ON THE LIMIT AS THE DENSITY RATIO TENDS TO ZERO
FOR TWO PERFECT INCOMPRESSIBLE FLUIDS SEPARATED
BY A SURFACE OF DISCONTINUITY

C.H. ARTHUR CHENG, DANIEL COUTAND, AND STEVE SHKOLLER

ABSTRACT. We study the asymptotic limit as the density ratio p~/pt — 0,
where pt and p~ are the densities of two perfect incompressible 2-D/3-D
fluids, separated by a surface of discontinuity along which the pressure jump
is proportional to the mean curvature of the moving surface. Mathematically,
the fluid motion is governed by the two-phase incompressible Euler equations
with vortex sheet data. By rescaling, we assume the density pT of the inner
fluid is fixed, while the density p~ of the outer fluid is set to e. We prove that
solutions of the free-boundary Euler equations in vacuum are obtained in the
limit as € — 0.

1. INTRODUCTION

1.1. The water wave problem. A number of articles have recently appeared
that focus on the analysis of the one-phase free-boundary incompressible Euler
equations, in either irrotational form or with vorticy, in both 2-D and 3-D, and
with or without surface tension effects on the free surface. See [6, 8, 10, 11, 12,
13, 14, 18, 19, 21] and the references therein. In irrotational form, the one-phase
incompressible Euler equations with free-surface are often referred to as the water
wave equations for the motion of the interface, since irrotationality decouples the
motion of the liquid from that of the free-surface wave motion. The water wave
equations typically model the motion of a liquid drop inside of air, or the waves on
the surface of the ocean underneath the atmosphere (of course, air can be replaced
with any other incompressible liquid with very small relative density). In particular,
suppose that the density of the liquid is denoted by p™ while the density of air (or
the lighter liquid) by p~. Even when p~ < p*, the motion of the liquid-air system
is more accurately modeled by the two-phase Euler equations, which in irrotational
form lead to the equation of motion for vortex sheets.

The jump discontinuity in the tangential component of velocity across the ma-
terial interface, which appears in the two-phase Euler model, is responsible for the
ill-posedness of this system of PDE when surface tension effects are ignored (see
[9] and [20]). On the other hand, in the presence of surface tension, the two-phase
system is well-posed. See [4] for existence and uniqueness of solutions to two-phase
(rotational) Euler equations, and see [1, 2, 3] for the proof of well-posedness for the
irrotational problem. Also, see [15] for an infinite-dimensional geometric approach
to a priori estimates of the general problem. With surface tension included, the
pressure experiences a jump discontinuity proportional to the mean curvature of
the vortex sheet as we describe below. The two-phase system is a great deal more
difficult to simulate computationally or study analytically, so it is of significant
interest to rigorously establish the convergence of solutions to the two-phase equa-
tions (vortex sheets) to those of the one-phase model (water waves) in the limit as
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p~/pT — 0. The purpose of this paper is to prove this asymptotic result, without
any irrotationality assumptions on the fluids. We state our results for the case that
the space dimension is either 2 or 3, but we note that with additional regularity
assumptions on the data, our results are valid for any space dimension great than
1.

1.2. The two-phase Euler equations in Eulerian variables. For n = 2 or 3,
let D C R" denote an open, bounded set, which comprises the volume occupied
by two incompressible and inviscid fluids with different densities. At the initial
time ¢ = 0, we let Q1 denote the volume occupied by the inner fluid with density
pt and we let Q= denote the volume occupied by the outer fluid with density p~.
Mathematically, the sets QF and Q~ denote two disjoint open bounded subsets of
D such that D = QF UQ~ and QT NQ~ = (. The material interface at time t = 0
is given by I':= Q* NQ—, and 6D = 9Q~ —T.

Let Q% (t) and Q7 (¢) denote the time-dependent volumes of the inner and outer
fluids, respectively, separated by the moving material interface T'(t). Let u™ and
pT denote the velocity field and pressure function, respectively, in Q% (¢). Then the
so-called wvortex sheet problem, given by the solution of the incompressible Euler
equations for the motion of two fluids separated by a moving surface of discontinu-
ity, can be written as

p*(ui +uF - DuF) + Dpt =0 in QF(t), (1.1a)
divu® =0 in Q%) (1.1b)

[ple =cH on T'(¢), (1.1c)

[u-n]y =0 on TI'(t), (1.1d)

u -n=0 on 0D, (1.1e)

u(0) = ug on {t=0}xD, (1.11)

V(I(t) = u'(t) - n(t), (1.1g)

where V(I'(¢)) denotes the speed of the moving interface I'(¢) in the normal direc-
tion, and n(t) denotes the outward-pointing unit normal to QT (¢); thus, (1.1g)
indicates that the vortex sheet I'(t) moves with the normal component of the fluid
velocity. p™ and p~ are the densities of the two fluids occupying Q7 (¢) and Q7 (¢),
respectively, H(t) is twice the mean curvature of I'(t), and ¢ > 0 is the surface
tension parameter which we will henceforth set to one.

In [4], we proved the existence and uniqueness of the solutions to (1.1). See
also [1, 2, 3] for the proof of well-posedness for the irrotational problem, and [15]
for an infinite-dimensional geometric approach to a priori estimates of the general
problem.

By rescaling, if necessary, we may assume that

pT =1andthat p~ =e< 1.

Letting uX denote the solutions of (1.1), the main objective of this article is to to

study the asymptotic behavior of the solutions ut as e — 0.

1.3. Notation.

1.3.1. Sobolev norms on QF and I'. Let H*(Q7T) denote H*(QF;R) for scalar func-
tions or H*(21;R") for vector fields, and let H*(Q2~) denote H*(27;R)/R for a
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scalar functions with zero average or H*(27;R") for vector fields. We denote the
H*(Q%)-norms by

[wH s+ = lwtlgso+y and [Jw™|ls— = lw |z -

The H*(T')- and H?(9D)-norms are denoted by

lwH s = [lwH | g=ry, 0™ ]s = lw™ gy, and |w|sop = [|w]l z=op) -

For simplicity, we also use |lw|2 ; and |w|? 4 to denote [Jw™ |2, + [w™ |2 _ and
|wt |2 + |w™ |2, respectively, that is,
lwl? = = w12 4 + I3 -,

W]+ = w2 + w3

We also use (-,-) g1(a+), (- )m1-) and (-,-) gosr) to denote the duality pairing
between H'(QF) and H'(QT)’, the duality pairing between H!(Q~) and H'(Q~)/,
and the duality paring between H?-5(T") and H~%3(T"), respectively.

