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We prove that, under fairly general conditions, a properly rescaled de-
terminantal random point field converges to a generalized Gaussian random
process.

1. Introduction and formulation of results. Let E be a locally compact
Hausdorff space satisfying the second axiom of countability, B—σ -algebra of
Borel subsets and µ a σ -finite measure on (E,B), such that µ(K) < ∞ for any
compact K ⊂E. We denote by X the space of locally finite configurations of par-
ticles in E: X = {ξ = (xi)

∞
i=−∞ :xi ∈E ∀i, and for any compact K ⊂ E #K(ξ) :=

#(xi :xi ∈K) <+∞}. A σ -algebra F of measurable subsets of X is generated by
the cylinder sets CB

n = {ξ ∈X : #B(ξ)= n}, where B is a Borel set with a compact
closure and n ∈ Z1+ = {0,1,2, . . .}. Let P be a probability measure on (X,F ).
A triple (X,F ,P ) is called a random point field (process) (see [4, 17–19]). In this
paper we will be interested in a special class of random point fields called deter-
minantal random point fields. It should be noted that most, if not all the important
examples of determinantal point fields arise when E =∐k

i=1 Ei (here we use the
notation

∐
for the disjoint union), Ei

∼= Rd or Zd and µ is either the Lebegue or
the counting measure. We will, however, develop our results in the general setting
(our arguments will not require significant changes).

Let dxi, i = 1, . . . , n, be disjoint infinitesimally small subsets around the xi’s.
Suppose that a probability to find a particle in each dxi (with no restrictions outside
of
∐n

i=1 dxi) is proportional to
∏n

i=1 µ(dxi), that is,

P
(
#(dxi)= 1, i = 1, . . . , n

)= ρn(x1, . . . , xn)µ(dx1) · · ·µ(dxn).(1)

The function ρn(x1, . . . , xn) is then called the n-point correlation function. The
equivalent definition is given by the equalities

E

m∏
i=1

(#Bi
)!

(#Bi
− ni)! =

∫
B

n1
1 ×···×B

nm
m

ρn(x1, . . . , xn) dµ(x1) · · ·dµ(xn)

where B1, . . . ,Bm are disjoint Borel sets with compact closures, m ≥ 1,
ni ≥ 1, i = 1, . . . ,m, n1 + · · · + nm = n.
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A random point field is called determinantal if

ρn(x1, . . . , xn)= det
(
K(xi, xj )

)
1≤i,j≤n

,(2)

where K(x,y) is a kernel of an integral operator K: L2(E,dµ)→ L2(E,dµ) and
K(x,y) satisfies some natural regularity conditions discussed below. Such a kernel
K(x,y) is called a correlation kernel.

It follows from (2) and the nonnegativity of the n-point correlation functions
that K must have nonnegative minors, and in particular if K is Hermitian it must
be a nonnegative operator. In this paper we shall always restrict ourselves to the
Hermitian case.

Determinantal (also known as fermion) random point fields were introduced by
Macchi in the early seventies (see [21, 22, 4]). A recent survey of the subject with
applications to random matrix theory, statistical mechanics, quantum mechanics,
probability theory and representation theory is given in [26]. Diaconis and Evans
in [6] introduced a generalization of determinantial random point processes, called
immanantal point processes.

Let K be a Hermitian, locally trace class, integral operator on L2(E,dµ). Sup-
pose that we can choose a kernel K(x,y) in such a way that for any Borel set B
with compact closure

Tr (KXB)=
∫
B

K(x, x) dx,(3)

where XB denotes the multiplication operator by the indicator of B (≡projector
on the subspace of the functions supported in B).

Since it is always true that

Tr (KXB1 · · ·KXBn)

(3′)
=
∫
B1×···×Bn

K(x1, x2)K(x2, x3) · · ·K(xn, x1) dµ(x1) · · ·dµ(xn)

for n > 1 and Borel sets B1, . . . ,Bn with compact closure, (3) implies that (3′)
holds for all n.

Equation (3) can always be achieved for E = Rd (see, e.g., [26], Lemmas 1, 2).
From now on we will assume that both (2) and (3) are satisfied.

