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Abstract. We consider large Wigner random matrices and related ensembles of real symmetric
and Hermitian random matrices. Our results are related to the local spectral properties of these
ensembles.

1. Introduction. Wigner random matrices were introduced by E. Wigner in the 1950s
([38], see also [3], [1])- Let {X; j }1<i<; be a family of independent, identically distributed,
centered, real (or complex)-valued random variables independent from a family of {Y;},>1
independent, identically distributed, real-valued random variables. An n x n matrix W,
is defined as

o Xi; o if i<y,
Wn(laj):Wn(]al) =: Wi,j :{ ZY% . if 'L:] (1)

We assume that E| X 5|2 = 02 < co. The matrix W, is called a real symmetric (Hermitian
in the complex case) Wigner random matrix. The Euclidean norm of any fixed column of
W, is proportional to v/n. Therefore, it is natural to conjecture that typical eigenvalues
of W, are of order of \/n. We define

1
——W,.
20+/n
The main result about the global distribution of the eigenvalues of M,, goes back to

Wigner and is known as the Wigner Semicircle Law ([38], [3], [1]). To formulate this
result, we first define the distribution function of the Wigner Semicircle Law

M, = (2)
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1 if > 1,
F(t)y=4 2[' VT—a2dx if —1<t<1, (3)
0 if —co<t<~1.

Let us denote by z1 < za... < x, the (ordered) eigenvalues of M, defined in (2). We
denote their empirical distribution function by F;,. In other words,

Fn(x):%#{lgignn\igx}. 4)

The Wigner Semicircle Law states that under the above conditions on the distribution
of the matrix entries, the empirical distribution function F),(z) converges almost surely
to F(z) for all values of . The immediate corollary of the Wigner Semicircle Law is

THEOREM 1. Let 1y < --- < x, denote the ordered eigenvalues of an n X n Wigner
random matric Wy, defined in (1). If% — v € (0,1), then = 2:% — FYy)asn —
a.s. where F(t) is defined in (3).

The archetypal examples of Wigner random matrices are the Gaussian Unitary En-
semble (GUE) of Hermitian random matrices and the Gaussian Orthogonal Ensemble
(GOE) of real symmetric random matrices. The GUE ensemble is defined as

1

A= 5(

where the entriies of B are i.i.d. complex Gaussian random variables, so that Reb; ;, and
Imb; j are independent from each other and have N (0, 0?) distribution.

B + B”), (5)

In a similar fashion, the GOE ensemble is defined as
1
A= §(B—|—Bt), (6)
where the entries of B are i.i.d. N(0,20?) random variables. Thus, A is a real symmetric
random matrix with independent N (0, (1+6; ;)o?)— distributed entries for 1 < i < j < n.
The joint distribution of the matrix entries in the GOE/GUE ensembles is given by
the formula

g

P(dA) = CP exp (ETY (A2)> dA, (7)

where § = 1 for GOE, g = 2 for GUE, and dA is the Lebesgue measure on the space of
n X n real-symmetric (Hermitian) matrices.

The other special value of 8 in (7), 8 = 4 corresponds to a so-called Gaussian Sym-
plectic Ensemble (GSE) of n x n quaternion self-dual Hermitian matrices. We refer the
reader to [23] for the details.

There are explicit formulas for the k—point correlation functions of eigenvalues in the
Gaussian ensembles (see e.g. [23], [1]). In particular, the k—point correlation function in
the GUE ensemble are determinantal and the k—point correlation functions in the GOE
and GSE ensembles are pfaffian. These formulas greatly simplify the analysis of the local
spectral properties of Gaussian ensembles.
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In Section 2, we will study the fluctuation of the k—th eigenvalue of a Wigner random
matrix about the appropriate quantile of the Wigner Semicircle law provided k,n—k — oo
as n — oo. The first results in this direction is due to J. Gustavsson ([17]) who studies
the GUE case. Later, Gustavsson’s results were extended to a sufficiently large class
of Wigner Hermitian random matrices by T. Tao and V. Vu ([34]). In Section 2, we
will discuss the extension of Gustavsson, Tao-Vu results to the Wigner real symmetric
random matrices as well as to Wishart Ensemble of sample-covariance random matrices
and Unitary Ensembles of Hermitian random matrices.

Section 3 is devoted to finite rank perturbations of Wigner random matrices

1
- W, + A,
vt

Here Wy is a random Wigner Hermitian matrix and Ay is a deterministic, finite rank
matrix. In [6], [7], M.Capitaine, C. Donati-Martin, and D. Féral studied the distribution
of the largest eigenvalues of the deformed matrix provided the marginal distribution of
the matrix entries of W), is symmetric and satisfies the Poincare Inequality. We extend
the results of [6] by lifting the assumption that the marginal distributions is symmetric.
In particular, the third moment is not necessarily zero.

M,

Finally, in Sections 4 and 5, we apply the resolvent technique to study recursive
relations for local linear statistics in the bulk and at the edge of the spectrum of large
random matrices.

2. Gaussian Fluctuations of Eigenvalues in Wigner Random Matrices. Let
1 < --- < z, as above denote the ordered eigenvalues of an n x n Wigner random
matrix Wy, = {w;;}7;_;. Without loss of generality we can assume that Var(w;;) = 1 for
1<i<j<mn,soo=1/y/2. We wish to study eigenvalue number k = k(n), zx, as k and
n — k tend to infinity with n. Consider when % — v € (0,1) as n — co. Theorem 1 states
that zj, converges, with probability 1, to a particular value corresponding to the quantile
determined by . Our goal is to study how, and on what order, z;, fluctuates about that
value.