1.3.2. Einstein summation convention. Repeated Latin indices are summed from 1
to n, while repeated Greek indices are summed from 1 to n — 1. For example,

n—1 n
[o90 = [« and  flgii=> flg;.
a=1 i=1

1.3.3. The tangential derivative. Let {Ug}le denote an open covering of I', such
that for each £ € {1,2,---, K}, with

Vi = B(0,7¢), denoting the open ball of radius r, centered at the origin and,
V,E =Ven{z, > 0},
V, =Vin{z, <0},
there exist for s > 3, H®-class charts 6, which satisfy
0y : Vy — Uy is an H? diffeomorphism,
94(V2+) =U;N Qt s
9[(Vgﬂ{$n = 0}) =U,NT.

Next, for L > K, let {Ug}£:K+1 denote a family of open balls of radius r, contained
in Q such that {Uy}£_, is an open cover of €, and let

{&}F_| denote a C* partition of unity subordinate to this covering of Q.

We use 0 to denote the tangential derivative in U, N€). For a differentiable function
f on , the a-th component of the tangential derivative of f is given by

= 0 _ 00, _
fa=0af = g-[f ot ot = [(Df 0Bz -] 067
We use f; to denote the i-th component of D f, where Df is the gradient of f, or
_9f

i
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1.3.4. The identity map e. The identity map on R™ is denoted by e so that e(z) = x.
For a« = 1,2, we use the notation e, to denote the two tangent vectors to the
reference material interface I'; more specifically, in any local coordinate chart Vp,

e, denotes the tangent vectors 7L Note that

0z
[(Df)ob]-ea=faocb or (fjobe)el, = faoby.

1.3.5. H* norm of I'. We defined the H*-norm of I" to be

K n—1
U7 := Z/R |0k ..o OuPday -+ dany .
=1

The H?®-norm for any real s > 0 is defined by interpolation. We say that I' is of
class H® (or ' € H?®) whenever |T'|s < co. The H*-norm of 9D is defined similarly.

1.3.6. Imner products and contractions. Given two vector v and w in R", the inner
product of v and w is denoted by v - w, which in component is defined as

n
0 _§ i
VW =vw; = vw; .

i=1

For two matrices A and B, the contraction between A and B, denoted by A : B, is
the trace of the product of A and B, which in component is defined as

A:B=Ti(AB) = AlBj = Y AiB/.
i,j=1

1.3.7. The transpose of matrices. Given any matrix A, we use AT to denote its
transpose.

1.4. The arbitrary Lagrangian-Eulerian (ALE) formulation. Let n* denote
the Lagrangian flow map of u™* in Q7F, that is,

0t (z,t) = ut(nT(z,t),1) VzeQtt>0, (1.2a)
nt(z,0) =z VazeQt. (1.2b)

By a theorem of Dacorogna and Moser [7], we can choose a volume preserving
diffeomorphism 1 on 2~ such that

det(Dy) =1 VoeeQ,
Yp=nt Vazel,
P=e VaedD.

Furthermore, the following elliptic estimate holds:
[@lla5,- < C[In*1a+10Dla)
We then define

_ [ (b)) zeQf,
w(x,t){ PY(x,t) e,

REMARK 1. We emphasize that 1y does not equal v~ in Q7 ; on the other hand,

~+
Py =vt on Q.
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Set v =wuo, ¢ =pot, and let A = (Dy)~!. Using the ALE variables,
equations (1.1) are written as

v+ Afgl =0 i (0,7) x QF, (1.3a)

vy + equ;’;i n qu;g =0 in (0,7)xQ", (1.3b)

AlvE =0 in (0,T) x QF, (1.3c)

" —qg =-Am-n on (0,7)xT, (1.3d)

vt en=v"n on (0,7)xT, (1.3¢)

vT-N=0 on 0D, (1.3f)

(¢(t)av(t)79i(t))t:0 = (eauOvﬂi) y (13g)

where e(z) = x denotes the identity map on D, w = A(v™ —), and n(t) := n(y(t))

denotes the outward-point unit normal to Q7 (¢) and evaluated at the point 9 (t).
With N denoting the outward-point unit normal to Q" at t = 0, we have the
identity
ATN
)= .
n(¥(t) = T

1.5. The higher-order energy function. With S(¢) denoting the surface area
of the vortex sheet I'(t), the physical energy function is given by Huﬂ|%2m+(t)) +
€llu H%?(Q—(t)) +20S(t). While the physical energy is exactly conserved, it is much
too weak to provide the necessary a priori control to pass to the limit as € — 0. As
such, we define the higher-order energy function &£

E(t) = on" - N5 4 + v

S llveld s e + Vi N5 4 + ellozllf - -
Note that only el|v;; [|§ _ has the asymptotic scaling parameter e.

1.6. The regularity of the solution to (1.1). With ¢ = p~/p™, the following
theorem is the main result in [4].

THEOREM (Well-posedness of (1.1)) Suppose that o > 0, and that T := T'(0) is of
class H*, D is of class H®, and u(jf € H3(OF). Then, for all € > 0, there exists
T. > 0, and a solution (u®(t), p* (t), 2 (t)) of (1.1) withu* € L>(0,T; H?(QF(t)),
pt € L®(0,T; H>®(0*(t)), and T(t) € H*. The solution is unique if ui €
H*3(QF) and T € H°®.

Note that the time of existence T, depends crucially upon €, and that apriori T
may approach zero as € — 0.

1.7. Main Result. Let Q(t) = Q" (¢), and let U denote the solution of the one-
phase free-surface incompressible Euler equations in vacuum, satisfying

U+U-DU+DP=0 in Qt), (1.4a)
divU =0 in Q(&), (1.4Db)

P=H on I'(t), (1.4c)

U-n=0 on I'(t), (1.44d)

u(0) = ug on {t=0}x9Q, (1.4e)

V(IT(@) =U(t) n(t). (1.4f)
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THEOREM 1.1 (Main Theorem). Let € = p~/p*, and for € > 0, let u} denote
the sequence of the solution to (1.1) in the inner phase Q*(t). Suppose that ul =
uolg+r € H3(QF) and uy = uolg- € H3(Q7) satisfying uf - N = uy - N on T, where
T is of class H*® and OD is smooth. Then there exists T > 0, independent of e,
such that the solution ufon, to (1.1) converges weakly to Uon in L?(0,T; H3(QT))
as € — 0, where n. and n are flows of uX and U, respectively.

REMARK 2. Note that u. a priori only exists on the e-dependent time interval
(0,T¢); however, the main theorem shows that T is in fact independent of €, and
that ue exists on an e-independent interval (0,T) for all e > 0.

1.8. The structure of the proof and outline of the paper. The proof of
Theorem 1.1 consists of several steps that we describe as follows. In Section 2, we
review some well-known inequalities that we use throughout our analysis. In Section
3, we establish estimates for the time derivatives of velocity and pressure, evaluated
at time t = 0. Section 4 is devoted to the derivation of e-independent estimates for
our two-phase system. The fundamental difficulty resides in the estimates for the
normal and tangential components of v;;, which are founded on improved elliptic
estimates (with respect to our estimates in [4]) for the pressure functions. Finally,
in Section 5, we pass to the limit as ¢ — 0 and establish our main result.