The main goal of our paper is to study the behavior of linear statistics

Sf (ξ)=
∑
i

f (xi), ξ = (xi),

for sufficiently “nice” test functions in a scaling limit. The moments of Sf can be
calculated from (2). For instance,

ESf =
∫

f (x)K(x, x) dµ(x),(4)

VarSf =
∫

f 2(x)K(x, x) dµ(x)−
∫

f (x)f (y)|K(x,y)|2 dµ(x) dµ(y).(5)
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Taking E = R1 and K(x,y) = sinπ(x − y)/π(x − y), a so-called sine kernel,
we obtain a random point field well known in the theory of random matrices. It
can be viewed as a limit n → ∞ of the distribution of the appropriately scaled
eigenvalues of n× n random Hermitian matrices with Gaussian entries (see, e.g.,
[5], Chapter 5). It was proven by Spohn in [29] (see also [27]), that if K is
the sine kernel and a test function f is sufficiently smooth and fast decaying
at infinity, then

∑∞
i=−∞ f (

xi
L
) − L

∫∞
−∞ f (x) dx converges in distribution to the

normal law N(0,
∫∞
−∞ |f̂ (k)|2 · |k|dk), where f̂ is the Fourier transform of f ,

f̂ (k) = ∫∞
−∞ f (x)e−2πikx dx. In other words we can say that the random signed

measure

∞∑
i=−∞

δ

(
x − xi

L

)
−Ldx

converges as L→∞ to the generalized self-similar Gaussian random process with
the spectral density |k| (see, e.g., [9, 10], Section 3, [25] and, for the introduction to
the theory of generalized random processes, [11]). The fact that the variance of the
linear statistics

∑∞
i=−∞ f (

xi
L
) does not grow to infinity for Schwarz functions is

the manifestation of the strong repulsiveness of the distribution of the eigenvalues
of random matrices. Similar results for other ensembles of random matrices have
been obtained in [8, 13, 14, 1, 2, 27, 31, 7]. The kernels appearing in these ensem-
bles are, in some respect, very much like the sine kernel. In particular, the variance
of the number of particles in an interval grows as a logarithm of the mathematical
expectation of the number of particles. The following result was established by
Costin and Lebowitz for the sine kernel [3]: let f be an indicator of an interval,
f = XI , I = (a, b), then

E

∞∑
i=−∞

f (xi/L)=E
(
#(xi :aL < xi < bL)

)= L(b− a),

Var

( ∞∑
i=−∞

f (xi/L)

)
= 1

π2
logL+O(1)

and

#(xi :aL < xi < bL)−L(b− a)√
(1/π2) logL

converges in distribution as L →∞ to the normal law N(0,1). The proof of the
Costin–Lebowitz theorem holds, quite remarkably, for arbitrary determinantal ran-
dom point fields with Hermitian kernel.
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THEOREM [28]. Let (X,F ,PL), L≥ 0, be a family of determinantal random
point fields with Hermitian locally trace class kernels KL and {IL}L≥0 be a family
of Borel subsets of E with compact closure. Then if VarL(#(xi :xi ∈ IL)) →

L→∞
∞,

the normalized random variable (#(xi :xi ∈ IL) − EL#IL)/
√

VarL #IL converges
in distribution to N(0,1).

Here and below we denote by EL,VarL the mathematical expectation and the
variance with respect to PL. One can also establish a similar result for the step
functions (finite linear combinations of indicators).

THEOREM. Let (X,F ,PL) be a family of determinantal random point fields
with Hermitian locally trace class kernels KL and {I (1)

L , . . . , I
(k)
L }L≥0 be a family

of Borel subsets of E, disjoint for any fixed L, with compact closure. Then if for
some α1, . . . , αk ∈ R1, the variance of the linear statistics

∑∞
i=−∞ fL(xi) with

fL(x) =∑k
j=1 αj · X

I
(j)
L

(x), grows to infinity in such a way that VarL(#I
(j)
L

) =
O(VarL(

∑∞
i=−∞ fL(xi))) for any 1 ≤ j ≤ k, the central limit theorem holds:∑k

j=1 α
(L)
j · #

I
(j)
L

−EL

(∑k
j=1 αj · #

I
(j)
L

)
√

VarL
(∑k

j=1 αj · #
I
(j)
L

) w−→N(0,1).

REMARK 1. We use standard notation f = O(g) and f = o(g) when f/g

stays bounded or f/g → 0.

REMARK 2. The last theorem has been explicitly stated in [28] only in the
special case of the Airy and Bessel kernels and the kernels arising in the classical
compact groups (see Theorems 1, 2, 4, 6); however, the key Lemmas 7 and 8
proven there allow rather straightforward generalization to the case of an arbitrary
Hermitian kernel. A result close to our Theorem 6 from [28] was also established
by K. Wieand [31].

