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Abstract

We study the level-spacings distribution for eigenvalues of large N x N matrices
from the Classical Compact Groups in the scaling limit when the mean distance between
nearest eigenvalues equals 1.

Defining by nn(s) the number of nearest neighbors spacings, greater than s > 0
(smaller than s > o ) we prove functional limit theorem for the process

(nn(s) —Enn(s))/N'/2, giving weak convergence of this distribution to some Gaussian
random process on [0, 00)

The limiting Gaussian random process is universal for all Classical Compact Groups.
It is Holder continuous with any exponent less than 1/2 .

Similar results can be obtained for the n-level spacings distribution.

*AMS Subject classification : Probability theory and stochastic processes



1 Introduction and Formulation of Main Results.

The idea that statistical behavior of eigenvalues of large random matrices would give an
information about spectra of heavy nuclei was proposed by E.Wigner in fifties ([1]). Since
then, random matrices have been intensively studied by F.J.Dyson, M.L.Mehta, C.E.Porter,
N.Rosenzweig, M.Gaudin, L.Pastur, L.Girko and many others. [2] contains an extensive
collection of early papers on this subject.

One of the most popular ensembles of random matrices, the so-called Circular Unitary
Ensemble (C.U.E.) was brought into investigation by Freeman J.Dyson in [3] for studying
quantum systems without time reversal symmetry. C.U.E. is the unitary group U (V) with

the normalized translation invariant ( Haar) measure. It is a classical result ([5]) that the

N

joint probability distribution of the eigenvalues {exp(if;)};L; in the unitary ensemble is

given by the density

Png(61,...0n) = constng H | exp(i),) — exp(i6;)]° (1)
1<k<j<N

where the eigenvalues are ordered by increasing their angular coordinates
—r<6<...<O0y<m (2)

(here and further we are using the segment [—m, 7] with the coinciding ends as the repre-
sentation for the unitary circle).

Circular Unitary Ensemble corresponds to the case
8 =2, consty o = (2m)~N

which is the simplest one from the mathematical point of view among all possible choices
of 8. Two other cases with clear physical meaning, 7 =1 and 8 = 4 , correspond
to the so-called Circular Orthogonal Ensemble (C.O.E) and Circular Symplectic Ensemble
(C.S.E.) ( no relation to the distribution of eigenvalues in Orthogonal Group O(N) and
Unitary Symplectic Group USp(2N), which will be studied later). It is worth mentioning
that from the statistical mechanics point of view one can think about (1) as an equilibrium

distribution at the temperature 7'=1/8 of the Coulomb gas of N unit charges, confined



to the infinitely thin circular conducting wire of radius 1, repelling each other according to

the Coulomb law of two-dimensional electrostatics, i.e. with a potential energy

W =— Z log | exp(i)) — exp(ib;)|
1<k<j<N
Due to the logarithmic repulsion, typical configurations of the particles are very regularly
distributed on the unit circle. For example, if we consider the number of particles hitting
the interval

(=z,2) C[-m,] pn (@) = #{j : 10;] < =}

then the mathematical expectation of pux(z) is proportional to the number N of all

particles, Euy(z) = Nz/m , but the variance Var uy(z) grows only logarithmically,

2log N
Var i(e) = = 55= +0(1),  f=1,2,4

and after the normalization, the random variable

(un (@) — Epn(@))/ (Var py ()

converges to the standard gaussian random variable. This and similar results can be
found in the papers by O.Costin,J.Lebowitz [6], K.Johansson [7],[8], [9], H.Spohn [10],
P.Diaconis and M.Shahshahani [11] , T.H.Baker and P.J.Forrester [12], E.Basor [13].

With the exception of [7],[9],[12] the results have been obtained so far only for 5 =1,2,4 .
Some heuristic arguments for the case of general 3 have been devised in [14], [15] .

The main goal of our paper is to study the statistical behavior of level spacings for the
Circular Unitary Ensemble (3 = 2) . ! After ordering in (2 ) the eigenvalues by increase

in their angular coordinates, the nearest neighbor spacings can be defined as

7 =0j41—0;, j=1,...,N—1; ™~ =61 + 27 — Oy (3)

'We learned from N.Katz and P.Sarnak [20] that our methods can be also applied to study other classical
compact groups:

SO(2N), SO(2N +1),0(2N), O(2N + 1), USp(2N), SU(N), O_ (2N)

('see section 5 for the corresponding results). Similar results for the Circular Orthogonal Ensemble (8 =1)
are discussed in section 6.



The n-point correlation functions (n =1,...N) of our ensemble

1 ™ ™
pglN)(.Z'l,...xn) = m/ / PN’Q(le,...l‘N)d.I‘n+1...d.CEN

(we extend the domain of definition of Pyg2 by symmetry to the whole N-dimensional
torus ), have the following probabilistic meaning:

let [z1,71+dx1],...[xn, 2y +dz,] be n infinitesimally small disjoint intervals,

then pszN) (x1,...xy)dz ...dx, is the probability to find eigenvalues in each of them.
For 8 =1,2,4 n-point correlation functions have been calculated explicitly by F.Dyson

('see [3], [4] ) and in the case of C.U.E.

R e !

The conditional probability of having no eigenvalues in the interval (0, u] provided there is
an eigenvalue at the origin (that is the probability of nearest neighbor spacing 7 to be

greater than u ) can be calculated using inclusion-exclusion principle :

u 1 U U
]PN(T > u) = <p§N)(O) _/0 pgN)(O,.TQ)de—'l— 5/0 /0 p:())N)(O,sz,l'g)daIgdxg —

1 U u U
= 5 [ A 020,20 daadaadas + ) /60 0) (5)

The mean distance between the nearest eigenvalues in C.U.E. is equal to 2n/N . After a
suitable rescaling ( extension by N/(27) times the segment [—7, 7] ) , this distance becomes

equal to 1 . In the new coordinates
yr = N/2+ N 6;/(27), k=1,...N

the rescaled n-point correlation functions

) B sinm(y; — y;)
27 /N)"pN) (27y1 /N, ... 21y, /N) = det (NSin(W(yz’ - yj)/N)>”—1 ©

=1,..n



have a finite limit as N tends to infinity :

lim
N—oo

@21 /N)" o) 27y, /N, .. . 27y /N) =1 pC (g1, . .. yp) = det (w)
Wi = %) )i

and respectively for
Fyn(s) :=Py(r > 27s/N)
. - = (= ()
lim Fy(s)=: F(s) = Z — /[0 g L1 (0,91, - yn)dyr . .. dyn (8)
n=0 ’

Remark The limiting correlation functions (7) define a random point field on the real
line, i.e. the probability measure on the Borel o -algebra of the space of locally finite point

configurations
Q= {(#)im—oor o0 © VL >0 #{m;: |ws| < L} < 0o}

in the following way : if we fix m disjoint intervals [a2j_1,agj]j=1,.., and define random
variables p1, ..., to be the numbers of particles hitting each interval, then the generating

function
m

o(z1y---2m) = H z?j
j=1
is given by the Fredholm determinant of the integral operator acting on L2(R') , with the
kernel

S (5 — ST 5 )

= m(z —y)
where J; are indicators of the segments [a2;_1,az;] ( see [21] ).
Such defined random point field is called a Universal Random Matrix Limit (URML) in
the physical literature. It was conjectured by Dyson to be the limiting case for the general
unitary invariant ensembles of hermitian matrices (see [23], [24], [25] for recent results).

Remark Function F(s) decays at infinity superexponentially :

log F(s) = —n2s2/8 4+ O(s)



(see [22],chapter 12; also [21] ,[26] ) .

Recently, Z.Rudnick and P.Sarnak ( [27] ) showed that after a suitable rescaling the
n-point correlation functions for zeroes of the Riemann Zeta Function on the critical line
Rez = 1/2 are given exactly by the same formula (7). These results are valid in a
restricted range , see also the early paper on pair-correlations by H.L.Montgomery ([28]),
and numerical results by A.M.Odlyzko on the spacings distribution of zeroes ([29] , [30] ).

We finish this section with the formulations of our main results :

Theorem 1.1 Consider an arbitrary subinterval In of the unit circle such that the average
number of eigenvalues hitting subinterval tends to infinity as N — oo : |IN|N/(27w) = o0
Let us define n(In, s) to be the number of eigenvalues belonging to I, for which the distance
to the nearest right neighbor is greater (smaller) than 27 s/N
nIn,s)=#{j:0;€In, 75=0;71—0;> (<) 27 s/N}
Then
N|In|

E n(In,s) = o Py(r > (<) 27 s/N)

and finite dimensional distributions of the normalized random process
En(s) = (n(In,s) — B n(In,s))/ (N|In|/2m)"?

converge to the distributions of Gaussian random process with IE£(s) = 0 and b(s,t) :=
FE¢(s)E(t) given by the formulas (37), (38), (26 ) in the section 3.

To formulate the results about functional convergence we have to define the continuous
approximation of {x(s). The realizations of 7(Iy,s) have discontinuities at points
N N N N
%Tj: %(9]4_1—0]')7 9j ely: n(IN,%Tj—I-O)—n(IN,%Tj
We define the graph of 77(Iy, s) by linearly connecting the neighboring vertices

(Z75,n(In, 2£75)), 05 €Iy, and

En(s) = (ii(In,5) — En(In,s))/(N|In|/(2m) "

)= 1

The distribution of 5 ~n(-) defines a probability measure Py on the space of continuous

functions C|0, 00) (infinity point is not included ! ).



Theorem 1.2 Py weakly converges to the distribution of the Gaussian process £(-).

Of course in both theorems we can take Iy to be [—m,n]. In this case nnx([—m,7],s) will

count all nearest-neighbor spacings greater(smaller) than s.

Corollary 1.3 If we consider disjoint intervals

P,
such that
0 < consty < |I](\Z,)|/ |I](é)| <consty <oo; 4,j=1,...m
and

NIP|/@2r) 500 as N — oo

then a random vector

(0D, 55) — B(1S), )/ (Var n(1§), 5)/2)

converges in distribution to the standard Gaussian random vector with independent compo-

m

i=1
nents.