2. PRELIMINARY RESULTS

2.1. The trace of the normal component of a vector field. A vector u €
L?(0) with divu € H'(O)' has a normal trace u- N € H=9%(d0), where N is the
unit normal to the surface 0O, with the estimate

- N0y < €|

[ullfz (o) + | divullis oy | (2.1)

2
where C' depends on |T'|, for all s > % (see, for example, [17]).
By the Piola identity, A%, = 0 (since det Dt = 1), and the identity AT N = ,/gn,
letting u/ = AJw' in (2.1) yields the Lagrangian normal trace estimate

o -l 000y < C lwlao) + 1470 13 0y | (2.2)

where O is either QF or Q.

2.2. The Hodge decomposition elliptic estimate.

PROPOSITION 2.1. For r > 2.5, let O be H" domain, that is, 0O is of class
H=%% Ifw € L?(O;R?) with curlw € H™~Y(0), divw € H""Y(0O), and dw- N €
H™15(90), then there erists a constant C' depending on |00|,_o.5 such that

w0y < C(|00]r—0.5) ||lw]|L2(0) + || curl w| gr—1 0y + || divw|| gr-1(0)
+ ng : N||H7‘71.5(8O):| . (23)

This estimate is well-known and follows from the identity —AF = curl curlF' —
DdivF; a convenient reference is Taylor [16].
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2.3. The curl and divergence estimates of 7, v and v;. Exactly following
Section 10 in [6], we have the following

LEMMA 2.1. The quantities D divy™, divo*, dive and D curlp®, curlv®, curl v
satisfy the following estimates:

I div o 350 + llewl v 5 4 + | div o™ |3
+ el v® 3 4 + [ DdivyEs, + [DeulntFs . (24)

< CsMo+ CsTP( sup E(t)) + 9 sup E(t),
t€[0,T] t€[0,7]

where § > 0 is taken sufficiently small, and P denotes a polynomial function of its
argument.

2.4. A polynomial-type inequality. For a constant M > 0, suppose that f(t) >
0, t — f(t) is continuous, and

f@&) <M+ CtP(f(¥)), (2.5)

where P denotes a polynomial function, and C' is a generic constant. Then for ¢
taken sufficiently small, we have the bound

ft) <2M.

This type of inequality, which we introduced in [5], can be viewed as a generalization
of standard nonlinear Gronwall inequalities.

2.5. Differentiating the matrix A. In this subsection we list a very useful iden-
tity here concerning the differentiation of the cofactor matrix A for reference. Let
¢ be a differential operator such as 9y, 9 or D, then

SA] = — ALy, AS . (2.6)
For example, when § = 0,

(AD), = —Alyy A .

3. ESTIMATES FOR VELOCITY, PRESSURE, AND THEIR TIME DERIVATIVES AT
TIME t =0

3.1. Estimates for the initial data. We require estimates for the time derivatives
of the velocity and pressure at t = 0. As in [4], we use wy, wa, go and ¢; to denote
v¢(0), v(0), ¢(0) and ¢ (0), respectively. Following [4], estimates for ¢; can be
obtained by analyzing certain elliptic equations, and estimates for w; are obtained
by letting ¢ = 0 in (1.3a) and (1.3b). The estimates obtained in [4] are density
dependent. In particular, w; and ¢; satisfy

I
1

- 1, -
115+ + llgg 15,4 + ellwr 15— + Zllag 15— < CP(lluol3 ., [T1s) (3.1)

and
_ 1, _
lw [I5 4 + ellwy 15, + llg 11 4 + llay I17,- <CP(luoll3 < ITlis), (3.2)

where P is some polynomial of its variables.
However, in order to obtain e-independent estimates, we require e-independent
bounds for g; and w; . Indeed, we have the following
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PROPOSITION 3.1. Given uf € H3(QY), uy € H*(Q7), and T' € H*®, then

w34 + l[walld + + llgg 113+ + llar [1F 4
1 -2 -2 2 2 (33)
+5 |l ll2.- + llay ||o,_} < CP(Jluoll5,+, [Tlas) -

Proof. We note that the estimates for w;" and ¢ follow from (3.1) and (3.2), so it
suffices to obtain estimates for w; and ¢; . We estimate ¢, first.

Taking the Lagrangian divergence of (1.3b), by the Lagrangian divergence-free
condition A{ v;’ = 0, we obtain

€ [ — Agtv;i — Aglv;iwe + Agwfjv’;l} + Ag(qu;q),j =0.

Using (2.6) and w = A(v™ —;) in the equality above at ¢ = 0, as well as restricting
(1.3b) on 9O~ in the normal direction at ¢t = 0, we find that ¢, satisfies

Agy = —e(Dug)" : (Duy) in Q7 (3.4a)

gij(\)f = —ew; - N —e(wg-Duy)-N on I', (3.4b)

dqy _

87187 = —€(wo - Dugy )- N on JD. (3.4c)
By (1.3e),

wi =N =wi - N+g°(uf, - N)[(uf —ug)-es). (3.5)

Therefore, by elliptic regularity,
lag 1, < O [lluglugd 12 - + lwd - N 5 103 (i, - N) (i = 115) - a3
+|(wo - Dug) - N5 - +1(wo - Dug ) - NI 5 o]
< CEP(luol3 +. ITIE5) - (3.6)

By (3.6) and (1.3b), we also obtain an e-independent estimate for w; :

lwy [13,— < C|llwo - Dug |13 - + G%HQ(?H?W} < OP(|luoll3 = IT13.5)- (3.7)
Similarly, since
wy N =wy - N +2(w] —wy ) ng(0) + (ug —ug) - n4u(0),
by (3.7) we find that
lwy - N‘2—0.5 < C[\w;’ ‘N|2—0.5 + |wi” — w1_|%.5|nt(0)|(2) + Iuo+ - u()_|%.5‘ntt(0)|2—0.5
< CP(HUoH%,ia |F|421.5) :

Hence by considering the elliptic problem for g; (see [4] page 14 or letting ¢t = 0 in
(4.11) for the precise equations), the elliptic regularity implies

lgy [I5,— < Ce*P(|luoll3 +. 713 5) -
Time-differentiating (1.3b) and setting ¢ = 0 then yields the estimate

lwy I3, - < CP(Jluollf VI3 5) - O
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Henceforth, we let My denote a constant depending on |lug|ls+ and |T'|4s5.
Therefore, (3.3) implies

lwall3 + + [lwal5 + + llag 113 +llallf | < Mo. (3.8)