To study the fluctuations of xy, we first consider the case when W, is drawn from the
Gaussian ensembles. The result can then be extended to a more general class of Wigner
matrices by applying a university result by Tao and Vu called the Four Moment Theorem
(see [34] and [35]).

The result below was first proven by Gustavsson [17] in the case when W, is drawn
from the GUE. Following Gustavsson’s notation, we write k(n) ~ n? to mean that k(n) =

h(n)n? where h is a function such that, for all € > 0,
h
hin) — 0 and h(n)n® — oo
n€
as n — o00.

THEOREM 2 (The bulk, [24]). Let 1 < 2 < --- < z,, be the ordered eigenvalues from
a random matriz drawn from the GOE, GUE, or GSE. Consider {xy,}™, such that
0<ki—kipr~n’, 0<0; <1, and % —a; € (0,1) as n — oo. Define s; = s;(ksyn) =
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G (ki /n) and set
Tk, — SiV2n

logn 1/2
(2,6’(17812)71
where 0 = 1,2,4 corresponds to the GOE, GUE, or GSE. Then as n — oo,

]P)[Xl < 51; . -;Xm < gm] — (bA(§17- . . ;é.m)

where Oy is the cdf 1 for the m-dimensional normal distribution with covariance matriz
Ai,j :1—max{9k1§k<j<m} Zf7,<j andAm-zl.

X, = i=1

gy

THEOREM 3 (The edge, [24]). Let 1 < x2 < -+ < xy, be the ordered eigenvalues from
a random matriz drawn from the GOE, GUE, or GSE. Consider {x,_x, }!*, such that
ky ~nY where 0 <~y <1 and 0 < kjpq — ki ~n%, 0 < 6; <. Set

Tn_k — V20 (1 _ <43\,;§;>2/3)

i 1/2 geres
(L)2/3 2logk;
127 ﬂn1/3k?/3
where 0 = 1,2,4 corresponds to the GOE, GUE, or GSE. Then as n — oo,
]P)[Xl < 515"'aXm < gm] B éA(gl,---,gm)

where ®p is the cdf for the m-dimensional normal distribution with covariance matriz
Ai’jzl—%max{ek:i§k<j<m} Zfl<j andAmzl.

REMARK 4. The GUE (8 = 2) case in Theorems 2 and 3 was shown by Gustavsson in
[17].

REMARK 5. In the case m = 1, Theorem 2 can be stated as follows. Set ¢t = t(k,n) =
G Y(k/n) where k = k(n) is such that k/n — a € (0,1) as n — oc. If z; denotes
eigenvalue number £ in the GOE, GUE, or GSE, it holds that, as n — oo,

T — t\V/2n
7 N(0,1)

( logn )
2B(1—t2)n
in distribution where 8 = 1,2, 4 corresponds to the GOE, GUE, or GSE.

REMARK 6. In the case m = 1, Theorem 3 can be stated as follows. Let k be such that
k — oo but % — 0 as n — oo and let z,,_; denote eigenvalue number n — k in the GOE,
GUE, or GSE. Then it holds that, as n — oo,

ok — V20 (1 - (%)2/3

(L)2/3 2logk )\ /2
127 Bnl/3k2/3

in distribution where 8 = 1,2, 4 corresponds to the GOE, GUE, or GSE.

— N(O,l)

REMARK 7. One can omit the assumption that k;/n — a; in Theorem 2 and the con-
clusion still holds. To see this, first consider the case m = 1. Let z; denote a sequence

! Cumulative distribution function
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of eigenvalues from the bulk with k = k(n) (where k/n does not necessarily converge as
n — o0). Since k/n < 1, there exists a subsequence, say k' = k(n;), such that ¥’ /n; — a
as | — oo for some a € (0,1). By Theorem 2, the centered and scaled eigenvalues from
the subsequence xy converge to the standard normal distribution. It follows that every
subsequence has a further subsequence which converges in distribution to the standard
Gaussian distribution. Therefore, the entire sequence must converge in distribution to
the standard Gaussian distribution.

A similar argument allows one to omit the assumption that k;/n — a; in the case
m > 1.

REMARK 8. It is also possible to extend Theorems 2 and 3 to other random matrix ensem-
bles. In particular, for the complex Wishart distribution, the p non-negative eigenvalues
Z1,...,xp have probability density given by
P
Py(z1,...,2p) =Chp H (z; — x)? H z; e

1<i<j<p i=1
where o, = n —p and C, ;, is a normalizing constant. The eigenvalues of the complex
Wishart distribution form a determinantal random point process and hence P,(x1, ..., zp)
can be rewritten as

1
Pp(w1,...,mp) = ol det (Sp (i, 7)1 <; j<p
where
p—1
Sl ) = > 08 ()0} (v)
j=0
with
(O‘p) _ ]' ap/2 Qp
¢, () = mm / exp(—z/2)L;" (z)

and L?” are the generalized Laguerre polynomials.

One can then follow Gustavsson’s proof for the GUE [17] in which Gustavsson uses
the asymptotic expansion for the Hermite polynomials. For the complex Wishart case,
the kernel S,(x,y) is given in terms of the Laguerre polynomials.