Corollary 1.4 For any finite T > 0,

supsepiry 1L s) — By(Ix, )|/ (N|Ix|/(2m)"/? )
converges in distribution to

sup [£(s)]

s€[0,T]
Remark  Since
sup[o,00) BN (I, 8) — N|In| F(s)/(2m)| = o(|In|N*/(2m))
for any ¢ > 0 ( see Lemma 4.2 ),
one can replace in (9) En(Iy,s) by F(s)N |In|/ (27).
We have not been able to prove the result of Corollary 1.4 for T = oo ( the functional con-

vergence of probability distributions is proven for C[0, 00) , not for C[0,00] ! ). Therefore

we settle for a weaker version :



Corollary 1.5 With probability 1
suppo,co) (I, ) — Bn(In, 5)| = o (N|In|/(2m))'/* **) (10)

for any € > 0. The same estimate also holds for the mathematical expectation of the Lh.s.
in (10).

Remark The discrepancy at the Lh.s. of (10) was studied for the first time by N.Katz
and P.Sarnak who did it in connection with the theory of geometric Zeta-functions over
finite fields ( see [20] ). They proved the estimate

E supjo ey (I 5) — En(I. )] = o (N1In|/(2m)*/® +¢)

to show that for typical geometric Zeta functions the empirical distribution functions of the
normalized spacings converge to the Gaudin law F'(s) .

Remark Again we can replace En(In,s) by F(s) N|In|/(2).

As usual for the C.U.E. similar results also hold for the limiting random point field (7 ) :

Theorem 1.6 Consider the number of particles, hitting the interval [0, L], for which the

distance to the nearest right neighbor is greater than s :
n(L,s) = #{x; : 0<z; <L, dist(z;,rightngb (x;)) > s}.
Then En(L,s) = LF(s) and
£1(s) = (n(L,s) — LF(s))/ L'/

converges in finite dimensional distributions to the Gaussian random process of Theorem
1.1.

Again we can define piecewise linear continuous approximation &7,(s) of £1(s) such that
[€r(s) —€w(s)| < L7172

and as the analogue of Theorem 1.2 we have :



Theorem 1.7 The distribution of £(-) on C[0,00) weakly converges to the distribution of

£()-

Remark We do not know simple ”explicit” formulas for the covariance function E£(s)&(t)

of the limiting Gaussian process. Since
E((t+ 6t) —£(1)” = O(|dt))

uniformly on any finite interval ¢ € [0, 7], &(s) is Holder continuous with any exponent
a < 1/2. The numerical results by S.Miller ( [31] ) suggest that £(s) is not a standard
Brownian bridge, which would be the case had the spacings been independent random

variables.

As it is usually the case, the proofs of Theorems 1.1 and 1.6, Theorems 1.2 and 1.7 are
almost identical. In the next section we will discuss all necessary prerequisites concerning
n—point correlation and Ursell functions. We will prove Theorem 1.1 in section 3. The
proofs of Theorem 1.2 and Corollaries are given in section 4. Results similar to Theorems
1.1 and 1.2 are valid in the case 8 =1 and for Orthogonal and Symplectic Groups. Minor
changes, required in the formulations and proofs of the theorems are discussed in sections
5 and 6. Section 7 is devoted to generalizations and concluding remarks .

I would like to express my sincere gratitude to my advisor Ya.Sinai and to M.Aizenman,
P.Sarnak and H.Spohn for many useful discussions. I would also like to thank N.Katz and

P.Sarnak for providing me with their notes on the subject ( [20])prior to the publication.



2 Random Point Fields on the Real Line. Correlations and
Ursell Functions.

In this section we give an exposition of some basic facts about random point fields on the
real line ( for a more detailed account see [17], [18], [16], [6] ).
We consider the space of locally finite configurations

Q= { W= (Zi)iz—o0,.400 : VYL >0 #{z;:|z;| <L} < oo}

We reserve the notation 74 for the number of particles in A C R! .

The class of measurable sets in ) is defined as the minimal ¢-algebra containing all
{w:na(w) =k } , where k is nonnegative integer and A is a measurable subset of the
real line.

Assume we are given a probability measure on 2 . If there exists the joint density
pn(T1,...2,) of n-tuples, ie. pp(z1,...2,) dxy---dx, is the probability to find a
particle in each of the infinitesimally small intervals  [z1, z1 + dz1],...[Zn, Tn + dz,),
we call p, n-point correlation function.

It was first pointed by Ruelle ( [19] ) that in general the sequence of correlation functions
pn ,n=1,2,... does not uniquely characterize the underlying probability measure. The
existence and uniqueness problems were studied in detail by A.Lenard in [17], [18]. In
particular, the criterion for uniqueness is satisfied when 0 < pp(z1,...2,) < * n?".
An interesting class of correlation functions ( see [10] ) can be constructed with the help

of nonnegative integrable function
U:R1—>R1, 0<v<1

if we define
pn(T1, ... Ty) = det (0(x; — xj))i,jzl,...n (11)

where ¢ is the Fourier transform of v

+o0
() = % / exp(izk) v(k)dk .

10



Choosing v to be the indicator of the segment :

U(k) = X[—m,7] (k)

we arrive at URML (7 ) :

onn 1) = det (M)
2,j=1,...n

m(z; — xj)

If we want to study the number of points (particles) in the interval of length L,

n(L) = #{z; : z; € [0, L]}

it is very helpful to introduce the so-called Ursell functions ( see [16], [6] )

ri(z1) = pi(z1)
ra(z1,32) = pa(z1,22) — p1(z1) p1(z2)
r3(T1,22,23) = p3(21,22,73) — p2(z1,22) p1(x3) — p2(21,73) p1(z2) — pa(z2, 3) p1(21)
+ 2p1(z1) pi(z2) p1(z3) (12)

and, in general :

rn(@1,.zn) = D ()" m =1 [T pe, (2(G)) (13)

G j=1

where G s a partition of indices {1,2,...n} into m subgroups Gi,...Gpn,
m=1,...n, and Z(G;) are z; with indicesin G; . Correlation functions can be

obtained from the Ursell functions by the inversion formula

palarse) = 3 I1 16, E(Gy) (149
G

=1

11



If we restrict the summation in (14) to the partitions of {1,2,...n} into two- or more
points subsets, we will get centralized n-point correlation functions. In Random Matrix
literature  (—1)*"!rp  are usually called cluster functions ( see [3], [4], [22] ). In the
particular case of URML

) = (—1)" 12 sinm(zg — x1) sinw(z 3—3:2) ‘ sinw(xl—mn) (15)

’r‘n(.’L‘l,... (1_2_1‘1) (1-3—;52) 7I'(£E1 _fL‘n)

where the sum in (15) is over all cyclic permutations.

Ursell functions possess a fundamental property of vanishing when variables z1,...z,
can be decomposed into two nonempty subsets, belonging to the intervals with independent
probability distributions. As was pointed out in [16] “ all correlations (which are ) due
to subsets have been subtracted in forming 7,(x1,...z,) from p,(z1,...2,) , leaving
only ”intrinsic” n-body correlations”.

Ursell functions are closely related to the cumulants Cj;(L)  of the random variable

n(L) : the integral of rg(x1,...7,) over the k—dimensional cube
[0,L] x ... x[0,L] =[0,L]*
is equal to the linear combination of C;(L) , j=1,...k
L
U = /0 ri(z)dez =E n(L) = Ci(L)
L /L )
U, = /0 /0 ro(x1,z2) dridze =IE n(n—1) — (En)* = Cy(L) — C1(L)

L L L
Us = /0 /0 /0 r3(z1, T, x3) dridradrs =1TE n(n —1)(n — 2) — 3E n(y — 1) En + 2(En)3
= C3(L) —3Cy(L) + 20 (L)

To derive the general formula we can use (12), (13) to write the identities for the generating

functions

— 1 k — 1 k
> L Ukz :10g<1+ZEIEn---(n—k+1)z) (16)
1 k=1"""

12



i % P - log IE exp(zn) = log (l-l- i %En (n—k+1) (ez—l)k)
T — K
- ; % U (= " (17)
Formulas (16)-(17) yield ( see ([6]):
k—1
Cr = (Z bk Cj) + Uy (18)
j=1

where
bpj=br—1j-1—(k—1bp_1,; ,2<j<k-1
bk’k =-1 , k> 2 (19)
by = (—1)% (k—1)!

As an immediate consequence of (18), (19), the following central limit theorem holds for
the number of particles in the box [0,L] , L — oo :

Theorem 2.1 Let the mathematical expectation of the number of particles in the interval
[0, L] and the variance be proportional to L , as L — oo , and the integrals Uy ,k > 2
of the Ursell functions over [0,L)* grow not faster than o(L*/?)
Then the normalized number of particles
n(L) — En(L)
(Var n(L))"/*

converges in distribution to the Gaussian normal random variable as L — oo .

Remark We have not seen this theorem explicitly stated in the mathematical literature
before. However all its necessary ingredients could be found in [6].
Remark One can see that Theorem 2.1 is not applicable to the case of URML (7) ,

since the variance grows only logarithmically

Var n(L) = (%) log L+ O(1)

13



( the fact that distinguishes URML from other random point fields with the determinantal
correlation functions (11) ).
Because of this Costin and Lebowitz had to use in [6] more subtle arguments to prove the

gaussian fluctuations. Namely they have been able to show that

/L/L sinm(z1 — xp) sinw(zp —x3)  sinw(zg — 71) = Lto((logL)*2) k> 2.
5 7T(LI,'1 —332) ﬂ'(.TQ —:Eg) W(:Ek —LEl)

that combined with (15), (18), (19) implies  Ci(L) = o((log L)*/?), k > 2 and thus
finishes the proof.

We will use the general framework of this section , in particular Theorem 2.1 in our analysis
of nearest spacings distribution.

