding DELF equations

3 Other discretizations based on triangles are possible; for example, one could use the valueyij for insertion
into the nonlinear term instead of ¯yij .
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yi+1j − 2yij + yi−1j

k2
− yi j+1 − 2yij + yi j−1

h2

+
1
3
N ′
(yij + yi j+1 + yi+1j+1

3

)
+

1
3
N ′
(yi j−1 + yij + yi+1j

3

)
+

1
3
N ′
(yi−1j−1 + yi−1j + yij

3

)
= 0. (5.8)

WhenN = 0 (wave equation) this gives the explicit method

yi j+1 =
h2

k2
(yi+1j − 2yij + yi−1j) + 2yij − yi j−1,

which is stable whenever the Courant stability condition is satisfied.

Extensions: Jets from rectangles and other polygons.Our choice of discrete jet bundle
is obviously not restricted to triangles, and can be extended to rectangles or more general
polygons (left of Fig. 5.4). Arectangleis a quadruple of the form,

1 =
(
(i, j), (i, j + 1), (i + 1, j + 1), (i + 1, j)

)
,

a point is aninterior point of a subsetU of rectangles ifU contains all four rectangles
touching that point, the discrete Lagrangian depends on variablesy1, · · · , y4, and the
DELF equations become

∂L

∂y1
(yij , yi j+1, yi+1j+1, yi+1j) +

∂L

∂y2
(yi j−1, yij , yi+1j , yi+1j−1)

+
∂L

∂y3
(yi−1j−1, yi−1j , yij , yi j−1) +

∂L

∂y4
(yi−1j , yi−1j+1, yi j+1, yij) = 0.

The extension to polygons with even higher numbers of sides is straightforward; one
example is illustrated on the right of Fig. 5.4. The motivation for consideration of these

(i−1, j +1)

(i, j +1)

(i +1, j)

(i, j −1)

(i −1, j−1)

(i +1, j +1)

(i−1, j)

(i +1, j −1)

Fig. 5.4.On the left, the method based on rectangles;on the right, a possible method based on hexagons

extensions is enhancing the stability of the triangle-based method in the nonlinear wave
example just above.
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Example: Nonlinear wave equation, rectangles.Think of each rectangle1 as having
lengthh and heightk, and each discrete jet (y11, y12, y13, y14) being associated to the
continuous jet

∂φ

∂x0
(p) =

yi j+1 − yij

h
,

∂φ

∂x1
(p) =

1
2

(
yi+1j − yi j

k
+

yi+1j+1 − yi j+1

k

)
,

wherep is a the center of the rectangle. This leads to the discrete Lagrangian

L =
1
2

(
y2 − y1

h

)2

− 1
2

(
y4 − y1

2k
+

y3 − y2

2k

)2

+ N
(y1 + y2 + y3 + y4

4

)
. (5.9)

If, for brevity, we set

ȳij ≡ yij + yi j+1 + yi+1j+1 + yi+1j

4
,

then one verifies that the DELF equations become[
1
2

yi+1j − 2yij + yi−1j

k2
+

1
4

yi+1j+1 − 2yi j+1 + yi−1j+1

k2

+
1
4

yi+1j−1 − 2yi j−1 + yi−1j−1

k2

]
−
[
yi j+1 − 2yij + yi j−1

h2

]

+
1
4

[
N ′(ȳij) + N ′(ȳi j−1) + N ′(ȳi−1j−1) + N ′(ȳi−1j)

]
= 0,

which, if we make the definitions

∂2
hyij ≡ yi j+1 − 2yij + yi j−1, ∂2

kyij ≡ yi+1j − 2yij + yi−1j ,

N̄ ′(ȳij) ≡ 1
4

[
N ′(ȳij) + N ′(ȳi j−1) + N ′(ȳi−1j−1) + N ′(ȳi−1j)

]
,

is (more compactly)

1
k2

[
1
4
∂2

kyi j+1 +
1
2
∂2

kyij +
1
4
∂2

kyi j−1

]
− 1

h2
∂2

hyij + N̄ ′(ȳij) = 0. (5.10)

These are implicit equations which must be solved foryi j+1, 1 ≤ i ≤ N , givenyi j ,
yi j−1, 1 ≤ i ≤ N ; rearranging, an iterative form equivalent to (5.10) is

−
(

h2

2(h2 + 2k2)