We recall that a Hermitian kernel K(x,y) defines a determinantal random point
field if and only if the integral operator K is nonnegative and bounded from above
by the identity

0 ≤K ≤ Id(6)

([26], Theorem 3). For the translation-invariant kernels K(x − y) and E = Rd or
Zd this is equivalent to 0 ≤ K̂(t)≤ 1, where

K(x)=
∫

e2πi(x·t)K̂(t) dt.(7)

The sine kernel K(x − y)= sinπ(x − y)/π(x − y) corresponds to

K̂(t)= X[−1/2,1/2](t),
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the indicator of [−1/2,1/2]. It might be worth noting and actually is not very
difficult to see, that the logarithmic rate of the growth of Var(#(xi : |xi| ≤ L)) for
the sine kernel is the slowest among all translation-invariant kernels correspond-
ing to projectors, K̂ = XB , for which inf(B) and sup(B) are the density points
of B . For the generic translation-invariant kernel K(x − y) (K̂ is not an indica-
tor) Var(#(xi : |xi | ≤ L)) is proportional to Vol(xi : |xi | ≤ L) ∼ E(#(xi : |xi | ≤ L))

([26], Section 3).
In our main result we prove CLT for the linear statistics when the variance grows

faster than some arbitrary small, but fixed, power of the mathematical expectation.

THEOREM 1. Let (X,F ,PL), L ≥ 0, be a family of determinantal random
point fields with Hermitian correlation kernels KL. Suppose that fL,L ≥ 0, are
bounded measurable functions with precompact support [i.e., sup(fL) has a com-
pact closure for any L≥ 0], such that

VarL SfL
→∞ as L→∞(8)

and

sup |fL(x)| = o(VarL)
ε, ELS|f |L =O

(
(VarL SfL

)δ
)
,(9)

for any ε > 0 and some δ > 0. Then the normalized linear statistics
SfL

−ELSfL√
VarL SfLconverges in distribution to the standard normal law N(0,1).

As a very important special case of Theorem 1 one can consider fL(x) :=
f (TLx), where {TL}, L ∈ R1+, is a one-parameter family of measurable trans-
formations TL: E →E such that T −1

L D has compact closure for any compact D.
If for a sufficiently rich class of test functions f (e.g., continuous functions with
compact support) (8), (9) are satisfied, and the rate of the growth of VarL(SfL

) is
the same,

VarL(SfL
)= B(f ) · VL · (1 + o(1)

)
,

where B(f ) is some functional on a space of test functions, Theorem 1 implies
that the random signed measure

V
−1/2
L

( ∞∑
i=−∞

δ(x − TLxi)− TL

(
KL(x, x) dµ(x)

))

converges as L → ∞ to the generalized Gaussian process with the correlation
functional B(f,f ) = B(f ) [we denote by TL(KL(x, x) dµ(x)) the image of the
measure KL(x, x) dµ(x) under TL].

Let us consider a Euclidean one-particle space E = Rd , a one-parameter family
of dilations

TL: Rd → Rd, TLx = x/L,
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and a correlation kernel

KL(x, y)=AL(x − y)+RL(x, y),(10)

where

|RL(x, y)| ≤Q(xabs + yabs),(11)

xabs = (|x1|, . . . , |xd |), Q ∈ L2(Rd+)∩L∞(Rd+). It follows from (6), (10) and (11)
that 0 ≤ AL ≤ Id, which implies 0 ≤ ÂL(k)≤ 1, 0 ≤ ∫

Rd ÂL(k)− (ÂL(k))
2 dk =

AL(0)−
∫

Rd |AL(x)|2 dx =: σ 2
L, and σL = 0 if and only if ÂL is an indicator.

THEOREM 2. Let the kernel KL satisfy (10), (11) and there exist constants
const, σ > 0 and κL →∞ as L→∞ such that

σL → σ as L→∞, |AL(0)|< const

and ∫
|x|>L/κL

|AL(x)|2 dx → 0.

Then for any real-valued function f ∈ L1(Rd) ∩ L2(Rd) the normalized linear
statistics

1

Ld/2σ

( ∞∑
i=−∞

f

(
xi

L

)
−AL(0) ·L

∫
Rd

f (x) dx

)

converges in distribution to the Gaussian random variable N(0,
∫
Rd (f (x))2 dx).