Let us fix some s > 0. To study the number of spacings greater than s in the interval
[0,L] we construct an “s-modified random field”, keeping only the particles, for which the
distance to the nearest right neighbor is greater than s . Now the number of spacings
greater than s in the interval [0,L] for the original random point field is equal to the
number of all particles in [0, L] for the modified one. To apply Theorem 2.1 we need to
calculate the correlation and Ursell functions of the modified random point field . This
plan is carried out in Section 3, with the conditions of Theorem 2.1 checked in (33), (38)
and in Lemma 3.2. In particular we prove that the Ursell functions 7;(z1,...2;,s) of
the s-modified random field allow the estimates

1 1 1 e
|Ti(x1, ... 21, 8)| < const(s,e) Z
g

lmg — 1| +1 |os—mo| +1 |z —ay| + 1

which are valid for all ¢ >0 and xi,...x;, suchthat min;;|z; —x; > s

We do not derive estimates on the Ursell functions in the region min;4; |z; —z;[ < s,
since the combinatorics turns out to be more involved . Rather than that, we do this part
of the proof in a more straightforward way by calculating the main term in the centralized

correlation functions.

14



3 Proof of Theorem 1.1

We shall prove Theorem 1.1 by computing all (to be more precise, first N ) moments of
random variable n(Iy,s) — En(Iy,s). Without any loss of generality we will assume the
interval Iy to be the unit circle. In the rescaled coordinates

{ i =N6;/(27) +N/2 }Y,

the N-dimensional probability density (1 ) and n-point correlation functions are given by
the formulas (20) and (21):

Pna(y1,---yn) = NV H |exp(imy;/N) — exp(imyg /N)|?

1<k<j<N
sinm(y; — yj) )
= det : (20)
(NSID(TF(yi —v5)/N) ij=1,..N

and

(N) ,-..Yp) = det .Sinﬂ(yi_yj) .
P (1 Yn) (NSID(W(yi_yj)/N) i,j=1,..n )

We will omit the index N in the notation for n-point correlation functions if it does not

lead to ambiguity ; we also consider all variables y; modulo N .

The main aim of this section is to show that
E ((mv(s) —-E mv(s))/l\fl/?)wc = (2k— 1) (b(s,s))* + o(1)
E ((n(s) ~Enn(s) /N?)77 = o(1).

where b(s,s) is the variance of the limiting Gaussian process &(s).
To calculate the moments of
v (s) :=n([—m, 7], s)

7

we introduce a representation of ny(s) as ” a sum of infinitesimally small random

variables ”. This representation will be used throughout the whole proof. Consider the

15



interval [0, N] as the disjoint union of infinitesimally small subintervals [z;, z; + dz;] :

[O,N] = U[LE,,JJZ + d.TZ'] , Tipl = T + dx;
%

and for each subinterval denote by x(z;,dz;, s) the indicator of the event to have an eigen-

value in [z;, z; + dz;] and no eigenvalues in [z; + dz;, z; + s]. Then

N
v (s) = /0 x(@,da, 5) (22)

More rigorously, (22 ) means that 7y (s) is the integral of the discrete measure y(dz) which
has unit atoms at the points y;, s.t.  yiy1 —y; > s ( or we can say that ny(s) is the
number of points of the s-modified random point field ).

The representation of 7y (s) as "the sum of weakly dependent random variables” ? gives us
a natural setting for the Central Limit Theorem.

Using inclusion-exclusion principle, one can calculate the mathematical expectation of the

products of x(z;, dz;, s), i=1,...m
First consider the mathematical expectation of the single term :
N nts (n
Ex(z1,dz1,5) = (Pg (z1) —/ P8 (1, ) ds
1
1 Tits (T1FS
+ 5/3;1 . p:(,, )(xl,xg,xg)dmgdxg — ...)da:1
= Fn(s)dz. (23)

To calculate IE x(z1,dz1,s)x(z2,dxs,s) we have to consider two cases : |z1 — x2|; < s
and |z1 — x2|1 > s . In the former , the mathematical expectation of the product is zero,

by definition of x(z,dz, s), and in the latter

N—2
_1)m
Ex(z1,dz1,8)x(x2,dxs,s) = (Z ( m3 /p2+m(x1,x2; e Typyo)dxs . ..dxm+2)dx1dx2
m=0 )

(24)

2we will be able to show that

Cov(x(z1,dz1, 5), X(22,dx2, 5)) = gN (8, |21 — 2|1 )dz1d2>
where lgn (s, )| < const(s,e)/(1 + |z|>°) forany >0

and |1 — z2|1 := min(|z1 — 22|, N — |21 — z2|)

16



where each variable z3,...Zn, 9 is integrated over the union of two intervals [z1,z1 + §]
and [z2, 2 + s].

The key combinatorial observation used in the proof, can be first seen when we calculate
the covariance of x(x1,dz1,s), x(z2,dzs,s). We are going to use the cluster structure of
n-point correlation functions (21). Consider the m' term in (24 ) and fix the variables
of integration z3,...ZTm 2.

Someof z; ¢t =1,...m+2 ,say kof them, 1 <k <m+2, belong to the interval

[z1,21 4+ s], we will denote the indices of those variables by
i, g 1=, <...<ip<m+2.
We will denote the indices of the remaining variables by
J1y- - Im+2—k; 2=j51<...<Jmt2—k Sm+2
It is clear that
zj, € [x2, T2 + 8], I=1,...m+2—k.
It follows from (21 ) that

mE2 sing(z; — To(s))

pg?n(f) = Z (=1)° H N sin(m(z; — 43;)) /N)

0ESm 42 =1

(25)

(here we use the notations z for the vector (z1,...Zy12) and o for permutations from the
symmetric group Sy,4+2 )-
Now we decompose the sum (25 ) into two, where the first corresponds to the ”interaction”

between the particles ;1 and =z, and is the sum over such o € Sy, 9,that

0({i1, - Zk}) N {jl, .. -jm+27k} # 0

and the second is over all other 0. Denoting the first sum by pg(y, 2 we have

P24m(T1, 22, - - - T24m) = p24m2(T1, %2, ... Togm) + P (Tiys - - Tiy,) * P24m—k (T Tjny )
(26)

17



Formulas  (23), (24), (26 ) imply for |x1 — x9|1 > s:

N-2 (_1)m
Cov(x(z1,dz1,8)x(ze,dxs, 8)) = (Z

m=0

/p2+m,2($1, oy ... $m+2)d.733 . dﬁCm+2+R) da:ldxg

(27)
where the remainder term R would vanish if the summation in (23),(24),(26 ) were from

m!

zero to infinity, and in our case

11
IR| < Z Tl /p;cl (Tiys - Tiy, )dTiy - . . dTiy /pk2 (Tj1s - - - Ty, )Ty - . dzjy
0<k1,k2<N, k1+k2>N ) )
(28)

In (27 ) the variables z3,...z24, are integrated over [x1,z1 + 8] U [z2, 2 + 5] ;

in (28 ) the variables ;,,...z;  are integrated over [zri,z; + s] , and the variables
Tjy,---Tj,..s_, are integrated over [zo, T2 + 5] .

Remark

Formulas (23 ), (24 ) give us one and two-point correlation functions of the s-modified
random point field. General formulas for the 2k-point correlation functions are given in

(42) and for the centralized 2k-point correlation functions in (46), Proposition 3.1 .

Since
sinm(z; — ;) )
0 < det - <1, (29)
(Nsm(w(:vi —z;)/N) A
s is bounded throughout the proof of Theorems 1.1 ;1.2 , and we use these arguments

only for s < (log N)'/? in the proof of Corollary 1.5 ,
we obtain the estimate:

constlog N) N N2
N

IR| < N?(2s) V2" /N1 <

This inequality shows that we can neglect R throughout the proof. The upper bound for
the determinant in (29 ) is a general property of n-dimensional positive defined matrices
with the trace less or equal to n. It follows from ( 26), (29 ) that

|p24+m,2(21, T2, - . . Togm)| < 2 (30)

and the sums (23), (24), (27) are uniformly convergent as N — oo.

18



To calculate the variance of 7ny(s) we need to know how fast

Cov(x(z1,dr1,s), X(x2,dw2,5)) =: gn (8, |T1 — Z2|1)dT1dT2

decays as |z1 — x2|; goes to infinity.
With this question in mind we remark that poypm 2(21,22,... T24m) is the sum of at most

(2+ m)! products

m+2 sin 7T(.T,'Z' - xa(i))

(=1)7 H N sin(m(z; — ma(i))/N)

=1

each containing at least two factors

Sinm(z; — T,(3))
N sin(m(z; — 24(3)) /N)

with z;, z,; belonging to different intervals [z1,71 + s], [z2, 72 + 5]
Thus

const(s)

|p2+m2(Z)| < (24 m)! (31)

1+ |z1 — .T2|%
Here and further in our calculations we use different constants, depending on s (but not
on N ). Usually we will denote all of them const(s). The only property which we need from
these constants is their uniform boundedness on every finite interval s € [0, T].

(30) and (31) give us the desired estimate of gn(s,x) :

lgn (s, )| < ﬁ(%‘)m min{2, const(s)(2 +m)!/(1 + |z|3)}
m=0 """
< Z const(s)™/(1 + z?) + Z 2(2s)™/m!
0<m<consti(s) logz/log(log z) m>const(s)log z/log(log x)
< const(s,e)/(1 + |z|?7¢) (32)

for any € >0
As N tends to infinity, gn(s, ) converges to the limit uniformly in z:

(=1)™
m!