P+ 5 [lag 3

In the later discussion, we also need the lower order estimates for ¢ and wi.
Instead of Proposition 3.1, we have the following

PROPOSITION 3.2. Given uj € H1-5(Q+), ug € H®(Q7), and T € H?, then
||U)1H0 ++llag 17 4+t = 2 HQO Hl _ < CP(J|Juo)?. 5,49 ‘F|3) (3.9)

Proof. The parts [w{ (|3 , and |lgj [|3 , in (3.9) follows from [4] by first solving

Agqt = fua’;ugz in QF,
“Agy = —ug jug ] &,
qar —qy = Hp on I,
dqf  10qy _ _
ﬁ_gﬁ:[(uo—u(‘;) e.890 uOQ—i—(wO'DuO)]-N on I,
P
;7](\)/' = —G(WO . Dua) . N on 8'D,

to obtain that

||QO

lag I < c{nuo]uozum @n) + g [ oss -y + [ Hold 5
+[(ug — “(J)r) €,690 uo ot (Wo - Dug)]- N2 5 +|(wo - Dug ) - NP—O.S,OD}
< CP(luollf 5.4, ITR)

and the estimate for w] follows from the Euler equations. Then we test (3.4a)
against ¢, to find that

o _dq
| Dgy |12 :—/ €Ug U j.qfdx—i—/ —0.4s
0 110, o- 0,7 70,3 40 rUOD o ON

< ellugug? goss s 105 | oy — € / g (wi™ +wo - Dug) - NdS
I

—e/ qp (wo - Dugy ) - NdS
D
< Cs®P([luoli 5,4 IT13) + dllag

where we use (3.5) to estimate w; - N in terms of uF and w)". By Poincaré’s in-
equality, we find that (3.9) holds for ||¢y Hl,— and therefore, by the Euler equations,
for [Jwy [jo,— as well. O

3.2. Basic assumptions on bounds. We assume that we have a sufficiently
smooth solution v, such that on the time interval [0, T,

Int —ell3 <3, | Dn*]3 . <nlQF]2 41,
o117 5.4 < llug 54 +1, o~ 11F5,— <llugllfs- +1,
[loF" ||0 L < wf ||0 ++1, [wil3 5- < 2||W0||%5,7 +1,

v 115, < P(lluoll? 5.+, T13)
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where P is a polynomial of its variable. Verification of these assumptions, except
for ||v; |lo,—, will follow from the fundamental theorem of calculus, once our energy
estimates are completed.

In the following, we allow our generic constant C' to depend on the right-hand
sides of these inequalities. Given the estimate (3.9), the constant C' depends only
on the measure of QF, [|ug||? 5+ and |T'[3.

3.3. The estimates for w = A(v™ — ¢)¢) and w;. By the fundamental theorem
of Calculus,

t
(Ol < 2[lwOls,+ ¢ [ ol as]. (3.10)
Since w = A(v™ — y),
= — Al A" =) + Ao — ) = Al o+ A (o = )

hence
Iwelld - < NAIZ = o) [ IDGel a0 110y + 20107 13 - + lwull3 )] < €
and
Iwel}s,— < C|Ielrs —IWl35,— + o I5,— + lbullds -] < C sup ).
te[0,T)

4. THE e-INDEPENDENT ESTIMATES

4.1. Estimates for the pressure and v - n.

PROPOSITION 4.1. Given E(t) defined in Section 1.5, the solution v* of (1.3) sat-
isfies the following estimate:

} < C sup &(t).

oee - 02054 + g 155, 4 + Il ||1++ [Ilq I35,
t€[0,T]

(4.1)

Proof. The proof consists of four steps.
Step 1 (Estimates for ¢7). Since ¢~ satisfies

Aty =~ + (a5 - A ]
AgAi?q;gNj:e{—vt —wv :|AJN on T.
9Nk = _GW%E N on 9D,

elliptic regularity shows that
1. _ _ _ _
Sl llzs.- SC[HADva 8.5~ + lwDADv™|IF 5 _ + [[AeDv™ |5 5.
+ Jor nily + (v D) -y + (- Do) Nuan)|

We first estimate | ADwDv™ || 5 _. This requires interpolation, so we first estimate
|ADwDv~||§ _ and |[ADwDv~||7 _. It is easy to see that

|ADWDV™ |} - < Al (0 1DW s 1DV 330y < CI0F 13,4 + o™ 15 -]
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and that
ID(ADwDv™) |3 _ < C’{HDADWDU’HS,_ + | AD*>wDu™ |2 _ + HADWD%*H?),_}
< ClIlHIE 4 + o715 -]
hence, by interpolation,
lwDADU 35— < C[IvF 154 + 07135 -] -
Similarly, by interpolation we find that
IwDADv™ |5 - + 14 Dv™ 5.~ < C[lot 1B 50 + 07135 ]
It is also easy to see that |v; - n|y < C|lv; |15 and that
[(w-Dv™)-nff +|(w-Dv™)- N|f 5p < Cllo7 |3
It follows that

1, _
g5 < C sup E(t). (4.2)
€ te[0,T]

Step 2 (Uniform bounds for v - n). Letting w = v;} in (2.2),
vy - ml—0.5 < Clllvitllo+ + 1 A0 e oy | -
By the incompressibility condition (1.3c),
Ajvtt g _(Ag)ttv:;i (Aj)tvt N (4.3)
Let f € HY(QT); then
(ADuvt, Pl = — / (AD) ot fda + / (Vgn') v fdS . (4.4)
Q+ r
Taking the supremum over all f € H'(Q1) with ||f|j1 + = 1, we find that
||(Az)tt”;i”irl(ﬂ+)’ < C[II(Af)ttv 113 (Von)u - 7f+|2—o.5}

< C{(HDU?HiS(Qﬂ + HDU+||%6(Q+))||U ||L6(Q+) + 155 + [0t B .50t 305

<l s + 10713,4] < € sup 2.
€10,

Similarly,

(ADw, Py = - /Q (AD)ywit' f s + /F (Vg )y fS

which implies

||(A] tvt]||H1(9+)’ >

(AD IR 4+ (/g o 2o
1DV sy 1o o sy + 10 Isaqey 107 Moo

|
<]
< C[HU;_H%+ + ||v+||411_/537+||v+||2/3 2/3 4/3
cliwt
C

g e

s U+ I B 11,
sup S(t). (4.5)
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Therefore,

|Av) I3 vy < C sup E() (4.6)
t€[0,T)

and hence

v, ~n|2_0.5 < C sup &(t).
t€[0,T]

The e-independent estimate for v;; -n is obtained using a different argument. By
(1.3e),

Vgy on:v;~n+(v+fv*)ontt+2(v?'ffut_)~nt;
hence
vz -l 05 < C|:|’U:; o5+ 10T —v7) nullos + (v —or ) nelos]
We claim that for any f € H?*(T") and g € H-%3(T),

|fgl-05 < C|fl1.25]9]-0.5 - (4.7)
To see this, note that

|fgl—0s = sup [(fg,®)mosmy| = sup [{(g,fd)mosm)| <|gl-05 sup |[félos-

0.5=1 Flo.s=1 [plo.s=1
It is clear that
|folo < [flpe=(r)|9lo (4.8)

and

[fol =1folo+10f ¢lo+|f I¢lo -
By the embeddings
HO?() ¢ L¥3(1), H*™([T) c L¥(I), H“»(T)c L*(),
we see that
|foli < Clflr.2s]d - (4.9)
Using interpolation between the inequalities (4.8) and (4.9) shows that
|fdlo.s < Clfli2s1él05
which in turn proves the claim.