)
yi+1j+1 + yi j+1 −

(
h2

2(h2 + 2k2)

)
yi−1j+1

=
h2

h2 + 2k2

(
(yi+1j − 2yij + yi−1j) +

1
2

(yi+1j−1 − 2yi j−1 + yi−1j−1)
)

+
2k2

h2 + 2k2

(
2yij − yi j−1

)
+

h2k2

2(h2 + 2k2)

(
N ′(ȳij) + N ′(ȳi j−1) + N ′(ȳi−1j−1) + N ′(ȳi−1j)

)
.
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In the case of the sine-Gordon equation the values of the field ought to be considered
as lying inS

1, by virtue of the vertical symmetryy 7→ y + 2π. Soliton solutions for
example will have a jump of 2π and the method will fail unless field values at close-
together spacetime points are differenced modulo 2π. As a result it becomes important
to calculate using integral multiples of small field-dependent quantities, so that it is clear
when to discard multiples of 2π, and for this the above iterative form is inconvenient.
But if we define

∂1
hyij ≡ yi j+1 − yij , ∂1

kyij ≡ yi+1j − yij ,

then there is the following iterative form, again equivalent to (5.10),

yi j+1 = yij + ∂1
hyi j , and

−
(

h2

2(h2 + 2k2)

)
∂1

hyi+1j + ∂1
hyi j −

(
h2

2(h2 + 2k2)

)
∂1

hyi−1j

=
h2

h2 + 2k2
(3∂2

kyij + ∂2
kyi j−1) +

2k2

h2 + 2k2
∂1

hyij

+
h2k2

2(h2 + 2k2)
N̄ ′(ȳij). (5.11)

One can also modify (5.9) so as to treat space and time symmetrically, which leads
to the discrete Lagrangian

L =
1
2

(
y2 − y1

2h
+

y3 − y4

2h

)2

− 1
2

(
y4 − y1

2k
+

y3 − y2

2k

)2

+N
(y1 + y2 + y3 + y4

4

)
,

and one verifies that the DELF equations become

1
k2

[
1
4
∂2

kyi j+1 +
1
2
∂2

kyij +
1
4
∂2

kyi j−1

]

− 1
h2

[
1
4
∂2

hyi+1j +
1
2
∂2

hyij +
1
4
∂2

hyi−1j

]
+ N̄ ′(ȳij) = 0, (5.12)

an equivalent iterative form of which is

yi j+1 = yij + ∂1
hyi j , and

−
(

h2 − k2

2(h2 + k2)

)
∂1

hyi+1j + ∂1
hyi j −

(
h2 − k2

2(h2 + k2)

)
∂1

hyi−1j

=
h2

2(h2 + k2)
(3∂2

kyij + ∂2
kyi j−1)

+
h2

2(h2 + k2)
(2∂1

hyij + ∂1
hyi+1j + ∂1

hyi−1j)

+
h2k2

2(h2 + k2)
N̄ ′(ȳij). (5.13)
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Fig. 5.5.Top left: the wave forms for a two soliton kink and antikink collision using (5.12).Top right: the
energy error.Bottom left:the wave form at timet ≈ 11855.Bottom right:the portion of the bottom left graph
for spatial grid points 1. . . 16

5.2. Numerical checks.While the focus of this article is not the numerical implementa-
tion of the integrators which we have derived, we have, nevertheless, undertaken some
preliminary numerical investigations of our multisymplectic methods in the context of
the sine-Gordon equation with periodic boundary conditions.

The rectangle-based multisymplectic method.The top half of Fig. 5.5 shows a simulation
of the collision of “kink” and “antikink” solitons for the sine-Gordon equation, using
the rectangle-based multisymplectic method (5.12). In the bottom half of that figure we
show the result of running that simulation until the solitons have undergone about 460
collisions; shortly after this the simulation stops because the iteration (5.13) diverges. The
anomalous spatial variations in the waveform of the bottom left of Fig. 5.5 have period 2
spatial grid divisions and are shown in finer scale on the bottom right of that figure. These
variations are reminiscent of those found in Ablowitz, Herbst and Schober [1996] for
the completely integrable discretization of Hirota, where the variations are attributed to
independent evolution of waveforms supported on even vs. odd grid points. Observation
of (5.12) indicates what is wrong: the nonlinear termN contributes to (5.12) in a way
that will average out these variations, and consequently, once they have begun, (5.12)
tends to continue such variations via the linear wave equation. In Ablowitz et. al., the
situation is rectified when the number of spatial grid points is not even, and this is the case
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for (5.12) as well. This is indicated on the left of Fig. 5.6, which shows the waveform
after about 5000 soliton collisions whenN = 255 rather thanN = 256. Figure 5.7
summarizes the evolution of energy error4 for that simulation.