[ee]
g9(s,z) := A}i_r}noogN(s,x) = Z /pgofgn,Q(O,x; e Tpg2)dTs . AT po

m=0
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o0)

where the variables z3,...2Z24,, are integrated over [0,s] U [z,z + s] and pg .2
m >0 is defined in (26) with

= ()
being the n-point correlation functions in URML (7). The estimate (32) holds for g(s, x)

as well:
9(s,)| < const(s, ) /(1 + |2]2~*)

Now we are in a position to write down the formula for the variance of ny(s) :

N N
Var nny(s) = E (/(x(a:l,darl, s) — Ex(z1,dz1, s) / (z2,dx2, s) ]Ex(wg,dacQ,s)))
0 0

N
E 0/ [ (ardon,s) = EBx(or, oy, 5)) (o, daa, 5) — Bx(wa, diz, )

0
|z1—2z2|1>5
N

N
/ / (X('Tladxlas) _]EX(xlad'TlaS))(X(a:?adx%s) _IEX('T%dx??S))
0

0
0<\z1—$2|1<s

=

+

N
+ IE)/ / x(z1,dzr1, s) — Ex(x1,dz1, 8))(x(z2, dxe, s) — Ex(z2,dzs, s))
0

T1= mz
N N N
= / / gn (s, |z1 — ma|1)dz1dTo —/ / FN(8)2d$1d$2
0 0
|z1—z2|1>8 0<|z1—22]1<58
N /N
+ / / FN(S)5($1 — :L‘g)dl‘ld.rg
0 0
= bn(s,s)N + O(N?). (33)
where
by (s,s) = / gn (s, x)dx — 25F%(s) 4+ Fn(s) (34)

lz|>s
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Similar calculations give us the formula for the covariance of nx(s),nn(t) :
Cov(nn(s),nn(t)) = b (s, t)N + O(N°).
with
by (s,t) = /_t gn(s,t,x) d:v—l—/ gn(s,t,z)dz
— (s+t)Fn(s)Fn(t) + Fn(s V). (35)
where the function gy (s,t,z) is defined as

N-2 (_1)m (N)
gn(s,t,x) = Z i P3+m,2(0, %5 .o Tny2)dzs ... dTi 1o
m=0 )

the variables  z3,...zo4, are integrated over [0, s] U [z, z + ],

and sVit:=max(s,t) . Similar to (32)
lgn (s,t, )| < const(s,t,e)/(1+ |z|?7¢) for any &> 0. (36)
As N = oo gn (s, t,z) uniformly in z converges to the limit
g(s, t,z) = lim gn (s, t,x)
_ Z 13 / Py 00, %5 .. Ta)das . .. Ao, (37)

the variables  z3,...z24,, are integrated over [0,s]U [z,z + t].

The covariance function b(s,t) of the limiting Gaussian process £(s) is defined as
+o0
b(s,t) = hm bN(s t) = / g(s,t,z)dz
S
+ / (5,8, 2)dz — (5 + ) F(s)F(£) + F(s V ). (38)
It is a matter of lengthy, but simple calculations to show that at the origin

b(s,s) = Var&(s) =n%s3/9+ O(sh)
F(s) = 1—7%53/940(s%).
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The functions F(s), b(s,t) — F(sVt) are analytic , which implies
E(0(s + 6s) — 0(s))? = O(8s)

and Holder continuity of the random process £(s)  with any exponent less than 1/2 .

To proceed with the proof of Theorem 1, we are looking for the formulas for
E H (4, dx;, ) — Ex(x4, dz;, 8))

similar to (26),(27).
We will use again the special cluster structure of n-point correlation functions (21). In this

way we will be able to prove that

E H .Q?Z,d.’lfz, IEX(:CZadx’LaS)) = Z H COV(X(.QZZ',d.’Ei,S),X(.Tj,dl’j,S))
(i.4)
+ Rox(z1,...x98)dx1 . .. dTo. (39)
where the summation ) is over all partitions of {1,...2k} into pairs (i,j) and

for any € >0
N N k—14e
/0 /0 |R2k($1...$2k)|dl‘1...dﬂ?gk :O(N ) (40)

Formulas (39), (40) are the key ingredients in the proof of Theorem 1.1.
Again, we will consider the contributions to IE (ny(s) — IE gy (s))?*  from the
?off-diagonal” terms

min |z; — z|1 > s, (41)
7]

"near-diagonal” 0 < min;z; |z; — ;|1 <s , and diagonal terms z; = z; separately.
In calculations to follow we restrict ourselves to the case of even moments. However, all
arguments work in the case of odd moments as well.

Let us consider first the ”off-diagonal” case (41). By inclusion- exclusion principle

IE H 'Tzadwza =

N
.’131, BN 1) R $2k+m)dx2k+1 A dx?k—km ) d.’L'1 A d$2k(42)
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the integral is over (U [z;,z; + 5] )™

and
Am sing(m; — To(s))

Pgﬁm(i): Z (=1)° H N sin(m(z; — 24(3y) /N) )

0ES2k4+m i=1

As in (26) we decompose the sum (43) into two, the first subsum corresponds to the
interaction between the particles x1,...,x9; , where each particle interacts with at least

one other particle. The formal definition of the first subsum is the following;:

Z(f ) EZ]) the variables among z1,..., %1, belonging to the interval

[zj,2;+s], j=1,...2k.

We will also reserve the notations z(/) for the vector (z

Let us denote by z;/,...x

NG

i s %) and n(z;) = p; for

j
the number of variables belonging to [z;,z; + s] .

We define the first subsum as the sum over such o € Soiy, , that for any j=1,...2k
(i.e. for any particle z; ), there exists another index 1 <1 <2k ( there exists another

particle z; ), that
o({i?,... DN n i, .0y £ 0 (44)

(particles z; and z; interact with each other ). We denote this sum by poym 2k -
To deal with the second sum, we single out the particles not interacting with any others.

Iterating, we arrive at the formula :

P2ktm(T1,s - - Toks -+ - To2htm) = P2k+m,2k(T15 - - - T2y - - - T2k ymm)

+ Y (I o)

0£AC{1,..2k} jEA

P 2kbm-3, o nla;), 214 (T\ Ujea 7). (45)

Since the following formula,

2k
EHVZ'Z Z H]Eui-]EH(z/l—]Ez/l)
1

AC{l1,..2k} jeA I¢A

is valid for arbitrary random variables v; , (23), (42)and (45) imply
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Proposition 3.1 Let min;z; |z; — ;| > s, and s < (logN)'/2 . Then

2%
E [[(x(=i, dzi, s) — Ex(zi, dz;, s)) =
1

N2k

—1)ym N

= d.’El e dek ( Z ( m? /nglm,%(ml’ BRI 1)) I -732k—|—m)dx2k+1 .. dx?k—km
m=0 ’

O((const(i\)[log’c N)N . N2k))

+

(46)

the variables  Togi1,-..Toprm  are integrated over  ( L]%k [zj,z;+s] )™

Remark The remainder term is of the same nature as in (27 ) and is treated similarly .
The Proposition 3.1 shall play the central role in our proof, leading to (39),(40).

To make our arguments more visible, we associate with any permutation o € Sox4+y, an
oriented graph (o) . By definition the vertices of J (o) are integers 1,...2k (particles
*1,... 7o) and there is a directed bond from the j** particle to the I** particle, [ # 7,
iff (44) is satisfied.

Then in our notations

* Am o sin (@ — To(s))

Pgﬂm,zk(j): Z (=17 H N sin(m(z; — z43))/N)

0ES2k+m =1

where Z*: is the sum over such o that any maximal connected component of 7 (o) has
at least two elements. For future considerations it is also useful to define

P2k+m,2k(T1, ... T2k, - - - Toktm) as the sum over o for which J(o) is connected. We
claim that the main contribution to (46) comes from the interaction between the pairs of

particles. Representing J (o) as a disjoint union of maximal connected components

p
A, Ay o | A = {1,...2k)
1



and denoting (z;)ica, by Z(A;) we obtain the representation of pogirm2k(Z) as the
sum of products

> II 7 5 @ 4 @A) (47)

(A1,...Ap) JGAq
[Aq|>2, g=1,...p

(46) and (47) give us

]E H :I/‘Zadxla IEX(',EZadwa)) =

*3%

dei( I

(A1, Ap) 1
[Aq|>2,9=1,...p
N—|Aq| (_1)m
( > - / Pl Ag|+m, Ay (T(Ag)s Y15+ - Ym)dy1 - . . Ym )
m=0 " Weaglayai+s)™
k
n O((const(izflog N)N - N%) ) (48)

*%
where the sum ) is over all partitions of {1,...2k} into two- and more element

subsets.

Since  P24m,2(T) = p2+m,2(Z)
the sum over partitions into the two-element subsets is exactly

Z H Cov (x(zi,dz;, s), x(xj,dz}, s)) (49)

partitions  (i,5)
wnto pairs

To estimate the remaining part, let us introduce the notation

T4, (Z(Ag),s) =

N—|A,|
—1)™ _ B
m=0 '

(Ujeaqlzjzjt+s)™
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The next lemma,together with (48) clearly implies (39), (40) :

Lemma 3.2

[ gn(s,z)dz- N+ o(N¢) if =2,

/ ri(z1, ...z, 8)dry ... dxy = { |z|>s

0N o(N1te) if 1>2
ming¢; [€;—x;|1>s
(51)
forany €>0.

Remark One can see from (48) that 7(x1,...2;,s) are Ursell functions of the s-modified
random point field.

Compare (51 ) with the conditions on U; in Theorem 2.1.

Proof of Lemma 3.2

The case [ =2 was considered above when we calculated the variance of 7y (s) .
Assume now [ > 2 and denote by 7, the m-th term in (50). We are looking for
the estimates on  fpjip, similar to  (30) , (31). Since Py, can be obtained by
addition, subtraction and multiplication the finite number of times (depending only on [ )

the determinants of the form

sinm(z; — ;)
det( S amin(ar = 7)) ):

(29) provides the estimates
|P1+m i (T1s - Tty - - Tpm)| < consty (52)

and

l m
/ Tim (T1,...2)| dzy ... deyp < constl( ﬂ?’ Nt (53)

[0,N7!
min;4; |z;—x;[1>s

To get an estimate, similar to (31) we write by definition :

I+m ;
) B . SinT(z; — To(s))
P L1y TYyee - Llgm) = —1 :
Ltmy (T15 - Tty Tigm) UESZHW (=1) ZI:I1 N sin(m(z; — 24(i)) /N)

J (o) is connected
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Consider an arbitrary term from this sum. Our goal is to estimate the absolute value of

t+m sin 7T(£EZ' - -To(i))

H N sin(m(zi — 243)) /N)

=1

by

I l 2

const' ™™ (s) _
1:[ L+ |z = 24 (5)]

where 7 is some cyclic permutation of integers 1,...0 ( particles x1,...2; ),

depending on o and partition (44). To do this we will replace

sin(x; — ac,,(i))

Nsin(m(z; — 24(3))/N)

by 1 whenever =z;, z,; belong to the same segment [zj,zj+s] ,ji=1,...1,
and we will replace it by 2/(1 + |z; — Z,(;y|) in the opposite case.
If we write o as a product of disjoint cyclic permutations

g =01""...-0m

each 0, ,p=1,...m determines some cyclic excursion on the graph J(o) , the steps
of the excursion correspond to the terms 2 /(1 + |z; — Z5(;)|) in our estimate.