REMARK 9. Theorems 2 and 3 should also be extended to a more general class of unitary
ensembles. That is, for a Hermitian n x n matrix H with probability distribution given
by
P(dH) = Cpe " ayg
where
v(z) = y952% 4+ + 70, 725 > 0.

In such ensembles, the eigenvalues form a determinantal random point process where

the kernel is given in terms of orthogonal polynomials with respect to the exponential

weight e~ (@) The asymptotics of such orthogonal polynomials has been recently studied
using a Riemann-Hilbert approach (see e.g. [9], [10]).
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T. Tao and V. Vu extended Gustavsson’s GUE results to a sufficiently large class
of Hermitian Wigner matrices using the technique developed in [34] and [35] to prove
the universality of the local distribution of the eigenvalues in Wigner matrices. The key
ingedient of their approach is the Four Moment Theorem proved for Hermitian matrices
(see Theorem 15 in [34] and Theorem 1.13 in [35]). The technical conditions imposed in
[34], [35] on the distribution of matrix entries are the exponentail decay of the marginal
tail distribution

Pr(|w; ;| > tc) < exp(—t) (8)

for all |t| > C4, and the requirement that the first four moments of the marginal distri-
bution coincide with the Gaussian moments.

Extending the Four Moment Theorem to the real symmetric case, one obtains the
following theorem.

THEOREM 10 (Real Symmetric Wigner Matrices, [24]). The conclusions of Theorems 2
and 3 also hold with B8 = 1 when x1 < x5 < ... < x, are the ordered eigenvalues of

any other real symmetric Wigner matriz W, = (w;;) where w;; has exponential

¢ 1<i,j<n
decay, mean 0 and variance 24 for 1 < i < j <n and E(w%) =0, E(wfj) = 3/4 for

p)
1<i1<j<n.

We now turn our attention to outlining the proof of Theorem 2. The first step, namely
Theorem 1, immediately follows from the Wigner Semicircle Law and the fact that the
almost sure convergence of the empirical distribution function F,(z) to the Wigner Semi-
circle distribution function F(z) implies the almost sure convergence of the quantiles.

To prove 2, we remark that {z; < t} = {#([t,00)) < k}, where #(I) denotes the
number of the eigenvalues in the interval I. Thus, one is interested to study the asymptotic
distribution of the counting random variables #(I) in the limit n — co. We will outline
the proof of Theorem 2 for the GOE in the case when m = 1 (see Remark 5). In the
proof of the GUE case of Theorem 2, Gustavsson relies on the fact that the GUE defines
a determinantal random point process. Gustavsson utilizes a theorem due to Costin,
Lebowitz, and Soshnikov ([8], [20], and [31]).

THEOREM 11 (Costin-Lebowitz, Soshnikov). If Var(#qug, (In)) — o0 as n — oo, then

#auE, (In) — E[#auE, (In)]
v Var(#aug, (In))

— N(0,1)

i distribution as n — 0o.

REMARK 12. We stated the theorem here in terms of the GUE, but the result is actually
more general and holds for any sequence of determinantal random point fields.

Our goal is to prove a version of Theorem 11 for the GOE and the GSE. The difficulty
here is that there is no general Central Limit Theorem for counting random variables for
pfaffian random point processes. To do this, we utilize the fact that Gustavsson already
proved the GUE case of Theorems 2 and 3 in [17] and we use the result due to P. Forrester
and E. Rains (see [14]) that relates the eigenvalues of the different ensembles.
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THEOREM 13 (Forrester-Rains). The following relations hold between matriz ensembles:

GUE,, = even(GOE,, U GOE,, ;1)

GSE,, = even(GOEz;, 1) -

-

REMARK 14. The result by Forrester and Rains in [14
Here we only consider two specific cases.

is actually much more general.

REMARK 15. The multiplication by % denotes scaling the (2n + 1) x (2n + 1) GOE

. 1
matrix by a factor of 75

REMARK 16. The first statement can be interpreted in the following way. Take two
independent matrices from the GOE: one of size n X n and one of size (n+ 1) x (n+ 1).
Superimpose the eigenvalues on the real line to form a random point process with 2n + 1
particles. Then the new random point process formed by taking the n even particles has
the same distribution as the eigenvalues of an n x n matrix from the GUE.

From Theorems 11 and 13 we are able to show that if Var(#gug,(Iy)) — oo as
n — oo, then

#aog, (In) — E[#coEk, (In)] .
V2Var(#cue, (In))

N(0,1)

in distribution as n — oo.

Set
[ ( logn )1/2 )
I, = [tV2n+ ¢ | —5— ,00 | .
2 n

-

Then the proof is completed by computing E[#cog, (I)] and Var(#cug, (I»)) and
noting that

T —tV2n _ logn 1/2
P (T;:Swggf thgt%%+£<ﬂTj§%>

2(1—12)n

=P[#cor, (In) <n — k]
_ [#GOEn (In) — E[#cor, (In)] cN—k- E[#cor, (In)]]
\/QVar(#GUEn (In)) B \/QVM(#GUEn (In))
P l#GOEn (In) — El#cog, (In)]
V2Var(#aug, (In))

<{+e(n)

where €(n) — 0 as n — oo.

3. Deformed Wigner Matrices. In this section, we study deformed Wigner matrices
given by
1

M,
vn

W+ A, =X, + A,
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where W, is a random Wigner Hermitian matrix satisfying some technical assumptions
on the marginal distribution of matrix entries and A,, is a deterministic, finite rank
Hermitian matrix.