Thus, using the inequality (4.7), we find that

(0% =07l < O =7 R 1007 s + 107 s < € sup £00).
telo,

Now we turn to the estimate of the last term |(v;" — v;7) - n¢|? 5. By Sobolev’s
embedding,

o 25 < Clof - mul§ < Cllof sy 100 1 La ) < Cllvi |17 410

2

2,+

<[ Wl s+ 10 IR 1071 ] < € sup £
telo,

The estimate for v, -n; is the same and thus v;; -n shares the same H~%?(T") bound
as v;; - n. Therefore

vy - nl? o5+ v 205 < C sup E(1). (4.10)
t€[0,T]
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Step 3 (Estimates for ¢, ). Time-differentiating (1.3b) and taking the La-
grangian divergence of the resulting equation, we find that ¢, satisfies

Ag(Alfq;k),j = *6{14{”;,2 + A{(w%;i)t,j} — A [(Af)tq;ﬁ},j in Q7, (4.11a)
Agqu;kNj =— {evt—ti + 6<W%7)t + (Af)tq’;]AzNj on I', (4.11b)
¢ Nk = —e(wzv;i)tNi on 90D. (4.11c)

The goal is to estimate the H'(£2~)-norm of ¢, . By elliptic regularity, it suffices
to estimate the H!(Q)-norm of the interior forcing, and the H~%®(T")-norm of the

boundary forcing. _
Similar to Step 2, in order to find an e-independent bound for ”Agvt_t,j”ftll(ﬂ—)'?

we need to estimate ||(Ag)tvt_);|\H1(Qf)/. To be more specific, we need to obtain an
e-independent bound for |(\/gn); - v; |—o.5. It suffices to estimate |v; - n|_g.5 and
lvy - me|—o.5. It is clear that

vy '”‘2—0.5 < C sup &(t)
t€[0,T)

and the estimate for v;” - n; is the same as the one for v;" - n; previously used to
establish (4.10); therefore,
14707 2 ey < C sup E(1).
t€[0,T]
We now consider the H'(Q2)-norm of A’ (Wi, ")r.j- Again by (1.3c),
A{(Wev’;i)tyj = Agngvj + Agwfvz + Agwfjvgz (4.12)
- (Ag)twév;z - (Ag)lwgvgf - (Ag)t,ngv;i.

Similar to (4.4),

(A{wfﬂ.v,;i’ D) = —/Q Afo(v;if,j + v;;f)d:z: + . \/gniwfvzifds
- U

:/ wi [(AD) v — Al e + Janiwivgi fds,

- ruoD

where w- N =0 on I and v~ - N = 0 on 9D are used in the second equality to
eliminate the boundary term due to the integration by parts with respect to Dy, ;
hence,

14T w07 3 -y < C[Hthv*HaJr + [we DAD™|[T/5 - + [1We D™ [[7 75
< C sup &(t). (4.13)
te[0,T]
Similarly, all the other terms in the right-hand side of (4.12) share the same H*(~)’
bound, so that

147 (w0 Vel -y < C sup E(1).
t€[0,T]
Next, we estimate the H’O'?(I‘)—norm of the boundary forcing. Because of (4.10),
it suffices to estimate |(Wév’f)mi|,o,5. However, because of (4.13), it suffices to
estimate H(Wev)z)tHo,, and it is easy to see that

lov el - < Ol I3 - + 13 4] < € sup ).
te[0,T)



14 C.H. A. CHENG, D. COUTAND, AND S. SHKOLLER
Combining (4.2) and all the estimates above, we find that for all ¢ € [0, T,

1
7”% (t )”1 _<C sup &(t). (4.14)
€ t€[0,7]

Step 4 (Estimates for ¢" and g¢; ) By studying the Neumann problems
Al(Afqy) 5 = eAloT Ao i QF,

Azquj;Nj = —evt"'iAgNj on T
and
AJ(Akqtk) Ajvttj+AJ[Ak 7 A3q }
= e[2480%7 Az + (Aﬂ)ttv“} + AR AgY] ;i O,
A]Akqt WAV = —evttlAJN A]AquN on I,
we obtain that for ¢t € [0, 7],
lg* (11354 + " (OIF + < C sup £(t). (4.15)
te[0,7)
These 4 steps conclude the proposition. O

4.2. Uniform boundedness of ||v; ||o.—. Having ||g; || _ uniformly bounded in
€, we can prove the last part of the basic assumptions of Section 3.2. By (1.3b),

(3.10), (3.9) and (4.1) we find that

- . c, _
lor 15— < Cllw- Do 5 - + Zlla” I3 -

_ cr, _ b
< Cllwlf 1D s+ [l -+ [ Nl I -]
0

<C+CT sup &(t).
t€[0,T)

Therefore, (3.10), (3.9) and (4.1) imply that [lv; || _ < C+ CT sup &(t) and thus
t€[0,T]
by choosing T small enough, the basic assumptions imply

D913 < + [0l 5+ + lvelld + + 1wl 5 - + lIwellf - < € (4.16)
where C' is the generic constant defined in Section 3.2.
4.3. Estimates for v}, - 9v and v;, - .
PROPOSITION 4.2. Let v¥ be the solution to (1.3). Then

lug - 0| 5+ [vgg - 0|2y 5 < C sup E(t). (4.17)
t€[0,T]

Proof. First, note that since Dy = A™', we have
f,w = ]f_] (4-18)
It follows from (1.3a), (1.3b) and (4.18) that
v s =~ 5A”qtj V(A = —qfs + Alvliqh (4.19a)

_ 1 _ i
v s = — s + EAJ 5 qj fwtv “apls — w vtéz/) (4.19Db)



THE LIMIT AS THE RATIO DENSITY p~/pT — 0 15

AS a consequence,
o162 0.5 + 03 - 51205
Lo 2 2 5,42 1 —2 2
< :2\%,5|—0.5 + \q;,r5|—0.5 + \A|Lw(r)|3v+|L4(r) {g”Dq Zaqry + ||Dq+||L4(F)
+ Wil Za ) DU a0y 007 o (1) + W0 - 0020 5

1, _
< C swp £(0) +Cllo* I3 Sllam 15 - + a1 ]
te[0,T) €

+ C”WtHI,— v~ ||%— + C|W£U;z|2—o.5 .