Since the graph 7 (o) 1is connected, the path of every excursion intersects the path of
some other excursion, and after several switches we can go from one path to another

( otherwise we would have a nontrivial maximal connected component of 7 ).

Therefore we can combine these paths into one big cyclic path ( with possible selfintersec-
tions ), going along which we will visit all vertices of J . Again, to each step of the path,

7 — 1 there corresponds a term

2

e — T; €T, T+ S|, Ty €T, T+ S
1+|$i_$g(i)| 2 [] J ] o(i) [l l ]

in our estimate.

The whole number of steps of the constructed path is at most 3 [ +m . Now we will

3See Remark after the end of the Lemma’s proof
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eliminate all possible selfintersections. If j is the current position of our walk, n is the
previous one and [ is the next one, and the vertex j has been already visited before, we
replace two steps n—> j, j— [ byone n — [ in the new ,modified walk.

Using the inequalities

2/(1 + |z — z4(|) < const(s) 2/(1 + |zj — z]),
2/A+ ]z —yl)-2/(I+y—=2)) <2-2/(1+ |z —2|)

and subsequently eliminating from the path sites visited before, we finally obtain the path
without selfintersections, which is given by some cyclic permutation 7€ S; .
This leads to (54) and the inequality

/

[zj,2j+s] )™

L+m sin 7 (x; — To(;))

H Nsin(m(z; — 24(3))/N)

=1

d.’EH_l . dl'H_m

1
(‘—|j=1

!
< (l.s)m(const(s))Hm Z H .

e R A 2O

The inequality
N
/ 2/(1+ |z —y|) - 2/(1+ |y — 2|) dy < const log(N +1) 2/(1 + |z — 2|)
0

implies

2/(1+|zj — z7()|) dz1...dzy < const Nlog! 2(N +1)

l
=1

[o,Njt 7

and

1
| / Tim (T1,...27) dzy .. dzy| < ﬁl!(l—l—m)!(l $)™(const(s))T™Nlog"2(N+1) (55)
[0,N]!

Finally, to get an estimate (51) on

00
| / T (331,...331) d$1d$l| SZ / ‘Tl (331,....1‘1)|d331...d.7)l
0

[0,N]! [0,N]!
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one can use (55) for m < const(s,l,e)log(N + 1) , where const(s,l,e) is small
enough , and (53) for m > const(s,l,e)log(N+1) n

Remark The trivial bound for the number of steps of the path (at most [+m ) is enough
for our purposes now. However in the proof of Corollary 1.5 we will need an estimate that
the number of steps is bounded by some number, depending only on [ .

To accomplish this we have to eliminate some loops of the path (i.e. replace the corre-
sponding multipliers by 1 ). Namely we eliminate a loop, if after throwing it out, we still
have a closed path,visiting all vertices of 7 . After such procedure completed we arrive at
the path with at most le_lj +1—-1=1I(I+1)/2 —1 steps.

Formulas (48) ,(49) ,(51) give us the following result :

2k

B[ TGidais) — Bx(er,dzi,s) =
p.pE
mini#j \zif:cj|1>s
= (2k-1N( / gn(s,z)dz )F N* + O (const(s,e)NkiH's) (56)
|z|>s

In the second part of the proof of Theorem 1.1 we take into account the contributions to
E (nn(s) —E nn(s))**  from the diagonal ( z; = zj ) and "near-diagonal”
( 0<|z; —zjli <s ) terms.
We introduce an equivalence relation on the set of particles {z1,...x9;} , calling z;, z;

the "neighbors”, if there is a sequence of particles

Tiy = T, Tiy,y . .- Tify = Tj

such that
max T —xi |1 < s. 57
max [z, (57)

We claim that the contributions to E (ny(s) —IE nn(s))** of order of N* appear only
when each equivalence class of (57) contains one or two particles.

Assume that we have [ two-element equivalence classes, say
{z1, 22}, .. {z2r 1, T2}
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and 2k — 2] one-element equivalence classes  {Zgi11}, ... {Tx}

Since
X(xia d.’I?i, 8) X(‘Tja d.’l?], 8) =0

if 0<|zi—zih <s and always

2 (i, dzi, s) = x(2,dz;, 8)

2%
IE / I (@i dzi, s) — Ex(zs, dzg, s)) =
[0,N 72" !
{z1,22},- {z21 1,221}
{z2141}s--{®2r}
=B / II [ —Ex(%2i-1,dz2i-1,8) IE x(22;, dw2;, 5)
=1

[0,N]?k
{z1,22},. {221,221 }
To141}s-{Ton

—  (x(x2i—1,dx9i_1,5) — Ex(z2i_1,dx2i_1,5)) E x(x2i,dx9, )
- (x(w2s,dzi, s) — Ex(22i,dx2s, 5)) IE x(22i—1,d22—1, 5)
+ IE x(x2i,dxo;, s) 6(zoi—1 — x2;) dxoi 1 ] :

2k
H (x(zj,dzj, 5) — Ex(z;, dzj, s))
j=20+1
- (FN(S) - 23F]%](S))l (2]{; — 2l — ].)” ( / gN(s,a:)dx)k*l Nk + O (COTLSt(S)Nk71+E)

|z|>s

All such choices of equivalence classes produce

- k) (20)! UIRY. 2k—m S
Z 2k—2l)'l' 2[ <FN(3)_23FN(3)) 2k 1 / gNsa:dx - N
=0 2o

+ O(const(s,E)N’“_1+5) =
k
= (2k— 1! | Fn(s) — 2sFx(s) + / gn (s, x)dz Nk

|z|>s
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+  O(const(s,e)N*11¢) (58)

If some equivalence classes have three elements or more, the contributing terms to
N

E (ny(s)—IE ny(s))** will be bounded by some power (say [ ) of Fy(s) [ 1dz ,multiplied
0

by the n-dimensional integral (n < 2k —2[ )

n

E J[ (x(i,dwi, s) — Ex(xi, dzi, s))|

[0, N2k !

l’ﬂlnl#] |$i—.’EJ' |1>5

and multiplied by the areas of some polyhedrons of size s . It follows from (39) , (40)
that these terms are of order of O(N*~1) . Thus

I ((nN(S) - E 77]\7(3)) /N1/2)2k = (Qk - 1)!! (bN(S, 3))k + O(N—l—l—s)

= (2k— 1)1 (b(s,s))* + o(1) (59)

Similar calculations yield

2k+1

E ((nv(s) — B qn(s)) /N'/?) o(N /2t

The convergence of the mixed moments
n
E T ((av(si) = B nw(si) /N'?)
1

to the moments of the Gaussian random process &(s) can be proven in the same way.
Since the convergence of all moments to the gaussian ones implies the convergence of finite

dimensional distributions, Theorem 1.1 is proven. =

4 Proof of Theorem 1.2 and Corollaries.
We start with the proof of Theorem 1.2 . Since

En(s) = En(s)| < NP2 (60)
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the finite-dimensional distributions of € ~n(-) also converge to those of limiting Gaussian
process &n(-) as N — oo , and for the functional convergence of probability distributions
of €n() on C][0,00) it isenough to prove the tightness (relative compactness ) of any
sequence of distributions of &y (-) on C [0,T], T is arbitrary large, as N, — oo

([32] ).  Let us define for continuous function f € C[0,7] and ¢ >0 , the modulus

of continuity as
wr(0) = sup { |f(s) = f(®)] : 0S8t <T, [s—t/ <6}

The classical criterion of relative compactness ( [32] ) tells that the family {P} of
probability measures on C[0,7] is relatively compact iff

(i)  for each arbitrary small positive « there exists an A(a) , such that

P{f:|fO)|>A}<a , for any P. (61)

(i) foreach «, >0 there exists some (e, 8) such that

P{f:wid)>B}< a, for any P. (62)

The results of O.Costin and J.Lebowitz ( [6] ) tell us that
En(0) = O ((log N/N)'/?)

which gives us (i). To prove (ii) we need the following lemma :

Lemma 4.1 There exist some constants c¢1,co depending on T >0 , such that
P { En(t) —En(s)] < cr(ft — s+ N7YY [ Vv t,s€[0,T]:|t—s| < }
> 11— ¢y (645 + N"Y/201og N) (63)

Assuming Lemma 4.1 is proven , we can quickly finish the proof of Theorem 1.2 :
Let us choose N,,d, such that

aNi <2 | sl < p)2

colog N, NV < a2, P AP a/2
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For any fixed probability distribution P on C[0,7] and arbitrary « ,8 >0 one
can find some d(«,3,P) >0 such that

P{f:wi(d)>f}< a

Let us choose such a ¢ for any §~ N; »IN; < N, , and define the final ¢ as the minimum
ofsuch d&’s and 4, . Condition (ii) is satisfied .The family of probability distributions
given by €y, (-) is tight. Theorem 1.2 is proven.

Now we shall prove Lemma, 4.1 .