REMARK 3. Theorem 2 says that under the stated conditions the random
signed measure

1

Ld/2σ

( ∞∑
i=−∞

δ

(
x − xi

L

)
−AL(0) ·Ldx

)

converges to the white noise as L→∞ (for the definition of the white noise; see,
e.g., [12]). Similar results hold in the discrete case.

Let us now restrict our attention to the translation-invariant kernels K(x,y) =
A(x − y). We will use the notation

m(λ) :=
∫

Â(k)− Â(k)Â(k − λ)dk.

Observe that σ 2 =m(0) and

Var

( ∞∑
i=−∞

f (xi)

)
=
∫

|f̂ (λ)|2m(λ)dλ.(12)
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In particular

Var
(
#[−L,L]d

)= Vol
([−L,L]d) · (m(0)+ o(1)

)
.(13)

It follows from (12) that the rate of the growth of the variance of SfL
depends

on the asymptotics of m(λ) near the origin. In the next theorem we consider the
degenerate case σ 2 = 0 in one dimension.

THEOREM 3. Let K(x,y)=A(x− y) be a translation-invariant kernel in R1

and m(λ) = |λ|αϕ(λ), where ϕ(λ) is a slowly varying function at the origin and
0 < α < 1. Then for any Schwarz function f :ESfL

= LA(0)
∫
f (x) dx,

VarSfL
=L1−αϕ(L−1)

∫ |f̂ (k)|2|k|α dk(1 + o(1)), and

SfL
−ESfL

(L1−αϕ(L−1))1/2

converges in distribution to N(0,
∫ |f̂ (k)|2|k|α dk).

REMARK 5. We recall that ϕ(λ) ≥ 0 is slowly varying at the origin if
limλ→0

ϕ(aλ)
ϕ(λ)

= 1 for any a �= 0 (see [24]).

REMARK 6. The result of Theorem 3 can be interpreted as the convergence in
distribution of the random signed measure

(
L1−αϕ(L−1)

)−1/2
(∑

δ

(
x − xi

L

)
−A(0)Ldx

)
to the self-similar (also called automodel in the Russian literature) generalized
Gaussian random process with the spectral density |k|α, 0 < α < 1. Self-similarity
means that the distribution of the process is invariant under the action of the
renorm-group ξ(x)→ ξ(ax)aγ , γ = (1+α)/2. The self-similar generalized Gaus-
sian random process corresponding to α = 0 is exactly the white noise (see Re-
mark 3 above). It was proven by Dobrushin that the only self-similar random
processes in R1 are the ones with the spectral density |k|α, 0 ≤ α ≤ 1. A self-
similar generalized random process with the spectral density |k| appeared in the
Spohn’s results [29] discussed above after the formulas (4), (5) (see also
[13, 1, 27]). For additional information on self-similar random processes we re-
fer the reader to [9, 10, 25].

EXAMPLE. Let Â be the indicator of
∐

n≥1[n,n+n−β ], β > 1. Then m(λ)=
const ·|λ|1−1/β(1 + o(1)). On the other hand, if the length ln of the nth interval
[n,n + ln] decays sufficiently fast, say 0 ≤ ln+1 ≤ l1+ε

n , ε > 0 , than m(λ) is not
regularly varying at the origin.

Finally we consider the case when Â is the indicator of a union of 1 ≤ 8 < ∞
disjoint intervals. It is straightforward to see that then m(λ)= 8|λ| near the origin.
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THEOREM 4. Let Â be the indicator of I , I =∐8
i=1[ai, bi], a1 < b1 < a2 <

b2 < · · · < a8 < b8. Then for any Schwarz function f,
∑∞

i=−∞ f
(
xi
L

)− A(0) ·L∫∞
−∞ f (x) dx converges in distribution to N(0, 8 · ∫∞

−∞ |f̂ (k)|2|k|dk).

The proofs of Theorems 1–3 will be given in the next three sections. The proof
of Theorem 4 is the same, modulo trivial alterations, as the one given for the sine
kernel in [27].

2. Proof of Theorem 1. We are going to prove Theorem 1 by the method of
moments. Let us denote by Cn(Sf ) the nth cumulant of Sf . We remind the reader
that for a random variable η with all finite moments, the cumulants Cn(η), n =
1,2, . . . , are defined through the Taylor coefficients of the logarithm of the char-
acteristic function:

logE
(
exp(itη)

)= ∞∑
n=1

Cn(η)(it)
n/n!.