Perturbations of classical matrix models have been studied in several different con-
texts. In [4], J. Baik, G. Ben Arous and S. Péché studied perturbations of Wishart
matrices, called spiked population models. They consider Yx, a p X N complex matrix
whose columns are i.i.d, centered, Gaussian with covariance matrix ¥, and study the
asymptotic spectrum of Sy = %YﬁYN. The size of Yx is taken to infinity such that as
N,p — o0, p/N — ¢ > 1. In the classical case (known as the Wishart model) ¥ = I,
and the limiting behavior of the spectral measure is the Marchenko-Pastur law. We re-
call that the Marchenko-Pastur distribution is supported on the interval [a,b] where
a=(1-cV2)2 b= (1+c?)? and its density is equal 7% /(b — z)(z — a). The
largest eigenvalue converges to the edge of the support of this distribution, with fluctua-
tions given by the Tracy-Widom distribution ([21]).

In the perturbed model, all but finitely many of the eigenvalues of ¥ are equal to
one. Once an eigenvalue of ¥ is large enough, a phase transition occurs and the largest
eigenvalue of Sy leaves the support of the Marchenko-Pastur law. These results are
extended to the case when the matrix entries are not necessarily Gaussian in [5]. J.
Baik and J. Silverstein show the limiting distribution of the eigenvalues converge to
the same universal limit as in the Gaussian case. Additionally, the fluctuations of the
largest eigenvalues are shown to be universal in the sense that they do not depend on the
distribution of the entries of Yy.

The additive analog of the spiked population model are deformed Wigner matrices.
As before, we shall denote a Wigner Hermitian matrix by W,,. We assume that the
n? random variables (W, )i, vV2Re((Wy)ij)i<i, V2Im((W,)i;))i<; are independent and
identically distributed with distribution p. This distribution has zero expectation and
variance o2, A special Wigner matrix is the Gaussian Unitary Ensemble where the entries
are Gaussian distributed. The GUE is unitarily invariant and there are explicit formulas
for the eigenvalues of this model.

Deformed Wigner matrices were first studied in [15]. Z. Fiiredi and J. Komlés consider
real symmetric random matrices where the entries have the same non-zero mean. This
can be viewed as adding a rank one perturbation to a real symmetric Wigner matrix
with zero mean on the entries. They specifically consider W,, + C' where W,, is a real
symmetric matrix with independent, identically distributed entries of mean zero, and C
is a matrix with each entry equal to c. In this model the entries are not rescaled, so the
largest eigenvalue is O(n) and the second largest eigenvalue, given by the edge of the
semi-circle, is O(y/n). The fluctuations of the largest eigenvalue are Gaussian and only
depend on the second moment of the entries of the random matrix.

The more difficult case when the constant matrix is scaled so that the largest eigen-
value is the same order as the edge of the semi-circle. This case is considered in [13]. In
this paper, Féral and Péché show the existence of a phase transition. When the eigenvalue
of the scaled constant matrix is larger than o the fluctuations of the largest eigenvalue
are Gaussian and only depend on the variance of the entries. When the eigenvalue is less
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than o the fluctuations are given by the Tracy-Widom distribution and in the case when
the eigenvalue equals ¢ the fluctuations are a generalized Tracy-Widom Distribution.
Recently, more general perturbations have been considered. S. Péché [26] considered
perturbations to GUE matrices of the form ﬁWn + A,, where W, is a GUE matrix
and A, is any finite rank Hermitian perturbation. Due to the unitary invariance of the
GUE, the spectrum of the deformed matrix depends only on the spectrum of A,,. Her
results are extended to the general Wigner case by M. Capitaine, C. Donati-Martin and
D. Féral in [6]. Both papers show that when the largest eigenvalue of A,, is sufficiently
large, the largest eigenvalue of M, leaves the support of the semi-circle and converge to
the same limit, independent of the distribution of the matrix entries. In contrast to the
Wishart case, the fluctuations the largest eigenvalues are shown to depend on both the
distribution of matrix entries and the form of the perturbation. In [6], the fluctuations of
the largest eigenvalue are given by a convolution of the matrix entries with a Gaussian.
In [6], M. Capitaine, C. Donati-Martin and D. Féral assume the marginal distribution
u(dz) of the entries of W), is symmetric and satisfies the Poincare Inequality: there exists
a positive constant C such that for any differentiable function f : R — C such that

J 1P (@)dp(z) < oo, [|f']*(z)du(z) < oo one has
Var(£) < C [ 11/ @)d(a), o)

where Var(f) = [ |f ~ E(f)Pdp.

The Poincare Inequality assumption implies that all moments are finite and the tail
distribution decays exponentially (see e.g. [1]). The odd moments of symmetric distri-
butions are 0; in particular the third moment vanishes. The assumption that the third
moment vanishes is quite important in the above mentioned results, as it removes the
lowest order error term.

The deterministic matrix, A,, is Hermitian and similar to a diagonal matrix with
finitely many non-zero eigenvalues. The non-zero eigenvalues of A, are denoted 61 >
... > 07. The multiplicity of #; is denoted k; for j = 1,...,J. The value of J and each
k; does not depend on n.