0

6.28

0 40Space
0

6.28

0 40Space

Fig. 5.6.On theleft, the final wave form (after about 5000 soliton collisions att ≈ 129133) obtained using
the rectangle-based multisymplectic method (5.12). On theright, the final waveform (att ≈ 129145) from
the energy-conserving method (5.14) of Vu-Quoc and Li. In both simulations, temporal drift is occurring. For
this reason the waveforms are inverted with respect to one another; moreover, the separate solitons are drifting
at slightly different rates, as indicated by the off-center waveforms

0

-.002

Energy

0 120000Time

0

-.002

Energy

129130 129155Time

Fig. 5.7.On theleft, the energy error corresponding to our multisymplectic method (5.13) for 5000 solition
collisions; the three graphs correspond to the minimum, average, and maximum energy error over consecutive
5000 time step regions. On theright, the final energy error (i.e. the energy error after about 5000 soliton
collisions), which can be compared with the initial energy error plot in the top left of Fig. 5.5

4 The discrete energy that we calculated was

N∑
i=1

(
1

2

(
yi j+1 − yij

2h
+

yi+1j+1 − yi+1j

2h

)2

+
1

2

(
yi+1j − yij

2k
+

yi+1j+1 − yi j+1

2k

)2

− N
(
ȳij

))
.
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Initial data. For the two-soliton-collision simulations, we used the following initial
data:h = k/8 (excepth = k/16 where noted), wherek = 40/N andN = 255 spatial
grid points (except Fig. 5.5 whereN = 256). The circle that is space should be visualized
as having circumferenceL = 40. Letκ = 1− ε, whereε = 10−6, L̃ = L/4 = 10,

P = 2
∫ 1/κ

0

1√
1 − y2

√
1 − κ2y2

dy ≈ 15.90, c =

√
1 − L̃2

κ2P 2
≈ .7773,

and

φ̃(x) ≡ 2 arcsin

(
sn

(
x

κ
√

1 − c2
; κ

))
.

Thenφ̃(x − ct) is a kink solution if space has a circumference ofL̃. This kink and an
oppositely moving antikink (but placed on the last quarter of space) made up the initial
field, so thatyi0 = φ(40(i − 1)/N ), i = 1, . . . , N , where

φ(x) ≡



φ(x) 0 ≤ x < L/4
2π L/4 ≤ x < 3L/4
2π − φ(x − 3L/4) 3L/4 ≤ x < L

,

while yi1 = yi0 + φ̇(40(i − 1)/N )h, where

φ̇(x) ≡



(φ(x − hc) − φ(x))/h 0 ≤ x < L/4
0 L/4 ≤ x < 3L/4
−(φ(x − hc) − φ(x))/h 3L/4 ≤ x < L

.

Comparison with energy-conserving methods.As an example of how our method com-
pares with an existing method, we considered the energy-conserving method of Vu-Quoc
and Li [1993], p. 354:

1
k2

[
1
4
∂2

kyi j+1 +
1
2
∂2

kyij +
1
4
∂2

kyi j−1

]
− 1

h2
∂2

hyij

+
1
2

(
N (yi j+1) − N (yij)

yi j+1 − yij
+

N (yij) − N (yi j−1)
yij − yi j−1

)
= 0. (5.14)

This has an iterative form similar to (5.13) and is quite comparable with (5.10) and (5.12)
in terms of the computation required. Our method seems to preserve the soliton waveform
better than (5.14), as is indicated by comparison of the left and right Fig. 5.6.

