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Abstract: We study the spectral properties of a two-dimensional &tihger operator
with a uniform magnetic field and a small external periodic field:

10 ..\, &
Leo(B) = 5 [(89& - sz) + o2

V(ﬁ, y) = ‘/O(y) + é\l‘/l('ra y)a

and g, ¢1 are small parameters. Representihg, as the direct integral of one-
dimensional quasi-periodic difference operators with long-range potential and employ-
ing recent results of E.l.Dinaburg about Anderson localization for such operators (we
assume 2/ B to be typical irrational) we construct the full set of generalised eigenfunc-
tions for the low Landau bands. We also show that the Lebesgue measure of the low
bands is positive and proportional in the main ordesgto

+ 6OVv('Ia y)7

where

1. Introduction

Spectral properties of Sabalinger operator describing electrons in the magnetic field
have received a special attention recently in connection with attempts to explain Quantum
Hall Effect ([1]-[8]). D.Thouless et al in [1] considered a two-dimensional model with
constant magnetic field and a small periodic external field. In the Landau gauge it leads

to the operator
170 \* &
L., (B) = 5 [(895 - ZBZU) + o2 +eoV(x,9), (11)
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whereB is the value of magnetic field](x, y) is a smooth enough 1-periodic function,
o is a small parameter. (In [1] the case of external potent@ds(2rz) + 5 cos(2rry)
was considered.)

If £0 equals zero, the spectrun{Lo(B)) of Lo(B) consists of the discrete sequence
of numbers:

Am = (m + %)B, me 7L, (1.2)
(Z} is the set of nonnegative integers) called Landau levels ([10]). Each level is infinitely

degenerate and the differential operator (1.1) leaves invariant the subspace of functions
exp(2ripz)¥(y), p € R since

142 B? 1w
.+ (y— - .
202" 2 (y—2rB~"p) }‘I’(y)

(1.3)

Lo(B) (exp(2ripa)W(y)) = exp(Zripz) - {

In other words, if we considei?(R?) as a direct integral of 2(RY):
LR =P / H,dp, H,~ LARY),

whereﬁ[,, consists of the functionﬁ(p, y) given by Fourier transform

oo

fy) = / v (o, y)dp,

thenLo(B) is equal to the direct integral of shifted harmonic oscillators:

oo

LOI/EO,pdpa
~ 1d> B?

__ta b7 —1.32
0,p 2dy2 2 (y 2rB p)

(For the definition and properties of the direct integral see [11], vol.1 ch.2.1, vol. 4 ch.
13.16.). The eigenfunctions df , are

{B%Qm (B%(y - 27rB—1p))} m € Zt, (1.4)
where$2,, are Weber-Hermite function£,,,(y) = % exp(y;) i exp(y?).
T4 (2mml)2

The eigensubspace, corresponding tortti& Landau level is denoted b%’”). It
follows from the general theory of perturbations thatdgr<< 1 the operatol.,(B)
has invariant subspacéﬁgl), close toE((,m). In this paper we will study the spectrum
of the restriction ofL.,(B) to E{™, m < M(eo, B,V (z,y)). If external potential
V(z,y) depends only on yL., is still periodic in x and exibits localization in the
direction:
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Leo(B) (exp(2ripz)¥(y))

, 1d> B2 1w
= exp(2ripx) - _Ed72+7(y_2”3 p)° +eoV(y) ¢ ¥(y)

Under such periodic perturbation each Landau leygltransforms into some interval
of lengthconst,,,eq located in aD(gp) neighborhood of\,,,. The band function, which
we denote byr ™) (p) is them!” eigenvalue of a quantum Hamiltonian

1d®> B?
7§d7y2 + 7y2 + €0V(y + ZﬂBilp)

The corresponding eigenfunctions are decaying superexponentially indinection.

The functionA ™ will be as smooth as we want (or even analytic) if we assume the
smoothness (analyticity) condition df( see [11] vol.4 ch.12 , [24] ). The aim of our
paper is to extend the study of the low Landau bands to the case

Vi, y) = Voly) + e1Va(z, y) (1.5)

whereg; is a small parameter. We assume thiatl; are smooth enough:

Vo(y) € C°(SY); Vi has continuous derivatives

%LV;, i <7 inthe cube

©) {o: [Imaz| <0y x{y: 0<y <1
%7,;?1 (z,) is analytic in the strip

[Im x| < ¢ forany fixed y.

0 is some positive number; << 1.
Some of our results are valid under stronger conditions on the smoothniggd/ef

Vo € C°°(Sl), Vi€ COO(TZ);
(C) all derivativeé”aly—‘f1 are analytic in the strip
|[Im x| < 4.