Hermitian matrices induce a measure on the real line, called the empirical spectral dis-
tribution (ESD), given by its eigenvalues. Given X,,, a Hermitian Matrix, with eigenvalues
A1 < ... < Ay, the ESD is defined as px, = 1 Z?:l 0x,. We recall that for a rescaled

n

Wigner Hermitian matrix X, = ﬁWn, the Wigner semicircle law states that the ESD

converges a.s. to the semicircle, whose density is given by 27302 Vdo? — 121 [_g5 90). Fur-
thermore, if the fourth moment is finite the largest eigenvalue of ﬁWn converges to 20
a.s. [3] with the fluctuations given by the Tracy-Widom distribution, assuming moment

conditions on the distribution are met ([36], [37], [29], [35]).

In the deformed Wigner model, the semi-circle still holds on the global level, but the
location of largest eigenvalue undergoes a phase transition when the largest eigenvalue of

A,, is sufficiently large. The first result of [6] gives the location of the largest eigenvalues
of Mpy. Let k be the number of eigenvalues, counting repetitions, of A, that are greater
than o. Label these eigenvalues 0;', for j = 1,..., k. Then the k largest eigenvalues of M,
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converge almost surely to p;” = 0j+ + Z_i- The (k + 1) largest eigenvalue converges to

20 a.s. An equivalent statement is true for all eigenvalues of A,, that are less than —20,
labeled 0;. This implies that all the other eigenvalues lie in the support of the semicircle.
To be precise let K = {p; }; U[-20,20] U {pj}j and K¢ = K + [—e, €], then for n large
Spect(M,,) C K€ almost surely.

The results of [6] can be extended to the case of non-symmetric marginal distribution:

THEOREM 17. ([27]) Let M,, be a sequence of deformed Wigner matrices with distribution
on the entries that satisfy the Poincaré inequality, but is not necessarily symmetric. Let
Jo+ be the number of j’s such that 0; > o and J,- be the number of j’s such that 0; < —o.
Then the following holds:

1. For all] = 1, .. .,Jg+ and i = 1, .. .,/{Jj, /\k1+---+k’j—1+i — pgj.
2 Mertoothy 41— 20

30 Mytotks_y  — —20 a.s.

4. Forallj=7—J,- +1,....0 andi=1,...,kj, Nev..+k; 1+i — Po,-

J

The convergence in 1.-4. above is understood to be in probability. In addition, if ny is a
subsequence such that Zk(nk.)*(lﬁ) < oo then along this subsequence the convergence
takes place with probability 1.

The second result of [6] considers the fluctuations of the largest eigenvalue in the
special case when A,, = diag(6,0,...,0) with § > 0. The fluctuations of the the largest
eigenvalue are given by a convolution of the distribution of the Wigner matrix entries and
a normal distribution. Again, the result can be extendeed to the non-symmetric case:

THEOREM 18. ([27]) Let M,, be a sequence of deformed Wigner matrices with distribu-
tion, p, on the entries that satisfy the Poincaré inequality, but is not necessarily symmet-
ric. Let the deformation, A, be of the form A, = diag(0,0,...,0) with @ > o. Then

2

Vit = pa) = (1= Z5) {n s N(0,00)}

where convergence is in distribution and
1 (my — 30 4 ot
vg = =
72 02 02 — o2

This results contrasts the case where the rank one perturbation is given by a matrix
of all constants, where the fluctuations are Gaussian ([13]). Instead, in the case A, =
diag(0,0,...,0) with 6 > o, the limiting distribution depends on all moments of x. The
full proofs of Theorem 17 and 18, as well as the extension of the Theorem 18 to more
general finite rank perturbations will appear in [27]. Below, we sketch the main ideas.

with my = [ 2*dp(z).

In order to find the asymptotic spectrum of the M, we follow the techniques of [6]
and study the Stieltjes transform of the expectation of the ESD M,,. Given a probability
measure, p, on R its Stieltjes transform is given by:

g(2) :/C:iu_(ﬂﬁz)




PROCEEDINGS 11

for z € C\R. Of particular interest to us is the Stieltjes transform of the ESD of a matrix
and the Stieltjes transform of the semi-circle distribution.

The Stieltjes transform of the expectation of the empirical spectral distribution of a
matrix M, is

gn(2) = E(Trn(Gn(2))

where E denotes expectation, Tr,, denotes normalized trace, and Gy,(z) = (21, — M,,)~!
is the resolvent of M,. We take advantage of g,(z) being the trace of the a resolvent
by using resolvent identities and estimates. The Stieltjes transform of the semi-circle
distribution can be characterized as the solution to:

0292(2) — 295(2) +1 =0 (10)

that decays to zero as |z| — co. Our goal is to show that g, satisfies this same algebraic
equation with a small error term. This will allow us to show g, (z) approaches g,(z). We
will then study the contribution of the order 1/n term to get the location of the the large
eigenvalues.

We begin with the resolvent identity:
0=-1-GA-GX + =G

and then take normalized trace and expectation to get:

1
0=—1-E[Trn(GA)] — = Y E[GiX] + 2E[Tr,,(G)] (11)
n —
0.
The following cumulant expansion [22] is used to separate the E[G;; X ;] term. Given &,
a real-valued random variable with p 4+ 2 finite moments, and ¢ a function from C — R
with p+ 1 continuous and bounded derivatives then:

E(£6(§) = Y “SEE@(©)) + ¢ (12)
a=0 :

where k, are the cumulants of £, |e| < C'sup, |+ (¢)|E(|¢[P+2), C depends only on p.