In regards to the closely related papers Vu-Quoc and Li [1993] and Li and Vu-
Quoc [1995], we could not verify in our simulations that their method conserves energy,
nor could we verify theirproofthat their method conserves energy. So, as a further check,
we implemented the following energy-conserving method of Guo, Pascual, Rodriguez,
and Vazquez [1986]:

∂2
kyij − ∂2

hyij +
N (yi j+1) − N (yi j−1)

yi j+1 − yi j−1
, (5.15)

which conserves the discrete energy

N∑
j=1

(
1
2

(yi j+1 − yij)(yij − yi j−1)
h2

+
1
2

(
yi+1j − yij

k

)2

− N (yij)

)
.
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Fig. 5.8.A long-time simulation using the energy-conserving method (5.15) of Guo et al.Above left:the initial
energy error.Above right:the average energy error over consecutive 5000 time step regions (the maximum
and minimum closely parallel the average).Below left:the final energy error.Below right:the final waveform
at t ≈ 129149

This method diverged after just 345 soliton collisions. As can be seen from (5.15), the
nonlinear potentialN enters as a difference over two grid spacings, which suggests that
halving the time step might result in a fairer comparison with the methods (5.12) or (5.14).
With this advantage, method (5.15) was able to simulate 5000 soliton collisions, with a
waveform degradation similar to the energy-conserving method (5.14), as shown at the
bottom right of Fig. 5.8. The same figure also shows that, although the energy behavior
of (5.15) is excellent for short time simulations, it drifts significantly over long times,
and the final energy error has a peculiar appearance. Figure 5.9 shows the time evolution
of the waveform through the soliton collision that occurs just before the simulation stops.
Apparently, at the soliton collisions, significant high frequency oscillations are present,
and these are causing the jumps in the energy error in the bottom left plot of Fig. 5.8.
This error then accumulates due to the energy-conserving property of the method. In
these simulations, so as to guard against the possibility that this behavior of the energy
was due to inadequately solving the implicit Eq. (5.15), we imposed a minimum limit
of 3 iterations in the corresponding iterative loop, whereas this loop would otherwise
have converged after just 1 iteration.

Comparison with the triangle-based multisymplectic method.The discrete second
derivatives in the method (5.15) are the same as in the triangle-based multisymplectic
method (5.8); these derivatives are simpler than either our rectangle-based multisym-
plectic method (5.12) or the energy-conserving method of Vu-Quoc and Li (5.14). To
explore this we implemented the triangle-based multisymplectic method (5.8). Even
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Fig. 5.9.The soliton collision at timet ≈ 129130, after the energy-conserving method (5.15) of Guo et al. has
simulated about 5000 soliton collisions. The solitons collide beginning at the top left and proceed to the top
right, then to the bottom left, and finally to the bottom right. The vertical scales are not constant and visually
exaggerate the high frequency oscillations, which are small on the scale 0 to 2π

with the less complicated discrete second derivatives our triangle-based multisymplec-
tic method simulated 5000 soliton collisions with comparable energy5 and waveform
preservation properties as the rectangle-based multisymplectic method (5.12), as shown
in Fig. 5.11. Figure 5.10 shows the time evolution of the waveform through the soliton
collision just before the simulation stops, and may be compared to Fig. 5.9. As can
be seen, the high frequency oscillations that are present during the soliton collisions
are smaller and smoother for the triangle-based multisymplectic method than for the
energy-conserving method (5.15). A similar statement is true irrespective which of the
two multisymplectic or two energy conserving methods we tested, and is true all along
the waveform, irrespective of whether or not a soliton collision is occurring.

Summary. Our multisymplectic methods are finite difference methods that are com-
putationally competitive with existing finite difference methods. Our methods show
promise for long-time simulations of conservative partial differential equations, in that,
for long-time simulations of the sine-Gordon equation, our method 1) had superior
energy-conserving behavior,even when compared with energy-conserving methods; 2)
better preserved the waveform than energy-conserving methods; and 3) exhibited su-
perior stability, in that our methods excited smaller and more smooth high frequency
oscillations than energy-conserving methods. However, further numerical investigation
is certainly necessary to make any lasting conclusions about the long-time behavior of
our integrator.