By interpolation and Young’s inequality,

4/3

1, _ 2/3
(a0 P P A P cuwnl.g,,mvﬂ\ /

L, _4/3 2/3 4/3 2/3
x|l 155 Na™ 1772 + e 155 et I3 ] < € sup £,
€ te[0,7]
and the same upper bound holds for ||w¢||7 _|lo~|[3 _. For the last term, since

w-N =0onTI and with the identity w = (w- N)N + gg"@(w e q)e, we find that

Wi, = (we N)Nv, + g7 (wea)v e’ = 90" (W ea)vy 4

hence
[w ’Utz| 05 < Clovy 205 < C sup E(1).
t€[0,T]
(4.17) then follows from summing all the estimates above. O

4.4. The e-independent energy estimates. It remains to establish the esti-
mates for Ov- N, dv; - N and dnT - N.

THEOREM 4.1. The solution vt to (1.3) satisfies the following estimate:
i (IR 4+ el (1 +1900)- N +100(0) - N5+ 10" 1) - V]
€10,

< CsMo+06 sup E(t) + CsTP( sup £(1)). (4.20)
t€[0,7] t€[0,7]

Proof. We first derive the estimate
sup [l (I3« + ellois DI - + 1Bue(t) - N3 1
te[0,T]

< CsMp+6 sup E(t)+CsTP( sup E()).
te[0,T] te[0,T]

Twice time-differentiating (1.3a) and (1.3b) and testing the resulting equations
against v, and vy, , respectively, we find that

Ld [H || + T el H ] + / [W] " 2wlu 4w ‘d
v €l|lv € v v, o o tde
9 q¢ | Petllo, tt 110, o it tVt,j tt] tt

(4.21)
+/ (AJ +)tt’l}ttld$ + / (qu;)ttvt?dx =0.
Q+

1
First, note that v;tljvtt = f(|vtt\2)7j7 so that

S 1
Joy—1 ,—1 _ = : 2
/Qi Wy vgy de = 5| div wvg|“d.
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Second, using (4.3), we obtain that
/ (A] +) wdr = —/ (A{q )tvttjdx—f—/(quﬁ-) InA N ds
Q+ Q+ r
= — /+ [(Az)ttq+ + 2(A‘Z)tqt ]Utt]dw + /+ q;’; |:(A'])tt1}+l + 2(14.])1:’Ut‘7 d‘r
Q Q
+/(A‘ZQ+N )ttvtt ‘s
r

with a similar identity for the term |, (qug)ttvt;idx. Using these identities, (4.21)
implies that

1d € _ -
2dt{ ] - 5/97 leW|“tt‘2d$+6/Qi [w{tv —&-tht]}vtt dx

- / ) [(Az‘)uw 26Dt Joiydn = [ (D™ + 24 oo

+/ [(AJ)ttUJrz+2(Ai)tvt]]qttdaz+/
O+

+ [N 0 = g vds+ [ (Al Nt = v)as =o.
r r

O J

[(Aﬂ)ttv + 2(A] )tvtj]qttdac

Henceforth, R denotes lower-order remainder terms that can be easily shown to
verify the estimate

t
‘/ Rds‘ < Mo+ CTP( sup £(1)).

0 t€[0,T]

With this notation, the equality above is rewritten as

1d
2.dt

Step 1 (Estimates for the surface tension term O). By the boundary condi-
tion (1.3d),

[l 13 4 + ellell3-] + O +1+3 + R =0.

/[AgNj(q+ — q_)]ttv;de = /[@Hnj]ttv;gjds.
r r

Since the metric g and H are computed from ™ whose time derivatives only involve
OFvt (which is bounded by £(t)), exactly following (12.6) in [6] we find that

1 «
3 [ Vas ot s

t . .
< / /[AgNj(qu —q7)uvi'dSds + Mo + CTP( sup E(t)). (4.22)
o Jr

t€[0,T]

Step 2 (The estimates for error term I) Let I = I; +1I5+ I3+ 14, the summands
representing the four integrals contained in I:

Il = —/ [(Az)ttq+ + 2(Ag)tqt }Utt de? 12 = —/
Q+

O
I; = /+ [(Ag)ttvf;i + 2(A])tvtj}qttdx Iy :/ [(Aj)ttv +2(A )tvt]]qttdm
Q Q

[(Af)ttq‘ + 2(Ag)tqt_}v1;,ijdx7
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Integrating by parts in D, and using the fact that (Az ),; = 0 removing the higher

order term [(Af )et),; which otherwise would have been problematic for our frame-
work, it is easy to see that

< CTP( sup E(t)).
t€[0,T)

t
0

Next, we estimate I4; the estimate for Is will follow in the same fashion. Integrating
by parts in time, the most problematic terms to estimate are denoted by

t t _ '
Iy :/ / Aﬁ;w:tt)sAfqut_d:vds and Iy :/ / (A7)rvg; 5y dads .
0 Jo- 0 Jo-

The same as the estimates for I; and Iy, integrating by parts with respect to D,
for I4; and D, for 142, we find that

‘/Ot(m + Lp)ds| < CTP( sup E(1))

te[0,T)

so that

t
’/ Ids‘ < Mo+ CTP( sup £(1)),
0

te[0,T)

where My comes from the temporal boundary terms appearing when integrating
by parts in time for I3 and I4.
Step 3 (The estimates for the error term J) Since AT N = /gn, we find that

J= / (V30 e — vig) - ndS +2 / (V3a™ )er - (v — viy1)dS
IN IN
J1 J2
+ / \/§q_(vt+t - U;) “nudS .
N

Js

The estimates for J;: by the boundary condition (1.3e),

(v —v) n= (v —v") ng + 20, —vf) - ny
= (" —v7) - ¥5lg"° (v, - n) + 2w = vy) - ¥ slg70 (v - m)
+ P (0, Ov ) (v — 7). (4.23)
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Time integrating J; and integrating by parts in time, we find that

[ s = [ [ - v;t)-nds} 0= [ (Var O] — ;) Nas

-/ t [ Bl =) bal(wi - wdsds (= 3)
=1 t [ WA gt =) vt - mdsds
—2 / t / (V99 )19’ (v — vig) - 5] (v}, -n)dSds (= Jra)
/ / VEa)e[Pis (00, 0) B0 + Py (9, 00™)| (v —v9)dSds

¢
= J10+J11+J12—/(\/gjq_)t(o)(w;—wg)~NdS+/ Rds .
r 0

By (4.17),
|J12] < CTP( sup &(t)),

te[0,T
so we only need to estimate J1g and Jq7.
For the temporal boundary term Jq¢, using (4.23), the fundamental theorem of
calculus, and interpolation, we find that

;= +CTP( sup £(t))
te[0,T]

< Csllof 15 + o |l I3 5 + e 13 ] +CTP(tS[%pT]5(t))
€10,

< Cs+CTP( sup E(t))+d sup E(1).

te[0,T] te[0,T]

As for Jq1, integrating by parts with respect to 57,
t
= / /(\/@J—)mgw[(fr —v7) - Ysl(vf; -n)dSds (= Jin)

/ [ wanlp )(U+uw>+p<g¢,av)}@;.n)des

/ / VIa ) PG(09)0% ) (v — v ) (v - a)dSds

By H?5(I')-H~%5(I") duality, we find that J;12 is bounded by CTP( sup &(t)).
t€(0,T7

= J112 .