After expanding and estimating the error terms we have:

2
1 K4 1 Ps(|Im z|71)
2 2 2
%90 (2) — 2gn(2) + 1+ EE(Tr (GA)) + —2n]E (E % G“) < — (13)

Note that in this work, the odd cumulant terms give the O(n=%/2) terms. If we assume
the odd moments vanish then the error term is O(n=2). In (13) the leading order terms
satisfy equation (10), this allows us to show that |g,(z) — go(2)| is O(n™1). Then the
resolvent identity and cumulant expansion are applied to the O(n~!) terms to determine
their leading order term. This gives

J

E[Tr (Gn(2)An)] = >

j=1

k;0, Pe(|Tm(2)|™1)
z—029,(2) —0; nl/?

(14)
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and

E (%;GZ) :gg_’_ P5(‘ITI;S§)|7 ) (15)

J
1 0; K4 Ps(]Tm z|~1)

2 2 _ n _ e na 4 PA il A 16

0°9n(2) — 2gn(2) + n; 2 —02g,(2) — 0, + 2nga(2) = n3/2 (16)
This equation gives:
gn(2) = go(2) ...
J
! -1 k;0; Ka 4 / dpse(r) | Po(|Tm(2)|™")

+~0(2) 7 | D S ROl I B e R

j=1
(17)

The support of the ESD of the expectation of M, is given by the singularities
of its Stieltjes transform. Equation (17) thus gives that the support is [—20,20] and
{po,;---,po,}. The [—20,20] part comes from the order 1 terms and gives the semicircle.
The {ps,,---,po,} comes from the order n~! term and gives the extremal eigenvalues.

To get the convergence in probability of the eigenvalues let K, = {pg,,...,p0,} U
[-20,20] and let K = K, + (—§/2,6/2), and F = {t € R;d(t,K,) > &}. Let ¢ be a
smooth function that is 0 on F' and 1 on K.

Let Z,, = Tr,(1p(My)), note that ¢ > 1p

P(‘Zn| Z nilie) S I(ETELZ;_?)] = On(—nQ:i) — O(n*1+e)

So P[Tr,(1r(M,)) > O(n~17¢)] — 0 and along any subsequence that grows faster
than n!*¢ the probability of an eigenvalue being outside of K is summable so by Borel-
Cantelli theorem there are almost surely no eigenvalues outside of K.

The final step is to show that the number of eigenvalues of A, at 6; is equal to the
number of eigenvalues of M,, in a small neighborhood of py,. To do this, we introduce a
continuous family of matrices that interpolate between A,, and M,,. Using Weyl’s eigen-
value inequalities, it is shown that multiplicity of eigenvalues is preserved.

Finally, we briefly mention the main ingredients of the proof of Theorem 18. Once
Theorem 17 is established, the remaining arguments follow very closely those from [6].

Let ]/Vin,l be the n — 1 x n — 1 matrix obtained from removing the first row and

ﬁlj\/in,l is a Wigner matrix, so the eigenvalues of ]\//Tn,l
will lie in [-20 — §,20 + §] for n large enough (see [?]). We will therefore condition on
the event that the eigenvalues of M,_1 lie in [~20 — 6,20 4 4] and for n large enough
this set has full measure.

column of M,,. The matrix

Let V = (v1,...,v,)! be the eigenvector of M,, corresponding to Ap,

~

V= (1)2, ey ’Un)t and M.l = ((Mn)217 ey (Mn)nl)t
Then the eigenvalue equation gives:

(Wi
NG

Al’Ul = 0’01 + U1 + ]\;]*1‘7
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)\1‘7 = M.l’l)l + Mn_lf/\v
Then solving for V in the second equation and substituting into the first equation gives:
(Wn)11
vn
where @(/\1) = (Al —]Wn,l)_l. It follows from [?] that for any 6 > 0, the spectrum of
M,,—1 belongs to [—2 — ¢, 2+ 6] with probability going to 1. Chhosing 0 to be sufficientyly

small, one has that G(\;) and G(pg) are well defined with probability going to 1.
After rearranging terms as in [6] one obtains

(14 0Tr,1(G(pe)?) + 1) V(A — po) =
N . PN n

(Wa)is + v (M3G(po) My = 0 Tr1(Glpa)) ) + (| =02 (18)

where d; and do are error terms that converge to zero in probability.
~ 2

02 Tr,,—1(G(py)?)converges to gz in probability and
vn (M_*l@(pg)M.l - agTrn,l(é(pg))) converges in distribution to a Gaussian by the
central limit theorem for quadratic forms.
This yields:

A =0+

+ M*G(A) M.y,

Vi = po) = (1= 5

with convergence being in distribution.

) (% N(0,vg))

4. Multivariate resolvent identities at the edge of the spectrum. Consider the
Gaussian Orthogonal Ensemble (GOE), that is random matrices A,, = % (aij)i;—, where
a;j =N(0,1+ 0;;), @ < j are independent Gaussian random variables with mean zero.

The complex analogue is the Gaussian Unitary Ensemble (GUE). In this case A =
\/iﬁ(aij)?j:l is a Hermitian matrix with a;; = x;; +1y;;. Here the upper triangular entries
i < j, z;; and y;; are independent Gaussian random variables with mean zero, N(0, %),
while the diagonal entries x;; are N'(0, 1).