5 The discrete energy that we calculated was

N∑
i=1

(
1

2

(
yi j+1 − yij

h

)2

+
1

2

(
yi+1j − yij

2k

)2

− N (ȳij )

)
.
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Fig. 5.10.Similar to the above plot but for our triangle-based multisymplectic method (5.8)
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Fig. 5.11.A simulation of 5000 soliton collisions using the triangle-based multisymplectic method (5.8).
Above left:The initial energy error.Above right:The minimum, average and maximum energy as in the left
of Fig. 5.7.Below left:the final waveform (att ≈ 129130).Below right:the final energy error
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The programs.The programs that were used in the preceding simulations are “C” lan-
guage implementations of the various methods. A simple tridiagonal LUD method
was used to solve the linear equations (e.g. the left side of (5.13)), as in Vu-Quoc
and Li [1993], p. 379. An 8th order extrapolator was used to provide a seed for the im-
plicit step. All calculations were performed in double precision while the implicit step
was terminated when the fields ceased to change to single precision; the program’s out-
put was in single precision. The extrapolation usually provided a seed accurate enough
so that the methods became practicallyexplicit, in that for many of the time-steps the
first or second run through the iterative loops solving the implicit equations solved those
equations to single precision. However, in the absence of a regular spacetime grid the
expenses of the extrapolation and solving the linear equation would grow. Our programs
are freely available at URLhttp://www.cds.caltech.edu/shkoller/mps .

6. Concluding Remarks

Here we make a few miscellaneous comments and remark on some work planned for
the future.

Lagrangian reduction.As mentioned in the text, it is useful to have a discrete counterpart
to the Lagrangian reduction of Marsden and Scheurle [1993a,b], Holm, Marsden and
Ratiu [1998a] and Cendra, Marsden and Ratiu [1998]. We sketch briefly how this theory
might proceed. This reduction can be done for both the case of “particle mechanics” and
for field theory.

For particle mechanics, the simplest case to start with is an invariant (say left)
Lagrangian on the tangent bundle of a Lie group:L : TG → R. The reduced Lagrangian
is l : g → R and the corresponding Euler–Poincaré equations have a variational principle
of Lagrange d’Alembert type in that there are constraints on the allowed variations. This
situation is described in Marsden and Ratiu [1994].

The discrete analogue of this would be to replace a discrete LagrangianL : G×G →
R by a reduced discrete Lagrangian` : G → R related toL by

`(g1g
−1
2 ) = L(g1, g2).

In this situation, the algorithm fromG × G to G × G reduces to one fromG to G and it
is generated bỳin a way that is similar to that forL. In addition, the discrete variational
principle forL which states that one should find critical points of

L(g1, g2) + L(g2, g3)

with respect tog2 to implicitly define the map (g1, g2) 7→ (g2, g3), reduces naturally to
the following principle: Find critical points of̀(g) + `(h) with respect to variations of
g andh of the formgξ := Lgξ andξh = Rhξ, whereLg andRh denote left and right
translation and whereξ ∈ g. In other words, one sets to zero, the derivative of the sum
`(gg−1

ε ) + `(gεh) with respect toε at ε = 0 for a curvegε in G that passes through the
identity atε = 0. This defines (with caveats of regularity as before) a map ofG to itself,
which is the reduced algorithm. This algorithm can then be used to advance points in
G × G itself, by advancing each component by the reduced trajectory, reproducing the
algorithm onG × G. In addition, this can be used with the adjoint or coadjoint action
to advance points ing∗ to approximate the Lie–Poisson dynamics.
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These equations for a discrete map, sayφ` : G → G generated bỳ onG are called
thediscrete Euler–Poincar´e equationsas they are the discrete analogue of the Euler–
Poincaŕe equations ong. Notice that, at least in theory, computation can be done for this
map first and then the dynamics onG × G is easily reconstructed by simply advancing
each pair as follows: (g1, g2) 7→ (hg1, h̄g2), whereh̄ = φ`(g

−1
1 g2) = φ`(h).

If one identifies the discrete Lagrangians with generating functions (as explained
in Wendlandt and Marsden [1997]) then the reduced Lagrangian generates the reduced
algorithm in the sense of Ge and Marsden [1988], and this in turn is closely related to
the Lie–Poisson–Hamilton–Jacobi theory.

Next, consider the more general case ofTQ with its discretizationQ × Q with a
group action (assumed to be free and proper) by a Lie groupG. The reduction ofTQ by
the action ofG is TQ/G, which is a bundle overT (Q/G) with fiber isomorphic tog.
The discrete analogue of this is (Q×Q)/G which is a bundle over (Q/G)× (Q/G) with
fiber isomorphic toG itself. The projection mapπ : (Q × Q)/G → (Q/G) × (Q/G)
is given by [(q1, q2)] 7→ ([q1], [q2]) where [ ] denotes the relevant equivalence class.
Notice that in the case in whichQ = G this bundle is “all fiber”. The reduced discrete
Euler–Lagrange equations are similar to those in the continuous case, in which one has
shape equations coupled with a version of the discrete Euler–Poincaré equations.