First, let us note that if ¢,s belong to some interval of length csN=3/% ¢35 <1 : s,t€
[s',s" + c3 N~3/*] then

En(t) = En(s) + Fn(t) N'/? — Fy(s) N'/?
< éN(sl _I_C3N73/4) _EN(SI) +FN(8I+C3N73/4) N1/2 —FN(SI) N1/2

o
IN

which implies
En () — En(s)] < IEn(s' + ea N™3/%) — En(s")| + NY/2 -2 Variation(y, o, y-s/s) (Fn (5))

Functions Fy(s) are uniformly continuously differentiable in s , on any finite interval.
Indeed

S 1 S S
(d/ds)Fn(s) = pgN)(O, s) —/0 pgN)(O,S,LIJg)d.Tg—i- 5/0 /0 pgN)(O,s,mg,x4)dx3dx4—
1
< Z HSIC = exp(s).

k=0

This proves (64) . Now we divide the segment [0,7] into 2F disjoint subsegments

AP =1 T/2k, 1+ )T/, 1=0,1,...2F—1

33



with &k ranging from 1 to [(logT-l— 3log N)/ log 2] +1 (ie. the length of Al(k) is
always greater than %N ~3/4 ). Using the Chebyshev inequality and (59) we obtain :
E[¢n ( !
P (len(t) = Ens)] > [t — s['/20) < | i 1 3|1/5( 2)

3 (b (t,t) —bn(s,t) — b (t,s) — bn(s,s))? + const(T,e) N~1+¢
- |t — s|'/>

Covariance function by(s,t) can be represented as the sum of two terms :

(/ gn(s,t,z)dzx + - gn(s t,x)dr — (s + t)Fn(s )FN(t)) + Fn(s Vi)

where the partial derivatives of the first are uniformly bounded on any compact set ( the

proof is similar to that of the case of F,,(s) since we have the estimates of the type (32)
on g (s,4,2) and (9/05)gw (s5,,2), (8/00)gn (5,1,7)
This implies

P (|€n(t) = En(s)] > [t — s'/?°) < const(T) ((t — 5)2 + N719/20) /|t — o|'/®

where t¢,s€[0,7], and we choose ¢ =1/20;
which gives us (we denote all constants appearing in our calculations by const(T) ) :

2k 1
Pn ( |_| {|§N((l + 1)T/2k) —&n(l T/Qk)| > (T/Qk)l/%}) <

1=0

(T/zk)Z_l_Nle/QO
(T/2k)1/5

< const(T) ((2_’“)4/5 + N‘19/20N18/20) < const(T) ((2—k)4/5 +N—1/20)

< 2k const(T) < const(T) ((2—lc)4/5 +N—19/20(2k)6/5)

and

logT+% log N
[—Tegz 11 2k

Py L LI {len(@+1)T/2%) —en T/2Y)] > (1/25)1%0)

k=ko =0

< const(T) ((27’“0)4/5 + N /20 10g N) (65)
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Choosing ko such that 2%+l < § < 27%0%2  and combining (65) with (64) and
(60) , we finish the proof. B

Corollary 1.3 can be proven by using the same machinery as in Theorem 1.1.

To prove Corollary 1.4 one has to consider the continuous functional on C[0, o) :

Gr(f) = sup [f(s)];

s€[0,T]

apply Theorem 1.2 and take into account that

lim  sup [€n(s) — En(s)| = 0.
N—oo s€[0,T]

Before we proceed with the proof of Corollary 1.5 we want to obtain an estimate on

NIy
sup [ n(Iy,s) ~ F(s) T2,
[0,00) &

Lemma 4.2

N|I I
sup [ (I, s) — F(s) M| = ove I
[0,00) 27 2m
for any ¢ > 0.
Proof of Lemma 4.2
Assume first that
s < (log N)'/? : (66)
N-1
_1)n B o
v -Fel = XS i000 - s300)
n=0 ' 8
o0 _
(_1)n 1/ (o0) N g=
+ — 0,z) d
ngN n! [0,5]" pn-l—l( 1‘) €L
N-1 N
< ~ Volume ([0,s]") sup |o{)(0,7) — pi) (0, )]
n=0 n: TE[O,S]”

+
M8
SRR

Volume (]0,s]") -1
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Using the inequality

sin wx sinx
— t (s/N)?
N sin(wz/N) T ‘ < const (s/N)

sup
|lz|<s

and the representation of pgi)l, pfﬁ)l as determinants (6) , (7) we have

sup |oV)(0,2) — pST)(0,2)] < const (n+ 1) (n+1) (s/N)?

z€(0,s]™

Since pgi)l, pgloj)l are not greater than 1 by absolute value, we finally arrive at

N—-1 n o Sn

|[Fn(s) — F(s)] < z % min (2, const (n+1)!(n+1) (s/N)Q) +Zﬁ
n=0 """ N !
= o((s/N)'"%) + O(s"V/ NY)
forany &>0 . Thus

sup  |Fn(s) — F(s)| = o(N7'*)
5<(log N)1/2

The function F'(s) decays at infinity superexponentially :
log F(s) = —n?s?/8 + O(s)
(see [22],[21],[26] ),that gives us

F((log N)'/?) = o(N~%/%)

(67)

(68)

(69)

Since 0 < Fy(s) < Fy((logN)Y/2), 0 < F(s) < F((log N)'/?) for any s> (log N)/2,

(67) and (68) establish

sup |Fy(s) — F(s)| = o(N ")

[0,00)
N|Iy|, e lIN|
[(S)}g)) IE n(In,s) — F(s) o | = o(N 27T)
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|
We finish this section with the proof of Corollary 1.5 .
Proof of Corollary 1.5
Since the tails of distribution functions F(s), Fy(s) are small enough ( see (67) ,
(69) ), we have to prove only that

1
sup [In(In,s) —IE n(In,s)| :0((N| N‘)1/2 —|—g)
0555(10gN)1/2 o

To do this we will estimate the moments of 7n(Iy,s) —IE n(Iy,s) , when s is allowed to
grow up slightly, s < (log N)'/?

Lemma 4.3 For any even integer 2k , arbitrary small ¢ >0 and 0<s < (log N)l/2

there exists some constant c(e,2k) , depending only on ¢ and 2k , such that

2% [In]) e
E (In.s) — B nIn.s)* <cle2k) (N 5Y)
s
Proof:
Again, without a loss in generality, we can assume Iy to be a unit circle, Iy = [—m, 7] .

Examinating the proof of Theorem 1.1 we realize that all what we need is the following

generalization of estimates (51) from Lemma 3.2 :

sup
0<s<(log N)1/2

rl(:cl,...:vl,s)darl...dacl‘ < const(e,l) N¥2 +¢ [ >2

[0, N7
mini;é]‘ |xi—mj\1>s

(71)

Going along the lines of calculations from Theorem 1.1 ,we will clarify the dependence on
s of the constants appearing there. We remind that we derived the formula for the Ursell

functions r; of the s-modified random field in (50) as

N-—Il (_1)m ()
1"[(.’131,....’121,3) = Z ) / pl+m,l($1""xl;"'xH—m)de-l ...d.’IIH_m (72)
m=0 )
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where the integration is over ( L [zi, 2 + s )m
For simplicity we will consider the cases [ =2 and [>2 separately.
Let us take first [ equal 2. Rewrite (72) :

N-2
_1)ym N
ri(z1,ze,8) = E ( m? / pg+2n’2(x1,m2,...x2+m)dm3...d:c2+m
m=0 '

(3 [@s,wits])™

The estimates (30) , (31) give us

2
Z)| < min | 2, (m +2)!
|p21m2(Z)| < ( ( ) 1+ max (|z1 — z2|1 — s, 0)2)

Using the inequality
1/ (1 + max(z — 3,0)2) <(2+5Y)/1+ 2%

we obtain

S]]

|/)2+m,2 ()] £ min (2; (m + 2)! 2(2—+SQ)>

1+ |LE1 — $2|%

) (m+2)! )
< 2(2+4+1logN 1 (1; T 2
N-2
1 . (m +2)! )
< —(25)™ 2 (2 +1log N L, ————————
[ro(z1, z2)| < 2 m!( s) (2 +1log V) mm( "4z — x0f?

Fix some >0 .If |z;—m)1 < N¢/2 | we arrive at
Ira(z1,22)| < 2 (2+log N) exp(2s) = 2 (2 +log N) exp(2(log N)'/?)
If |21 —x9l1 > Ne/2 , then for any e; >0
(25)™ = o(|z1 — 2|1 T¥1) if  (m+2)! = O(1 + |z1 — 29]?)
and

1 )1/25/4

<2(2+1logN t —
[r2(21, 22)| <2 (24 log N) cons (8)<1+|x1—x2|%
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Integrating the r.h.s. of (74) , (75) over
{$1,$2 € [OaN]a |331 - '1.2' < (Z)NE/Q}

we obtain the desired result. The case [ > 2 will be treated in a similar fashion. Again
the inequalities (52) , (54) are crucial in our calculations. We keep the former and
slightly refine the latter. Namely, using the procedure described on the pages 27-28 , section

3 and Remark on the page 29 , we can estimate each term in p;,,; as

+m 2

1 + max (\wij —zj. |1 — 5,0)

Sinm(z; — T4

H N sin(7(z; — 1))/N

1

.’:1»

k=1

where o € S;y,, issuch, that J(o) is connected, and
Ji =2 Ik = 1

is some closed path on J(o) with possible intersections, visiting all vertices {1,...1} ,
with the number of steps K not greater than [(Il +1)/2 —1 . Using the inequality
(73) and eliminating possible selfintersections as explained in section 3,we arrive at

Hm sing(z; — xg(i))

l
‘HNsm )/N)‘ (2(2+s ))(l+1)l/271 H

i=1

2
1+ |zj — x5l

(76)

where 7 is some cyclic permutation of integers 1,...1.
The estimates (52) , (76) imply

l
_ 2
< E min (const(l), (m+1)! (2 (2+log]\/'))(l+1)l/2 1 H T r—— )
]