For the term Jq11, we add and subtract ¢ to obtain

Ji1 7/ / —q )9 [( T —w7) 'w,é](”:; n)dSds
Jr/o /F(\/§q+)mgv§[(v+ —v7) - s)(vg - n)dSds
= [ [ [Wasva)s-n],_aol6" =) bal(ei - mdsds (= Tun)
+/0 /F(\/§q+)t,v976[(v+ —v7) - Ys)(vf; - n)dSds (= Ji112) -
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In order to study the term Ji111, we integrate by parts with respect to 5,y and
then in time (to move one time derivative from v;; - n) and find that the most
challenging term to estimate is

/ J[aso0a) ] 7wt =) vl ) dSds.
Since
(V39" %.0) 8 - e = (V90 0) 8- n+ /39" g (v, - 1.6) (0 - 0)
—\/ﬁ[ga”gﬂ‘;(vifv-w,aJrvt,g'w )+ 9™ (vl - n)(WE )| (Y- )
PLHOY, 0vH)0* Yt + POy, 0vT)9*v T,

the most difficult term to estimate after integrating by parts with respect to 5g is

//\fgaﬂ 76 _)-w,a](via-n)(v;’rﬁ~n)ﬁd5ds.

Now by

(03 1 « 1 «
OOy I A Y (o] B P I (oD I CoPRE O
2 vy 2

integrating by parts implies that the above integral is bounded by CTP( sup £(¢)).
t€[0,T]
Therefore,

[Ji111] < Mo + CTP( sup E(t Jr’/ VIH) g [( Uﬁ)'%d](”?‘”)md*g )

te[0,T]

K1
where M and the term K; arises from the temporal boundary term when integrat-
ing by parts in time for J1111. However, similar to the estimate of Jy(, the temporal
boundary term K; can be estimated as

Ki| < Cllo* 25,4107 15,4+ + CTP( sup E(t))
t€[0,T]

< Callo* 18,1+ 31014 + 107 I . + CTP( sup £)
€10,

<Cs5+0 sup E(t)+CTP( sup £(1)).
t€[0,T] t€[0,T]

As for Jq112, by the divergence theorem, since Al vtt i is a lower order term thanks
to incompressibility, we find that

t
1
Ji112 Z/ / X*(\/§Q+)t,wj976[(v+ —v7) '¢,6]Ajvtt dxds
o Ju V9
Ko

// )erg [0 —v7) 1 Al vyl dads
* —q° +_v7). J o, _
+/0 /u(\/gq )ty X\/gg (VT —v7) -] ’jA v dxds = K2+/ Rds

where x is a smooth cut-off function supported around I' with x = 1 on I', and
with the support of y taken sufficiently close to I' so that the tangential derivatives
are well-defined. We set

U = supp(x) N Q7.
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To estimate Ko, the structure of the Euler equations has to be used. In fact,

’Kg-i-/ /tht,yg —v7) - sluideds | < CTP( sup E(1)).

t€[0,T]

Ks

where we use the identity
~(VIu Ve = (VIATG) )1 = ALVIT )1 — (AD(VITY) 1 — (A]) 1 (VI05):
1 )
to replace ﬁAg(\/gq+)t,vj in Ky by v’ in K.

It then suffices to estimate K3z to complete the estimate of J;. However, since

2v;§lﬂ{vtt = (|v;f|?) 4, integrating by parts with respect to 0, implies that Kj is
bounded by CTP( sup &E(t)).
te[0,T)
Therefore, combining all the estimates above we find that
t
]/ Juds| < (Cs + Mo) + OTP( sup £(1))+0 sup £().  (4.24)
0 te[0,7T] t€[0,T]

The estimates for Jg: we first note that by (4.19),
1 - iy o
(vie — v) - Y5 = qt 5 q:,_g + AZU}’(qu —q;)+ vafwfg + Wzvtjz/)fé . (4.25)

Therefore, by ny = —¢?° (v} - n)i 5 and (4.25), we find that
_ 1 _ i 4l _
- /F(\/gq )tgn/é(v,t “n) [;qt,a - q:,ra + Aivfs (gqﬁ - q7j):|dS
- / (V34 )eg" (W - m) [whvgls + whojuls s

It is easy to see that the second integral is bounded by CeP( sup E£(t)) (the pres-
t€[0,7]

ence of ¢ is due to the estimate of (,/g9¢™)¢). The most problematic term of the first
integral is when the time derivative acts on ¢ and in this case, by H®-5(I')-H ~%-5(T")
duality, (4.2), (4.14) and (4.15) imply that

_ 1 _ i il _
| a0 o wh [y — s + AL~ )] d8] < CeP( swp £
r € € t€[0,1]
Therefore,
t
/ Jods < CeT'P( sup &(t)). (4.26)
0 t€[0,T]
The estimates for J;: by (4.25) we find that
Jy =~ / ¢ V39" (vl - m)[(v — vgp) - 5dS + / Pi(0, 00" )q™ (vf' —vy")dS
r

T

_ 1 _ _ | _
f/F\/Eg”‘sq (vifv-n)(gqt,(;fqiﬁg)dsf/rx/ég”‘sq (v, - n)AJv S (=g, — q;;)dS

€

Ky
,/\/ggv5q*(v:7.n)[wfv?q/;f5+wv Js) dSJr/P (O, 0v M) g™ (v} — v;")dS
r
=—Ks+R.
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Before estimating K4, we first note that by the divergence theorem,

/ V9970 (v, - n)g5dS = / g g (v AIN;)gq;fsdS
T

:/ Xq_gwAJvt 4, 5]d$ + / Xq gngjvtﬂmqt,édx + / (xq~ 976),JAJ” ~ 4 5dw
u
We then follow the estimate of J;112 and obtain the inequality

‘/xq‘g”‘sAJvt a7 deai—&—/ Xq g”gv;r;vtt 5dx‘ < CeP( sup E(1)).
u te[0,T]

By interpolating v;" € H'(Q%) between L?(QF) and H'5(Q1),

| [ s ariutiotide] < Cla oo o Twsogan o7 .