We show that the nth cumulant of the normalized linear statistics (SfL
−ESfL

)/

(VarSfL
)1/2 converges to zero as L→∞ for sufficiently large n (n > max(2δ,2)).

The Lemma 3 from the Appendix then asserts that all cumulants of (SfL
−ESfL

)/

(VarSfL
)1/2 converge to the cumulants of the standard normal distribution, which

implies the weak convergence.
We recall the lemma established in [27] [see formula (2.7)].

LEMMA 1.

Cn(Sf )=
n∑

m=1

∑
(n1,...,nm) : n1+···+nm=n,

n1≥1, i=1,...,m

(−1)m−1

m

n!
n1! · · ·nm!

(14)

×
∫

f n1(x1)K(x1, x2)f
n2(x2)K(x2, x3) · · ·f nm(xm)

×K(xm,x1) dµ(x1) · · ·dµ(xm).

Using Lemma 1 we will be able to estimate the cumulants of SfL
. We claim the

following result to be true.

LEMMA 2. Under the assumptions of Theorem 1,

Cn(SfL
)=O

(
(VarL SfL

)δ+ε
)
, n≥ 1,(15)

where ε is arbitrarily small.
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PROOF. It follows from (14) that Cn(SfL
) is a linear combination of∫

f
n1
L (x1)KL(x1, x2)f

n2
L (x2)KL(x2, x3) · · ·

×f
nm

L (xm)KL(xm,x1) dµ(x1) · · ·dµ(xm)

= Tr (f n1
L KLf

n2
L KL · · ·f nm

L KL),

where ni ≥ 1, i = 1, . . . ,m, m≥ 1.
We claim that each term is O((VarL SfL

)δ+ε). Indeed, if m = 1, then
|Tr f n

LKL| = | ∫ f n
L(x)KL(x, x) dµ(x)| ≤ ‖fL‖n−1∞

∫ |fL(x)|KL(x, x) dµ(x) =
‖fL‖n−1∞ ES|f |L =O((VarL SfL

)δ+ε).
If m > 1, represent Tr (f n1

L KLf
n2
L KL · · ·f nm

L KL) as a linear combination of
Tr (f n1±,LKLf

n2±,LKL · · ·f nm±,LKL), where we use the notations f+ = max(f,0),
f− = max(−f,0). Let us fix the choice of ± in each of the factors. Using the
cyclicity of the trace and the inequality |Tr (AB)| ≤ (Tr (AA∗))1/2(Tr (BB∗))1/2

for the Hilbert–Schmidt operators ([RS], section VI.6), we obtain∣∣Tr
(
f

n1±,LKLf
n2±,LKL · · ·f nm

±,LKL

)∣∣
= ∣∣Tr

(
f

n1/2
±,L KLf

n2±,LKL · · ·f nm

±,LKLf
n1/2
±,L

)∣∣
≤ [Tr

((
f

n1/2
±,L KLf

n2/2
±,L

)(
f

n1/2
±,L KLf

n2/2
±,L

)∗)]1/2
(16)

× [Tr
((
f

n2/2
±,L KLf

n3±,LKL · · ·f nm

±,LKLf
n1/2
±,L

)
× (f n2/2

±,L KLf
n3±,LKL · · ·f nm±,LKLf

n1/2
±,L

)∗)]1/2
.

The first factor at the r.h.s. of (16) is equal (again by the cyclicity of the trace)
to [Tr (f n1±,LKLf

n2±,LKL)]1/2 [in particular we note that Tr (g1Kg2K)≥ 0 for non-
negative g1, g2].

Since

Tr
((
f

n1±,L + f
n2±,L

)2
K
)−Tr

((
f

n1±,L + f
n2±,L

)
K
(
f

n1±,L + f
n2±,L

)
K
)

= Var
(
S
f

n1±,L+f
n2±,L

)≥ 0,

we have

0 ≤ Tr
(
f

n1±,LKLf
n2±,LKL

)
≤ 1

2

(
Tr
((
f

n1±,L + f
n2±,L

)2
KL

)
− Tr

(
f

n1±,LKLf
n1±,LKL

)−Tr
(
f

n2±,LKLf
n2±,LKL

))
(17)