Consider the resolvent matrix

G(z) = (A—2—2n"2/%)1 Im(z) > 0.
We will use the shorthand (A —z)! = (A—z-1)"L. To consider the joint distribution
of the largest eigenvalues at the edge of the spectrum, we rescale the eigenvalues as
(n) _ (n),—2/3 . _
AT =2+&n ., 7=1,2,...,n. (19)

where )\gn) > )\gn) T )\%n) are the ordered eigenvalues of A,,.
Let

gn.r(2) =0 EBTrGE(2) = n 2E/3Tr(A, — 2 — 2n~2/3) L = Z(f(") — 27t (20

for positive integers L =1,2,....

It can be shown ([33]) that for L > 2, g, (2) is a “local” statistic of the largest eigen-
values in the GOE in a sense that only the eigenvalues from a O(n~2/3)-neighborhood
of the right edge of the spectrum give non-vanishing contribution to g, r(z) in the limit
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n — oo. For L = 1, the linear statistic n~2/>TrG,,(z) is not local in the above sense since
the main contribution comes from the eigenvalues in the bulk of the spectrum. However,
the centralized statistic g5 ,(z) = n~?/?(n+ TrGu(z)) is again a local one. In [33] it
was shown that the joint moments of g, 1.(2), L > 1 and g;, ;(z) satisfy certain recursive
identities in the limit n — oo. Similar results were obtained for the GUE, as well as for
the Wishart real and complex random matrices at the hard edge of the spectrum. One
expects these identities do not depend on the marginal distribution of matrix entries.
Let

L
mp(z1,..20) =E[[n 30+ TrG(z))  Im(z) > 0. (21)
k=1
Clearly, gn.r.(2) = mr(z,...,2). One can extend the recursive identities from [33] to
m/L(Zla tees ZL)aL > 1.

THEOREM 19. Let my, be as defined for the GOE. For L > 2 we have

— 8mL
Zimrn—1 — oot _mL+1’ZL+1:Z1
L —
1 omyp 1 1 -
2 { N mr—1+ ——5Mr— } = O(n 13,
2:22 2k — 21 azk (Zk - Zl)QmL 1+ (Zk — Zl)sz 1|zk—>zl (’I’L )
(22)
Where T, 1 =mp 1(22,.-.,21). For L =1 we have
0
21 — m2| mi (’)(nil/g). (23)

Z=z1 0z1
THEOREM 20. Let my, be as defined for the GUE. For L > 2 we have

z21mp—1 — mL+1’

ZL41=21
I
1 omr_1 1 o 1 . :| 1
. _ 1+ ——— Ty —O(n"1/3 24
g P e T o ] =007, )
Where mr,—1 = mr_1(22,...,25). For L =1 we have
21 — my| =03, (25)

Zo=2z]
For an explanation of the appearance of (z; — 21) ™! see (29) below. When all variables
are set equal, one obtains equations that agree with [33].

Proof of Theorem 19 (GOE). Let g(z) = gy, 1(2) = n~2/3(n 4 Tr G(z)), and begin with

L
n32 4z Pmp (2, 20) = 0 P2+ 2 R [ ] 9(z).
k=1
We rewrite the first factor using the resolvent identity
(A-2)=B-2" (A2 (A-B)B -2, (26)

obtaining
nl/gg(zl) — pl/3 (n72/3(n + Tr G(zl))
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= 0?2224 2n ) T 4 24 2n ) T T AG ().

This substitution gives us
L

(n2/3 +z1)mp_1(22,...,21) + n VPR Ty (AG(zl)) H g(zk).
k=2

To deal with the second term, we use the special case of (12) for mean zero Gaussian
random variables &,

EEf(€) = Var(Q Ef'(§) (S =0). (27)
We have
L P L
n= 0y A Gri(z) [T o) =0 Y Eom [Grulen) [T ().
ij k=2 ij " k=2
obtaining

L

—n Y E[Gyi(51)Gi (1) + Gy (1) G (1) ] 9()

ij k=2
L
=+ n_4/3 Z ]EGW (21) Z 7271_2/3 (G2 (Zk))m H g(ZT)'
ij k=2 r#k
We rewrite the term
L
—n Y3 Z E [ij (21)Gii (Zl)] H 9(2k)
ij k=2
L
= fE[n_2/3(n + Tr G(zl))]z HQ(ZZ)
=2

L L
+2nPEn"23(n + Tr G(z)) H g(z) —n*°E H g(z1) (28)
1=2 1=2
Combining these equations and simplifying algebraically gives

L
O(n %) = zimp (22, -, 20) — En PTr G?(21) H 9(zr)
. . k=2
~En (0 + TrG(2))? ] g() — 2D B 2T [G(20)G ()] [] 9(20).
k=2 k=2 r#k

We may now rewrite these expressions in terms of the my, (21). Using another resolvent

identity
(Be2)""(Bo2)"' = — (B 2) = — 2 (B— )"
Z9 — 21 Z9 — 21 '
we rewrite
2/3 4/3 4/3
9 n 9 n n
_ I . 2
Gz1)G" (z1) 25 — 21 & (zt) (21 — 21)? Glew) + (2 — 21)? Gl=0) (29)
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Simplifying gives the desired identity (19). The proof of (20) is very similar and left
to the reader.