< Cse[ Mo +T sup €]l 11R 1+ edllvi |5

t€[0,T)
< C’ge{/\/lo + T sup E(t)} +ed sup E(t). (4.27)
t€[0,T7] t€[0,T]
Therefore,
t
‘/ /F\/@(f*‘sq_(v;f7 . n)q:’r(;des‘
0
< eMo+ CeTP( sup E(t H/ Xq g'y‘svﬁyvt Zdav}( )‘
te[0,T)
< CseMo + CseTP( sup E(t)) +€b sup E(¢). (4.28)
te[0,T] te[0,7

It remains to estimate — / fg'*‘sq (v;fv . n)qt_ﬁdS’. By adding and subtracting ¢,
using (1.3d) and (4.28) we find that

¢
; /F\/gg"‘;q_(v;:7 . n)qtfédes

1 [t ) .
:E’ / / Va9 q” (v, n)(g —q++q+)t,5dscz5’
o Jr
< CsMo+ CsTP( sup (1)) +6 sup E(t)

te[0,7] t€[0,7]
1
6 — «
99"°q" (v, - n) \/g(\/gg Ph o) s nLédes’ .

As for the last term, since ¢, - n = 0, the most problematic term appears when
the time derivative hits v ,. Integrating by parts with respect to dg for that term,
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we obtain that
1

[ vt i n|

Z—/x/ﬁgaﬁg”‘sf(vfm 1)V 'n)d5+/5Q‘(5vt+ -n)P(9y)d*v*dS
r r

(VA" a)p-m|  dS

t,6

+ / (vt - nYPy(@u, vt )FpidS
I

+ [ 0u - m) [PY(00, 0010 + P00 0055 as
10 af yo — + o+
== 3% 1“\/gg 97 v Vs TR

Consequently,

%‘ /Ot /F ﬁg”éqi(viv n) [\}g(ﬁgaﬁw’a)ﬂ .n}tﬁdeS’

< CsMo+ CsTP( sup E(t)) + 6 sup E(¢)
te[0,T] te[0,T]

+ 2| [ vt @iy s, -nas] o)

Similar to (4.27), we find that

[ vara i me, -was] o)

< Cy [M0+T73( sup 5(15))} 46 sup E(1).
te[0,T] te[0,T

The estimate of J3 then follows from combining the above estimates:

¢
’/ Jgds‘ < CsMo+ CsTP( sup E(t)) +9 sup E(t). (4.29)
0 te[0,T] te[0,T]

Combining (4.22), (4.24), (4.26) and (4.29), we find that
15,4+ + ellvi (W15 - + 10v] (¢) ~n(t)\g]

< CsMo+ 9 sup E(t) + CsTP( sup E(t)).
te[0,T] te[0,T]

sup_ {7 (1)
t€[0,T]

It follows that

sup (5 (I3 + + elloi (DI - + 19wu(t) - NI 1]
telo.1] (4.30)
< CsMo+06 sup E(t) + CsTP( sup E(t))
te[0,T] te[0,T]

t
by the jump condition v+ - n = v~ - n and the fact that n(t) = N +/ ngds .
0

Step 4 (Estimates for [0v- N|; 5+ and |OnT - N|3).
Our goal is to establish an inequality of the type

sup E(t) < CsMy+ 6 sup E(t) + CsP( sup E(t))
t€[0,T) t€[0,T] t€[0,T]
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with e-independent Cs. By (2.4), we only need (4.30), (4.31) and (4.32) to ensure
the e-independence of Cs. The real difficult part is estimate (4.30) which we prove
in details. Following the proof of (12.33) and (12.34) in [6], by defining

k
Ex(t) =109 - NIF+ > 10031504
=0

the proof in [6] implies

0v- N3 5+ < CsMo + 6E1(t) + CsP( sup &Ei(t)),

te[0,T]
|0y - N|3 < Cs Mg + 6E(t) + CsP( sup Ey(t)) -
t€[0,T]
Since & (t) < E(t), we obtain that
sup [0v(t) - N[i5 . < CsMo+6 sup E(t) + CsTP( sup E(1)). (4.31)
t€[0,T] t€[0,T] t€[0,T]
and
sup |0Y(t) - N|3 < CsMo+ 6 sup E(t) + CsTP( sup E()). (4.32)
te[0,T] te[0,T] te[0,T]
Estimates (4.30)—(4.32) then conclude Theorem 4.1. O

4.5. A uniform bound for £(t). Using (2.3), combining estimates (2.4) and
(4.30)—(4.32), we find that for all ¢ € [0, T,

Et) < Mo+ CTP( sup £(1)).
te[0,T)

This is the polynomial inequality (2.5) that we had sought. It follows that by taking
T > 0 sufficiently small,

sup £(t) <2My. (4.33)
t€[0,T]
Finally, choose T' > 0 even smaller so that the fundamental theorem of calculus
ensures that the basic assumptions of Section 3.2 are satisfied.

5. THE LIMIT AS € — 0

Having established our e-independent estimate (4.33), we can now pass to the
limit as € — 0, and show that we recover the solutions of the one-phase Euler
equations (1.4).

Let ¢ € C*(R") so that ¢ - N = 0 on 9D. Testing (1.3) against ¢, since ¢ is
continuous across I', we find that

/ vi“widx—/ cﬁAiﬂpfwlx+/(q+ — ¢ )A; Npp'dS
o+ o+ r

(5.1)
+ e/ vy folde + 6/ ij;igpidx —/ qufgpfkdac =0.
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Note that v+, v™, ¢7 and ¢~ above depend on € implicitly. Our a priori bound
(4.33) allows us to find sequences, still parameterized by ¢, such that € — 0,

v —v, in L*(0,T; H'S(Q1)), (5.2a)
vt =0 in  L*(0,T; H*(Q1)), (5.2b)
vt = in  L*(0,T; H*(Q)), (5.2¢)
" —q in  L*(0,T; H*5(QT)). (5.2d)

t
Let ¢ = e+/ vds. By (5.2b), v — ¥ in L*(0,T; H>(Q7F)); hence A — A :=
0

(D)~ in L0, T; H'(Q1)) and Agyp — Agep in L®(0,T; HO5(T)) with Jas =
.o - 9 g because of (5.2¢). Therefore, by (1.3d), (5.1) converges to

/ vjp'de — / q Al dr + / HAFNpp'dS =0,
Qt+ O+ ’ r
where H = —Az% - 7i. This shows that U = vot~! and P = qo " solve (1.4).
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