≤ 1

2
Tr
((
f

n1±,L + f
n2±,L)

2KL

))
=O

(
Tr
(|fL|KL

))
o
(
(VarL SfL

)ε
)

=O
(
(VarL SfL

)δ+ε
)
.
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As for the second term in (16), one can rewrite Tr ((f n2/2
±,L KLf

n3±,LKL · · ·
f

nm±,LKLf
n1/2
±,L )(f

n2/2
±,L KLf

n3±,LKL · · ·f nm±,LKLf
n1/2
±,L )∗) as

Tr
(
f

n2
2±,LKLf

n3±,LKL · · ·f nm

±,LKLf
n1±,LKLf

nm

±,L · · ·KLf
n3±,LKLf

n2
2±,L

)
(18)

= Tr (CDD∗),

where C = f
n3/2
± KLf

n2±,LKLf
n3/2
±,L , D = f

n3/2
±,L KLf

n4±,LKL · · ·f nm

±,LKLf
n1/2
±,L . Note

that C ≥ 0 and Tr (C) = Tr (f n3±,LKLf
n2±,LK) = O((VarL SfL

)δ+ε) by arguments

similar to (17). Using |Tr (CDD∗)| ≤ Tr (C) · ‖DD∗‖ = Tr (C) · ‖D‖2 ([23], Sec-
tion VI.6) and ‖D‖ ≤ ‖K‖m · ‖fL‖ℵ∞, where ℵ = (

∑m
i=1 n1) − n2, we conclude

that (18) is O((VarL SfL
)δ+ε). Together with (16) and (17) this concludes the proof

of the lemma. �

Let us now apply Lemma 2 to estimate the cumulants of the normalized linear
statistics. We have

C1

(
SfL

−ESfL√
VarL SfL

)
= 0, C2

(
SfL

−ESfL√
VarL SfL

)
= 1

and, for n > 2,

Cn

(
SfL

−ESfL√
VarL SfL

)
= Cn(SfL

)

(VarL SfL
)n/2

=O

(
E(S|f |L)

(VarL SfL
)n/2

)
.(19)

It follows from the Lemma 2 and (19) that

Cn

(
SfL

−ESfL√
VarSfL

)

goes to zero if n > 2δ.
Lemma 3 from Appendix then implies that all cumulants of the normalized

linear statistics converge to the cumulants of the standard normal random variable,
and weak convergence of the distributions follows.

Theorem 1 is proven. �

3. Proof of Theorem 2. Let (E,dµ) be (Rd, dx) and TLx = x/L. Consider
a real-valued function f ∈ L1(Rd) ∩ L2(Rd). The mathematical expectations of
SfL

is equal to

ESfL
=
∫

Rd

f (x/L)KL(x, x) dx

=
∫

Rd

f (x/L)AL(0) dx +
∫

Rd

f (x/L)RL(x, x) dx

=AL(0)L
d

∫
f (x) dx +

∫
f (x/L)RL(x, x) dx.
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By (11), the absolute value of the second integral is bounded by the sum of the
integrals∫

Rd+

∣∣f (±x1/L, . . . ,±xd/L)
∣∣Q(2x1, . . . ,2xd) dx

≤
(∫

Rd+
f 2(±x1/L, . . . ,±xd/L)dx

)1/2(∫
Rd+

Q2(2x) dx

)1/2

=O
(
Ld/2).

Therefore,

ESfL
=AL(0)L

d

∫
Rd

f (x) dx +O
(
Ld/2).(20)

The variance of SfL
is given by

VarSfL
=
∫

f 2(x/L)KL(x, x) dx −
∫

f (x/L)f (y/L)|KL(x, y)|2 dx dy

(21)

=AL(0)L
d

∫
f 2(x) dx −

∫
f (x/L)f (y/L)|AL(x − y)|2 dx dy + r(L),

where

r(L)=
∫

f 2(x/L)RL(x, x) dx − 2
∫

f (x/L)f (y/L)AL(x − y)RL(y, x) dx dy

−
∫

f (x/L)f (y/L)|RL(x, y)|2 dx dy

= r1(L)+ r2(L)+ r3(L).

It follows from the assumptions of the theorem that the second term at the r.h.s.
of (21) is equal to

Ld

∫
|f̂ (k)|2 |̂AL|2(k/L)dk = Ld |̂AL|2(0)

∫
|f̂ (k)|2 dk(1 + o(1)

)
= Ld

∫
|AL(x)|2 dx

∫
f 2(x) dx

(
1 + o(1)

)
.