5. Resolvent identities in the bulk for Gaussian and Wishart ensembles. In
this section we consider local statistics in the bulk of the spectrum of Gaussian and
Wishart ensembles. We consider the GOE and GUE as defined in the previous section.
We are concerned with the joint moments of the collection of random variables

gn,i(z) = n~ 't Tr G;(z) 1>1,

where

Gn(2) = (Ay — Ao —n"t2)™! Imz>0, —2< Ao <2.
Let K be a multi-index, K = (ki, k2, ...), with finitely many nonzero natural numbers
kJi Z 0. Let

M, K ( EH Ty Gl
I>1

For clarity we may suppress the dependence on n and z.

THEOREM 21 (Bulk GOE). Let A,, = T(a”)” 1 be a GOE matriz. For non-zero multi-
indices K we have

A0 MK te; = —MK — MK4ey — MK42e; — 2 Zlklm[(_el+el+2 + O(n71)7 (30)
1>1
with boundary condition
AoMe, = —1 — M, —mae, +O(n71). (31)

THEOREM 22 (Bulk GUE). Let A,, = ﬁ(aij)zzl be a GUE matriz. For non-zero multi-
indices K we have

A0 MK e, = —MK — MK+2e, — E lkimy —ejver s + O(nfl), (32)
1>1
with boundary condition

AoMe, = —1—mae, + (’)(nil). (33)

Now let us consider the real and complex Wishart (Laguerre) ensembles. Let A, x be
an n X N matrix with independent standard normal entries a;; = N(0, 1). Assume that
N >nand N —n = v is fixed. Let M, y = n~'AA! The limiting (Marchenko-Pastur)
distribution of the eigenvalues of M,, v is supported on the interval [0, 4] and has density
5=+/(4 —x)/x. Let Ag be in the bulk of the spectrum, i.e. Ag € (0,4). Similarly to the
Wigner case, we define

—1 !
mp k() = E][(n " Tr GL(2)™,
1>1
where

Gn(2) = (Mpn — Ao —n '2)7! Imz > 0.
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THEOREM 23 (Bulk Real Wishart). Let M, n be a real Wishart matriz. For non-zero
multi-indices K we have

1 _
MK 1o = —/\—mK — MKtey — MK +2e; — 2ZlklmK,el+eH2 + (’)(n 1) (34)
0
1>1
with boundary condition
1
My = =5 = Mey — Mae, +0(n™). (35)
0

THEOREM 24 (Bulk Complex Wishart). Let M, n be a complex Wishart matriz. For

non-zero multi-indices K we have
1

MK+e;, = _)\_[]mK —MK+2e; — Z lklmK—€l+el+2 + O(nil) (36)
1>1
with boundary condition
1
Mey, = —— — Mae, + O(n’l). (37)

Ao

Proof of Theorem 23 (Bulk Real Wishart). Here we consider the boundary term in the
real Wishart case. We begin with

(Ao +n12)me, = (Mo +n 12)En " 1Tr G(2)
where

G(z) = (AA" =g —2zn 1)L
The resolvent identity (26) gives
G(z) = —(No+2n )74 (Ao +2n ) TTAANG, (38)

and therefore

(Ao + nilz)mel = -1+ n~t Z ]EAiijpGji;

ijp

where i,7 = 1,...,n and p = 1,..., N. We use the Gaussian decoupling formula (27)
Wlth f = Aip and f(f) = Aijjia

0A; 0G;
EAypA;,Gy = Var(Aip)]E<WZGji + Ay ).
In this setting we have
0G
2 = —Gri(A'G)p — (GA)p G, (39)
0Aip

which gives
(AO =+ nflz)mel = -1 -+ n72 Z E(SZJG]Z - n72 Z EAijji (AtG)pz
ijp ijp
—n %Y EA(GA);Ga
ijp
= 1+n 'ETrG — n ’ETr (GAA'G) — n *E(Tr GAAY) (Tr G).
Using the simple identity GAA? = I + (Ao +n " 12)G, we have
=-1-(No+n "2 *ETrG® — (Ao +n "2)E(n 'TrG)* + O(n1).
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This gives us the boundary condition (35).
Next we consider nonzero multi-indices K. Let

Ik = H(n*lrﬁ GhHk,
1>1
Using (38) we have
(Mo +n" 2)mg e, = —mg +n ' E(Tr AA'G)gx
= —mg + nfl ZEAZPA]PGJZQK
ijp

Applying the Gaussian decoupling formula (27) with £ = A;, and f(§) = A;,Gjigk, we
have

0
]EAiijpGjigK = VaI‘(AZp)EaTw (AijjigK) .

Using (39) the r.h.s. becomes

_ 0
=n"'E|6;;Gjigk — Ajp (Gji(AtG)m' + (GA)ijii>gK + Aijjia%]-
ip
To compute the last term we use
oTr G!
= —20(A'G"),;. 4
6Aip l( G )Pl ( 0)

Putting this together we have
(Mo +n '2)mr e, = —mr +E(n 'TrG)gr — E(n 2Tr AA'G?)gx
—E(n™'Tr AA'G)(n™'Tr G)gx
- QEZlk‘l (n~'Tr GhH)k—1 (nil*2Tr AAtGl+2> H(TFTGT)ICT +0(n™h)
1>1 r#l
Using GAA' = I + (Ao +n'2)G, the r.h.s. becomes
—my — (Ao +n 12)n 2E(Tr G?)gk
— (Mo +n ) (TrG) gk
2N +n"12)E Z lky(n~'Tr GHki =1 (n_l_QT&“ GH'Z) H(n_TTr GMfr+0(n™).

>1 rl
(41)

This gives us the identity (34). =
The proofs of (24), (21) and (22) are similar and left to the reader.
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