Of course all of the machinery in the continuous case can be contemplated here
too, such as stability theory, geometric phases, etc. In addition, it would be useful to
generalize this Lagrangian reduction theory to the multisymplectic case. All of these
topics are planned for other papers.

Role of uniformity of the grid.Consider an autonomous, continuous LagrangianL :
TQ → R where, for simplicity,Q is an open submanifold of Euclidean space. Imagine
somenot necessarily uniformtemporal grid (t0, t1, · · · ) of R, so thatt0 < t1 < t2 < · · · .
In this situation, it is natural to consider the discrete action

S =
n∑

k=1

Lk(qk, qk−1) ≡
n∑

k=1

L
(

qk + qk−1

2
,
qk − qk−1

tk − tk−1

)
(tk − tk−1). (6.1)

This action principle deviates from the action principle (3.1) of Sect. 3 in that the dis-
crete Lagrangian density depends explicitly onk. Of course nonautonomous continuous
Lagrangians also yieldk-dependent discrete Lagrangian densities, irrespective of uni-
formity of the grid. Thus, nonuniform temporal grids or nonautonomous Lagrangians
give rise to discrete Lagrangian densities which are more general than those we have
considered in Sect. 3. For field theories, the Lagrangian in the action (5.1) depends on the
spacetime variables already, through its explicit dependence on the triangle1. However,
it is only in the context of a uniform grid that we have experimented numerically and only
in that context that we have discussed the significance of the discrete multisymplectic
form formula and the discrete Noether theorem.

Using (6.1) as an example, will now indicate why the issue of grid uniformity may
not be serious. The DEL equations corresponding to the action (6.1) are

∂Lk

∂q1
(qk, qk−1) +

∂Lk+1

∂q2
(qk+1, qk) = 0, k = 1, 2, , · · · , (6.2)

and this gives evolution mapsFk+1,k : Q × Q → Q × Q defined so that

Fk+1,k(qk, qk−1) = (qk+1, qk), k = 1, 2, · · ·
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when (6.2) holds. For the canonical 1-forms corresponding to (3.4) and (3.5) we have
thek-dependent one forms

θ−
L,k(q1, q0) · (δq1, δq0) ≡ ∂Lk

∂q0
(q1, q0)δq0, (6.3)

and

θ+
L,k(q1, q0) · (δq1, δq0) ≡ ∂Lk

∂q1
(q1, q0)δq1, (6.4)

and Eqs. (3.7) and (3.9) become

F ∗
k+1,k(dθ+

L,k) = −dθ−
L,k+1, dθ−

L,k + dθ+
L,k = 0 (6.5)

respectively. Together, these two equations give

F ∗
k+1,k(dθ+

L,k) = dθ+
L,k+1, (6.6)

and if we set
Fk ≡ Fk,k−1 ◦ Fk−1,k−2 ◦ · · · ◦ F2,1

then (6.6) chain together to implyF ∗
k (dθ+

L,1) = dθ+
L,k. This appears less than adequate

since it merely says that the pull back by the evolution of a certain 2-form is, in gen-
eral, a different 2-form. The significant point to note, however, is thatthis situation may
be repaired at anyk simply by choosingLk = L1. It is easily verified that the analo-
gous statement is true with respect to momentum preservation via the discrete Noether
theorem.

Specifically, imagine integrating a symmetric autonomous mechanical system in a
timestep adaptive way with Eqs. (6.2). As the integration proceeds, various timesteps
are chosen, and if momentum is monitored it will show a dependence on those choices.
A momentum-preserving symplectic simulation may be obtained by simply choosing the
last timestep to be of equal duration to the first.This is the highly desirable situation
which gives us some confidence that grid uniformity is a nonissue. There is one caveat:
symplectic integration algorithms are evolutions which are high frequency perturbations
of the actual system, the frequency being the inverse of the timestep, which is generally
far smaller than the time scale of any process in the simulation. However, timestep
adaptation schemes will make choices on a much larger time scale than the timestep
itself, and then drift in the energy will appear on this larger time scale. A meaningful long-
time simulation cannot be expected in the unfortunate case that the timestep adaptation
makes repeated choices in a way that resonates with some process of the system being
simulated.