TES] j=1

and
Ir(z1,...71,8)| < const(l) (2 (2 + log N))HD/2L,

® 1 ! 2
> > = (s)™ min(1; (m+0)! ]
r€S; m=0 m! j=1 1+ |25 — 2,5l

) (77)
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Fix re€§ .1If
l
H ( 14+ |.’13j — $T(j)|1) < N/ (78)
7j=1

the corresponding summand in  (77) will be estimated from above by
const(l) (4 + 2log N)HDY2=1 exp(l (log N)'/?) (79)

If

(14 |z — zryl1) > N/GD (80)

l
=1

J
then for any &1 >0

! l
m 1/24¢ . 2
(9™ = o IT (1 faj = 2> it (m+01= 0 T (=)
j=1 j=1 ()

and the corresponding summand is not greater than

1/2 —£1
l
1
const(l) (4 +2log N UHDI2=1 const(ey 81
@ ( ) (1) j:I[11+|mj—mT(j)|1 (81)

for any &1 >0 . Integrating (79) , (81) over the domains (78) , (80) we obtain
the desired result. Lemma 4.3 is proven . B
Using Lemma 4.3 and the Chebyshev inequality we conclude that for any n >0, >0
there exists some constant, depending only on ¢, n such that for any fixed s,0<s <
(log N)'/2

Px { |Inn(s) —IE nn(s)| > 1/3 N'/2 ¥} < const(e,n) N~" (82)

Dividing the segment [0, (log N)'/2] into M = [(log N)/2N?3/%] segments
[siysit1] , si=(log N)Y/2i/M ; i=0,...M —1
we estimate the probability

P { sup [y (si) — T nx(si)| > 1/2 N'/? +9}
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from above by the sum of probabilities :

Pn { sup|nn(si) — E nn(si)| > 1/2 N1/2 +5} < const(e,n) (logN)l/2 N +3/4 (83)

To finish the proof we claim that variations of nxy(s) on the segments [s;,s;4+1] are

negligibly small,as well as the tails of 7y (s) and IE ny(s) when s> (log N)/?

Namely,similar to (64)

Variations, 5,1 Nn(8) = |nn (si+1) — v (si)| <

< Inn(si+1) —E nn(sit1)| + [nn(si) —E nn(si)| + Variation, ;.. 1 E nn(s) (84)

and by (67) , (68) and smoothness of F(s)

Variation, 5,.,] Enn(s) < . (lsu]%m] | E nn(s) — N F(s)| + N Variation, s, ) F(s)
bl Og
= o(N®) + O(N'/% (85)

Estimates (83) , (84) , (85) imply

Pn { sup Inn(s) —IE nu(s)| > NY2 ¥} < const(e,n) N~"3/*(log N)/?
0<s<(log N)1/2

Choosing n > 7/4 we have
o
Z P { sup Inn(s) —IE nn(s)] > N1/2 ¥l < oo
N=1 [0,(log N)1/2]

and applying Borel-Cantelli lemma ([33] ) we find that with probability 1 there exists some
integer Ny , such that for any N > Ny

sup [nn(s) —En(s)| < NV Fe (86)
[0,(log N)!/?]
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Since for s > (log N)'/? we have

v (s) < n((log N)Y?) |
E nn(s) =N Fy(s) <N Fy((logN)'/?) ,
N F(s) <N F((log N)'/?)

and

N F((logN)'/?) = o(N711%),
N (F((10g N)'/%) = Fn((log N)'/%)) = o(N°)

(see (69) , (70) ) ,we can extend the sup in (86) to the whole real axis :

sup |nn(s) —E ny(s)| < const(e) N2 +¢
[0,00)

Corollary 1.5 is proven. R
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5 Orthogonal and Symplectic Groups.

The results formulated in Section 1 are valid for the other Classical Compact Groups
as well. The key factor here is the Vandermonde determinant nature of the density of the
distribution function of eigenvalues. Formulas for the distribution of the eigenvalues with
respect to the normalized Haar measure are classical( see ( [5] ) ). However it has been
noted only recently by N.Katz and P.Sarnak ( [20] ) that the corresponding n-point corre-
lation functions have the form of determinants, similar to (6) . For the Unitary Group
this fact was known for more than thirty years, back to pioneering papers by F.Dyson
,M.Gaudin and M.L.Mehta ( [2] ,[4] ).

Below we write down the formulas for the distribution of the eigenvalues and n-point cor-
relation functions for SO(2N), SO(2N+1), USp(2N),0_(2N+2) .

The SO(2N) case

The eigenvalues of matrix M in SO(2N) can be arranged in pairs :

exp(i61) , exp(—if1) ,...exp(ifn) , exp(—ifn)
OSQISQQS---QNSW (87)

The probability distribution of eigenvalues is defined by its density :

Py (61,...08) =2 (i)N H (2cos 6; — 2cos §;)? (88)

2 1<i<j<N

In the rescaled coordinates
0;

zi= (2N 1)

; 0<1‘1§...1‘N§N—1/2

n-point correlation functions are equal to

RT(lN) (.2’,‘1, ces l’n) =

_ de sinm(z; — x;) sinm(z; + ;)
= det ((ZN — 1) sin(n(z; — z;)/(2N — 1)) + (2N — 1) sin(w(z; + z;) /(2N — 1)))Z _
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Note the similarity of (89) to (6) . Since

sinm(z; + ;)
(2N — 1) sin(n(z; + z;) /(2N — 1))

is small when x;,z; > 1, n-point correlation function (89) can be considered as a small

perturbation of

sin(z; — ;)
det ((QN — 1) sin(7(x; — z;)/(2N — 1))>i,j:1,...n -

The SO(2N+1) case

The first 2N eigenvalues of matrix M from SO(2N+1) can be arranged in pairs as in
(87) . The 2N + 1** eigenvalue equals 1. The probability distribution of eigenvalues is
defined by its density :

N
Pn(61,...0N5) = (2/m)N H (2cos B; — 2 cos 0;)? H sin?(6;/2) (91)
1<i<j<N i=1

In the rescaled coordinates
z; =N/ ; 0<z1<...z2xy <N

n-point correlation functions are given by the formula

(N) _ sinm(z; — ;) B sinm(z; + ;) 92
R (@1, o) = det <2N sin(w(z; — x;)/2N) 2N sin(w(z; + x;)/2N) =l (92)
The USp(2N) case
The eigenvalues of matrix M in USp(2N) can be arranged in pairs :
exp(if1) , exp(—ib1) ,...exp(iy) , exp(—ify)
0<60:<0,<...0v<m (93)
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The probability distribution of eigenvalues is defined by its density :

N
Pn(01,...05) = (2/7)N H (2 cos 0; — 2 cos 0;)? H sin?(6;) (94)
1<i<j<N i=1

In the rescaled coordinates
z;=2N+1)0;/2n) , 0<z1<...zxy < (2N +1)/2
n-point correlation functions are equal to

R%N) (:El, e xn)

= det ( sinm(z; — ;) B sin(z; + ;) )
(@N + Dsin(n(z; — 2;)/@N +1) 2N + 1)sin(n(e; +2;)/2N +1)) ) _

The O_(2N + 2) case

The first 2N eigenvalues can be arranged in pairs, similar to  (87) , the (2N + 1) and
(2N +2)" eigenvalues are +1 and -1. The formulas for Py (1,...0y) , RV (z1,...2n)
coincide with those from the USp(2N) case.

The following universal result is valid for all cases, considered above.

Proposition 5.1 Let Iy be an arbitrary subinterval of [0,7] ( [-m,0] ) ,such that
the average number of eigenvalues hitting Iy tends to infinity ( i.e. N |Iy|/m — oo ).
Then (n(In,s)—IEn(In,s))/(N |IN|/7r)1/2 converges in finite-dimensional distributions
to the Gaussian random process of Theorem 1.1. The Theorem 1.2 and Corollaries 1.3, 1.4,
1.5 also hold.

We have to examine two aspects of the proof of Theorem 1.1 : combinatorial and analytical.
Since n-point correlation functions (89) , (92) , (95) still have the form

det(KN(fL‘i, .’I)J))

1,j=1,..n
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all combinatorial considerations (for example formula (50) , expressing Ursell functions
of the s-modified random field through the n-point correlation functions of the original

random point field) remain the same. From the analytical point of view, we must treat

R (21, 2) = det sinm(x; — ;) n sin(x; + ;)
n ) e(@N+mﬁMﬂm—%V@N+M)(HHmHMﬂm+%V@N+M)
p=—1,0,1, as a small perturbation of
@N4D) (5 2) — det sinm(z; — ;)
Pr, (x1,...2n) = de ((2N + p) sin(n(z; — z;)/(2N + p)) ii=1.m

Namely, if z9,...Z14m € [z1,21 + 8] , then

R, — pE0P) < min (25 (m+ 1) (m+1) 2/(1+ [21]1) )
and
2N+p
T3 S N-1 (—1)™ N
E nn([0,7],8) = / dzxy Z ' / Rg+2n(:v1,x2,...:c1+m) dzry...dr1im
0 m=0 m: [.Z' m
1,Z1+5]
2N+p
2 N-1
_1)ym
+ / dxl Z ( m? R%I_in(ajl, Ly - - 1‘1+m) d.TQ . dl‘1+m
wap_ o ™=0 [21,(2N+p)/2]™
2N+p
2 N-1
_1)m
= / dzy Z ( 3 / pﬁ_]\,]nﬂ) (1,%2,. .. T14m) dTa...dT14m
0 m=0 m [z1,21+s]™

+ Remainder term.

where the remainder term can be estimated as

2 N-1
. 1.
|Remainder term| < / dzxy Z i min( 2; (m + 1)! (m+1) 2/(1 + |z1]1))
0 m=0 )
+ s exp(s)
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where |z|; = min( z, N +p/2 —z ) , which implies
IIE nn([o,7],8) — N Fanyp(s)| < const(s,e) N°®
for any ¢ > 0 . Similarly to calculations in the section 4 one can show that

sup |IE (0,7, 5) — N F(s)] = o(N'/2 +9).