Indeed, ∣∣∣∣
∫

|f̂ (k)|2(|̂AL|2(k/L)− |̂AL|2(0)
)
dk

∣∣∣∣≤
∣∣∣∣
∫
|k|>κL

∣∣∣∣+
∣∣∣∣
∫
|k|≤κL

∣∣∣∣.
Since

∣∣|̂AL|2(t)
∣∣= ∣∣∣∣

∫
ÂL(k)ÂL(k − t) dk

∣∣∣∣≤
∫

ÂL(k) dk =AL(0)≤ const
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we note that the first integral is bounded from above by

const
∫
|k|>(κL)

1/2
|f̂ (k)|2 dk → 0 as L→∞.

To deal with the second integral we estimate from above∣∣|̂AL|2(k/L)− |̂AL|2(0)
∣∣

≤
∣∣∣∣
∫

|AL|2(t)
(
exp(2πitk/L)− 1

)
dt

∣∣∣∣
∣∣∣∣
∫
|t|≥L/κL

+
∫
|t|<L/κL

∣∣∣∣
≤
∫
|t|≥L/κL

|AL|2(t) dt +O(1/
√
κL )

= o(1)+O(1/
√
κL )= o(1).

Therefore,

VarSfL
=
(
AL(0)−

∫
|AL(x)|2 dx

)
Ld

∫
f 2(x) dx + o(Ld)+ r(L)

(22)

= σ 2Ld

∫
f 2(x) dx + o(Ld)+ r(L).

We claim that

r(L)= o(Ld).(23)

Consider first r1(L). By (11) it is bounded by the integrals∫
Rd+

f 2(±x1/L, . . . ,±xd/L)Q(2x) dx.

All of these integrals are estimated in the same way. For example,∫
Rd+

f 2(x/L)Q(2x) dx = Ld

∫
f 2(x)Q(2Lx)dx

= Ld

∫
f 2(x)Q(2Lx)X{Q(2Lx)>1/

√
L} dx

+Ld

∫
f 2(x)Q(2Lx)X{Q(2Lx)≤1/

√
L} dx

≤ Ld‖Q‖∞
∫

f 2(x)X{Q(2Lx)>1/
√
L} dx

+Ld−1/2
∫

f 2(x) dx = o(Ld),



AOP ims v.2001/01/04 Prn:14/01/2002; 9:46 F:AOP055.tex; (DL) p. 13

DETERMINANTAL RANDOM POINT FIELDS 13

since

8
(
x :Q(2Lx) > 1/

√
L
) →

L→∞
0.

To estimate r3(L) we need to estimate the integrals of the form∫
Rd+

|f (x/L)| |f (y/L)|Q2(x + y) dx dy =Ld

∫
Rd+

g(z/L)Q2(z) dz,(24)

where g(z)= ∫ |f (x)| |f (z− x)|XRd+(x)XRd+(z− x) dx.
Since g(z) is bounded, continuous, and zero at the origin, we have

(24)=Ldg(0)
∫

Q2(z) dz
(
1 + o(1)

)= o(Ld).

Finally,

|r2(L)| =
∣∣∣∣
∫

f (x/L)f (y/L)AL(x − y)R(y, x) dx dy

∣∣∣∣
≤
[∫

|f (x/L)| |f (y/L)| |AL(x − y)|2 dx dy

]1/2

×
[∫

|f (x/L)| |f (y/L)| |RL(y, x)|2 dx dy

]1/2

=O(Ld/2) o(Ld/2)= o(Ld).

Combining the above estimates, we prove (23), which implies

VarSfL
= σ 2Ld

∫
f 2(x) dx

(
1 + o(1)

)
.(25)

If f is bounded, the central limit theorem then follows from Theorem 1 (compact-
ness of the support of f is not needed since f ∈L1(Rd)∩L∞(Rd) guarantees that
all moments of SfL

are finite). The proof in the case of the unbounded f follows
by a rather standard approximation argument. We choose N > 0 to be sufficiently
large and consider a truncated function

f̃ (x)=
{
f (x), if |f (x)| ≤N,

N, if f (x) > N,

−N, if f (x) <−N.