The sphere. The sphere cannot be generally uniformly subdivided into spherical tri-
angles; however, a good approximately uniform grid is obtained as follows: start from
an inscribed icosahedron which produces a uniform subdivision into twenty spherical
isosceles triangles; these are further subdivided by halving their sides and joining the
resulting points by short geodesics.

Elliptic PDEs. The variational approach we have developed allows us to examine the
multisymplectic structure of elliptic boundary value problems as well. For a given La-
grangian, we form the associated action function, and by computing its first variation,
we obtain the unique multisymplectic form of the elliptic operator. The multisymplectic
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form formula contains information on how symplecticity interacts with spatial bound-
aries. In the case of two spatial dimensions,X = R

2, Y = R
3, we see that Eq. (4.36)

gives us the conservation law
divX = 0,

where the vectorX = (ω0(j1V, j1W ), ω1(j1V, j1W )).
Furthermore, using our generalized Noether theory, we may define momentum-

mappings of the elliptic operator associated with its symmetries. It turns out that for
important problems of spatial complexity arising in, for example, pattern formation
systems, the covariant Noether current intrinsically contains the constrained toral vari-
ational principles whose solutions are the complex patterns (see Marsden and Shkoller
[1998]).

There is an interesting connection between our variational construction of multi-
symplectic-momentum integrators and the finite element method (FEM) for elliptic
boundary value problems. FEM is also a variationally derived numerical scheme, funda-
mentally differing from our approach in the following way: whereas we form a discrete
action sum and compute its first variation to obtain the discrete Euler–Lagrange equa-
tions, in FEM, it is the original continuum action function which is used together with a
projection of the fields and their variations onto appropriately chosen finite-dimensional
spaces. One varies the projected fields and integrates such variations over the spatial
domain to recover the discrete equations. In general, the two discretization schemes do
not agree, but for certain classes of finite element bases with particular integral approx-
imations, the resulting discrete equations match the discrete Euler–Lagrange equations
obtained by our method, and are hence naturally multisymplectic.

To illustrate this concept, we consider the Gregory and Lin method of solving two-
point boundary value problems in optimal control. In this scheme, the discrete equations
are obtained using a finite element method with a basis of linear interpolants. Over
each one-dimensional element, letN1 andN2 be the two linear interpolating functions.
As usual, we define the action function byS(q) =

∫ T

0 L(q(t), q̇(t))dt. Discretizing the
interval [0, T ] into N+1 uniform elements, we may write the action with fields projected
onto the linear basis as

S(q) =
N−1∑
k=0

∫ k+1

k

L({N1φk + N2φk+1}, {Ṅ1φk + Ṅ2φk+1})dt.

Since the Euler–Lagrange equations are obtained by linearizing the action and hence the
Lagrangian, and as the functionsNi are linear, one may easily check that by evaluating
the integrals in the linearized equations using a trapezoidal rule, the discrete Euler–
Lagrange equations given in (3.3) are obtained. Thus, the Gregory and Lin method is
actually a multisymplectic-momentum algorithm.

Applicability to fluid problems.Fluid problems are not literally covered by the theory
presented here because their symmetry groups (particle relabeling symmetries) are not
vertical. A generalization is needed to cover this case and we propose to work out such
a generalization in a future paper, along with numerical implementation, especially for
geophysical fluid problems in which conservation laws such as conservation of enstrophy
and Kelvin theorems more generally are quite important.

Other types of integrators.It remains to link the approaches here with other types of
integrators, such as volume preserving integrators (see, e.g., Kang and Shang [1995],
Quispel [1995]) and reversible integrators (see, e.g., Stoffer [1995]). In particular since
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volume manifolds may be regarded as multisymplectic manifolds, it seems reasonable
that there is an interesting link.

Constraints. One of the very nice things about the Veselov construction is the way
it handles constraints, both theoretically and numerically (see Wendlandt and Marsden
[1997]). For field theories one would like to have a similar theory. For example, it is
interesting that for fluids, the incompressibility constraint can be expressed as a pointwise
constraint on the first jet of the particle placement field, namely that its Jacobian be unity.
When viewed this way, it appears as a holonomic constraint and it should be amenable to
the present approach. Under reduction by the particle relabeling group, such a constraint
of course becomes the divergence free constraint and one would like to understand how
these constraints behave under both reduction and discretization.
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