[0,00)

Calculating the variance of 7 ([0,7],s) we note that if

T3,...Topm € [T1,21 + 8] U [x2, 22 + 9]

then
RS — D)
< min(4 (m+2)! 27 (2 max(|x11— za—50) 1+ 2|(ac11—l— 2272
1
* ) )
and
|:Z;: (_Ti?m / Rg]izng(xl,xg, e Toim)

([z1,z1+s]U[z2,22+5])™

2N+p
- pg+m,2)($17$25---$2+m) d$3...$2+m|

< const(s,€) (1/(1+ |21 — za]))" /% (1/(1 +2|(z1 + 22)/2]1))" </

The last inequality leads to the estimate
Var nn ([0, 7], s) = ban4p(s,s) N + o(N®)

valid for any >0 and fixed s .

The calculation of higher moments (i.e the proof of lemma 3.2 for [ > 2 ) does not
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require any alterations. B

Since the distribution of the eigenvalues on [—7,0] is the mirror image of that on [0, 7]
T]N([—Tl', ﬂ']a 3) =2 nN([Oa 7T]7 S) - (Oa 1or 2)

and  (nn([-m,7],s) —IE nn([—m,7],5))/ (2N)'/?2  converges in finite-dimensional distri-
butions to  21/2 £(s) .

As soon as we proved Theorems 1.1 , 1.2 for SO(2N+p) ( U(N) ) the same results hold
for O(2N+p) , ( SUN) ):

Since ny([—m,7],s) is invariant under the matrix multiplication by —1

(or by exp(i0) in the unitary case)

/ % ([=7,7],s) d Haar(SO(2N + p)) / n%([-m,7),s) d Haar(O2N +p)) ,

SO(2N+p) O(2N+p)
[ k(s dHaar(SUW) = [ a((-ml,s) d Hoar (@)
SU(N) U(N)

Clearly, the analogues of Theorems 1.6,1.7 are valid for the random point field on the

semiaxis [0,00) with n-point correlation functions given by the formula

pn(T1,...2,) = det (Sinﬂ(wi ) N sin 7 (x; —I—acj)>
m(z; — xj) m(z; + ;) -

6 Circular Orthogonal Ensemble.

C.0.E. ( log-gas (1 ) with the inverse temperature § =1 ) corresponds not to a matrix
group , but to the Symmetric Space U(N)/O(N) (see [22],[4] ):

Pni(01,...0n) =constyy [[  |exp(ifk) — exp(if;)| (96)
1<k<j<N

is the density of the eigenvalues distribution of M M*! | where M € U(N)/O(N) .

It is generally assumed, although not proven rigorously, that the short-range correlations
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between eigenvalues of quantum systems, whose classical analogues are strongly chaotic
(geodesic flows on the surfaces with negative curvature, Sinai billiards, Bunimovich stadi-
ums ) exhibit C.O.E. statistics ( [34] , [35], [36] ). = The point-correlation functions for
C.O.E. are calculated in [4] . They are again of determinantal nature, only are now the
determinants of some n X n quaternion matrices. We will state these results in a more

precise way. Consider quaternions as 2 X 2 matrices with complex coefficients

[ a b
=1\ ¢ d )’
The quaternion units are

0 ) 0 -1 7 0
d—a b+c c—b
I ] 7 — i
T PR

Cutting 2N x 2N  matrix A(M) with real or complex coefficients into 2 x 2 blocks,

and
a+d

q:

we can view it as a IN X N quaternion matrix M . Quaternion-determinant of M is
defined as l
QDet M= > (=17 [] 1/2Tr (Mi,s, Miyi, --- My, (97)
cESN 1

where the sum is over all permutations, and the factors in the product correspond to the

decomposition of ¢ into cycles. If M is self-dual, i.e.
Mji:(TT‘ Mz]) Id—Mij, ’i,jzl,...N,

then after the agreement on the order of factors in ( 97 ), the summation over all cyclic
permutations will give us a scalar matrix, and we can omit taking the trace in the formula.

Moreover, in this case
(QDet M)? = det(A(M)). (see [14],[37],[22])
Define the function Yy (r) as a quaternion

_ [ Sn(r),  DSn(r)
In(r) = ( TSn(r) s Sw(r) ) :
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where

—1/24N/2

in(Nr/2
Sv) =Y explipr) = ST/ (98)
VN2 sin(r/2)
—1/2+4N/2
27 27 . .
Dn(r) = W(d/dr)SN(T) =N > ip exp(ipr) (99)
1/2—N/2
N i _1 .
JSn(r) = —— Z [7 sin(lr) (100)
T 1/21N)2
Then n-point correlation functions for the Circular Orthogonal Ensemble are
p%N)(acl, cooxp) = (27) " QDet (on(z; — a:j))i,jzl,___n (101)

We immediately see that in complete analogy with C.U.E. case ( formula (15 ))

iz, ... 2) = (-1)"1(2n)” Z Y(zo —x1) Y(rs —x2) ... Y(21 — 24) (102)

are the corresponding Ursell functions.
Formulas (23), (24), (27), (42), (46) for the correlation functions and (50) for the Ursell
functions are still valid, and so are all other combinatorial aspects of the proofs. The main

analytical difficulty is that we are not able any longer to claim

@r/N) oM (21, ... 3,) < 1

since
SN(.TZ'—xj) ) DSN(:EZ'—.TJ') )

A(M) =
(M) <JSN(-Ti_$j)a Sn (@i — ) ij=1,..n

is not a positive-definite matrix. More than that, I do not know how to show that
(@2n/N)" pi (21, 2a) < O (103)

where C' > 1 is some constant .
However for the purposes of proving Theorems 1.1 and 1.2 more trivial and easy to prove

estimate is enough :
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Lemma 6.1
0 < @2r/N)" pN) (2, ... 2,) < (Cn)™?

where we can take C = 200.

Proof:

Since M = (on(z; — xj))ij=1,.n  is a self-dual matrix,

((%/N)n ptN) (xl,...xN))2: (QDet (%M))Q = det %A(M) i

The elements of A(M)/N are uniformly bounded by some constant ( 10 is enough)
|Sn(r)/N| <10, |DSn(r)/N| <10, |JSn(r)/N|< 10
and

Tr (%A(M) - %A(M)t < 102(2n)2> ,

which implies

1 1 t 2 2n
_ . <

det - A(M) - T A(M)" < (10°20)
1

@2 /N)" oM (1, ... z,) < (200n)"/2 .

In the rescaled coordinates y; = (N/2m)x;, y; € [0,N], i=1,...N,
the elements of 2 x 2 matrix Yx(27y/N) decays at infinity as 1/y

| %S 2my/N)| < const/(ly| + 1)
|%DSN(27ry/N)| < const/(|ly| + 1)

1
|NJSN(27Ty/N)| < const/(ly| +1)

Using these inequalities and the one from Lemma 6.1 we can repeat step by step all ar-

guments in the proofs of Theorems 1.1 and 1.2. The correlation function of the limiting
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gaussian process £(s) in the case of C.O.E. is different from the case of C.U.E.
In particular

2
Var &(s) = A}i_r)nooVar nn(s)/N is 71r_2 24+ 0(s%) as s >0 .

However it is a reasonable conjecture that after choosing the natural time parameter ¢ =
F(s) the distribution of the limiting Gaussian processes in the C.U.E. and C.O.E. cases
should coincide.

Remark The proof of Corollary 1.5. requires the estimate of the type (103), which we
are not ready to claim at this time.

7 Generalizations and Concluding Remarks.

A) Our methods allow direct generalization to the case of k-level spacings distribution.
Namely, one can define a random variable nn(l,s) as a number of eigenvalues that
have exactly | neighbors within the distance 2ms/N to the right. (The distribution of
nn(0,8) has been studied in our paper ). It is absolutely straightforward to prove similar
results for the k-dimensional random process

(0w (0,8) =B n(0,8))/ NY2,...(nw (k= 1,5) = B (k — 1,5))/ N'/?)
which in particular would tell us about the global k-level spacings distribution , since the

number of k-level spacings greater than 27s/N equals to

k-1

Z nn (1, s).

=0

One can also count spacings with the help of smooth functions G : RF — R with
compact support. If 7; =(0;41 —0;)N/(2w) are normalized spacings, then the central
limit theorem holds for the statistics

N
Gg= ZG(Tj,Tj+1, o Tjtk—1) as well.
7j=1
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B) All our results are valid for the general random field defined by n-point correlation
functions (11)

pu(@1, ... on) = det (0(zi — x5)); iy >
provided ©(z) decays at infinity as O(1/x) . In particular similar results should hold
for the Gaussian Orthogonal and Unitary Ensembles ( see ([22]) for the definition of the
ensembles) in the bulk of the spectrum.
C) In the case of Circular Symplectic Ensemble ( 3 =4 ), n-point correlation functions
are again given by the quaternion-determinants ( 101) with

1 Son(r), DSon(r)
Tn(r) =3 < [gZN(r) : 521\/2(];]‘) ) ’

where Sy, DSsny are defined in section 6 and

—1/24N

ISon(r) = (N/7) Z p~sin(pr) = JSon(r) + ean(r),
1/2—-N

where
(—=1)™N, 2rm <r <2m(m+1), m=0,£1,+2,...
en(r) =

0, r=21Tm

(4], [22] ). One can see that in the rescaled
coordinates y; = (N/2m)z;, ¢=1,...N, the quaternion component

2y|
L 1 . sin(7rt)
IS(y) = Nh_r)réo —QNISQN(QTry/N) = sgn(y) - / - dt
0

has nonzero limits at +oo, which in particular implies that limiting two-point Ursell

ro(0,7) = — (sin(27rx)>2 N % 7#& (d)dz) (sin(27mc))
0

function

2nx 2nx

decays at infinity as 1/x , not 1/z? ( which is the case for C.U.E and C.O.E. ). In
general, more subtle arguments are required to prove that k-point Ursell functions decay
fast enough off the diagonals z; ==x;, 4,57 =1,...N  to satisfy the conditions of

Theorem 2.1.  'We will return to this problem somewhere else.
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