Observe that

E

(
SfL

−ESfL

σLd/2
− S

f̃L
−ES

f̃L

σLd/2

)2

= VarS
(f−f̃ )L

σ 2Ld
=
∫
|x|≥N

f 2(x) dx

σ 2
+ o(1)

can be made arbitrarily small by choosing N and L sufficiently large.
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Since
S
f̃L

−ES
f̃L

σLd/2
w→

L→∞
N

(
0,
∫
|x|≤N

f 2(x) dx

)
and

lim
N→∞

∫
|x|≤N

f 2(x) dx =
∫

f 2(x) dx,

the result follows. Theorem 2 is proven. �

4. Proof of Theorem 3. We now turn to the proof of Theorem 3. It is enough
to establish that

VarSfL
=L1−αϕ(L−1)

∫
|f̂ (k)|2 |k|α dk

(
1 + o(1)

)
.(26)

The result then will follow from Theorem 1. We have [see (12)]

VarSfL
=
∫

|f̂ (Lλ)|2L2m(λ)dλ

= L

∫
|f̂ (k)|2m(kL−1) dk

(27)

= L

∫
|f̂ (k)|2 |k|αL−αϕ(kL−1) dk

= L1−αϕ(L−1)

∫
|f̂ (k)|2 |k|α ϕ(kL

−1)

ϕ(L−1)
dk.

It was proven by Karamata ([15, 16]) that any slowly varying function at the origin
can be represented in some interval (0, b] as

ϕ(x)= exp

{
η(x)+

∫ x−1

b−1

ε(t)

t
dt

}
,(28)

where η is a bounded measurable function on (0, b], such that η(x)→ c as x → 0
(|c|<∞), and ε(x) is a continuous function on (0, b] such that ε(x)→ 0 as x → 0
(for a modern day reference we refer the reader to [24], Theorem 1.2; of course
a similar representation holds for ϕ also on some interval [b′,0) of the negative
semiaxis). In particular

ϕ(k/L)

ϕ(1/L)
→

L→∞
1(29)

uniformly in k on compact subsets of R1 \ {0}, and the following estimates hold
uniformly in k for sufficiently large L:

const1 k
−n ≤ ϕ(kL−1)/ϕ(L−1)≤ const2 k

n for 1 ≤ k ≤ L,(30)

const3 k
−1/2 ≤ ϕ(kL−1)/ϕ(L−1)≤ const4 k

1/2 for 0 < k ≤ 1,(31)

where consti , i = 1, . . . ,4, n > 0, are some constants.
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The estimates (28)–(31) imply∫ L

−L

|f̂ (k)|2 |k|2 ϕ(kL−1)

ϕ(L−1)
dk →

L→∞

∫ ∞

−∞
|f̂ (k)|2 |k|α dk.

From the other side, the integral over |k| ≥ L is o(1) since f is a Schwarz function
and m is bounded.

Theorem 3 is proven. �

REMARK 7. We learned very recently that similar results to our Theorem 2
have been independently obtained (in the discrete case) by Tomoyuki Shirai and
Yoichiro Takahashi in the preprint [30].

APPENDIX

For the convenience of the reader we give here the proof of a rather standard
fact.

LEMMA 3. Let {ηL} be a family of random variables such that c1(ηL) = 0,
c2(ηL) = 1 and cn(ηL) converges to zero as L → ∞ for all n ≥ N , where
N <∞. Then limL→∞ cn(ηL) = 0 for all n > 2 and ηL converges in distribution
to N(0,1).

PROOF. Denote dL = max(|cj (ηL)|1/j , 1 ≤ j ≤N−1). It is clear that dL ≥ 1.
Consider the random variable

η̃L = ηL/dL.

Since cn(η̃L) = cn(ηL)/d
n
L we have |cn(η̃L)| ≤ 1 for all n and cn(η̃L) → 0 for

n≥N . Consider (N −1)-dimensional vector (c1(η̃L), . . . , cN−1(η̃L)). Let (c1, c2,

. . . , cN−1) be a limit point. The Marcinkiewicz theorem (see, e.g., [20]) states that
if all but a finite number of cumulants of a random variable are nonzero then the
random variable must either have a Gaussian distribution or be a constant. In both
cases we have cj = 0 for j > 2. Therefore dL = (c2(ηL))

1/2 = 1 for sufficiently
large L and cn(ηL) →

L→∞
0 for n > 2. Convergence of the cumulants of ηL to the

cumulants of N(0,1) is equivalent to the convergence of the moments which in
turn implies convergence in distribution. �
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