The spectrum of (1.1) depends on the arithmetic nature ef 2rB~. The case of
rationako was fully investigated by S.P. Novikov ([12]) and B.A. Dubrovin ,S.P. Novikov
([13],[14]). We study below the case of typical (Diophantine) irratianaile.

(D) |{n-w}\>ﬁ; n € Z"\0

for some constants' > 0, x > 1. Below we represent the restrictionbf, (B) to Eg)”)

asthe directintegral of difference operators on the lattice with quasi-periodic coefficients
which allow us to apply known results about Anderson localization for such operators
(see [15-18]). We are able to construct the full family of generalized eigenfunctions
{®},er: for the low Landau levels. The corresponding band functial® arec3-

close to the band functions of theperiodic operator obtained by setting = 0. For

€1 7 O we prove polynomial localization in thedirection. We formulate our main results

in Sect. 2 (Theorem 3). Proposition 1 and Theorem 2 are of more auxiliary nature.
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2. Formulation of the Main Results

If e1 # O the differential operator (1.1) no longer leaves invariant the subspace of
functions exp(zipx)¥(y). Nevertheless the image of any linear combination

> exp(2ri(p + n)z) W, (y) (2.1)
is again a function of this type. Choosing in the space of functions (2.1) the basis
{exp(eri(p + ma)Bi, (Biy - +n)) },

the double indexi, n) runs througtz?: x Z*, we arrive at

Proposition 1. The Hilbert spacel?(R?) can be represented as a direct integral of
12 (Z% x 7Y

LX(R?) = @ / Hydp, H,~1?(Z} x 7%
0

suchthatthe Sclkdinger operator (1.1) equals the direct integral of difference operators
L., acting oni? (Z} x Z):

Leo(B) = @/Lso,pdpa
0

where forh(m, n) € 1? (Z3 x Z*),

(Lgoﬁph) (m,n) = {(m + %)B +egVimm(+ nw):| h(m, n)+

+ Z €0Vimy,m(p + nw)h(ma, n)+
my17m, (22)

mq >0
oo oo
+ Z €0E1 Z Wr(ffl),m(p +nw)h(ma,n — k)
k=— m1=0
In these expressions

(oo}

Vi (@) = B} / Valy + @)y (B )@ (BEy)dy, (23)
Wk (a) = B2 / Vi (y + Q) Quny (Bi(y + k) Qm(Biy)dy,  (2.4)
Vi(z,y) = Y exp(rikz)Vi(y). (2.5)

k=—o0
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The subspace, corresponding to th&: Landau level is generated by the vectors
{5m’ml(5mm}~n€Zl . If we denote the projection to it b&?éjz’j) then, as was first observed
by D. Hofstadter [9]

m m 1
(P Lo PGIR) (1) = [+ B+ 2o¥in o+ )| o)+
(2.6)
+epe1 Z Wé’f}m(p +nw)h(m,n — k)
k

is the one-dimensional difference operator with exponentially decaying quasiperiodic
coefficients. (IfV (z,y) = acos(2ry) + B cos(2rrz) (2.6) is just the Almost Mathieu
operator.) It turns out that one can find such a unitary opetatpythat the restrictions

of U(p) 'L, ,U(p) to the invariant subspacds'™ , m < M (B,eo,V (z,y)) have

the form similar to the r.h.s. of (2.6). This is the main result of Theorem 2.

Theorem 2. Assume that the parametess, ¢, are small enough. Then there exists
an integerM = M (B, ¢eq, V) tending toco aseg,e1 — 0 so that for anym < M
the restriction ofL. (B) to Eg“) is the direct integral of one-dimensional difference
operators with exponentially decaying coefficients:

LBty =D [ L6,
0

where forp € 12 (Z1),

(L5 0)p) (0) = din(p + nw)p(n) + Y am(n — k, p + nw)p(k) (2.7)

k7n
1 2
Ay — (m + 7)B - é\0‘/m,m < constigg (28)
2 ox(sy)
S lam(E p)ll ooy € 3 H < constaereo (2.9)

k70

The proof of Theorem 2 uses standard methods of perturbation theory. However,
some nontrivial details due to the special form of the operatgy, remain. The proof
is given in Sects. 3, 4.

The faminL(ET)(p) is an ergodic family of operators in the sense of [18], associated

with the dynamical systemi5*, 7,,,1} and defined by some functigdd™ (n, p). Here

Stis the unit circle I, is the rotation: — (x +w)modl, { is the Lebesgue measure and
h™(n, p) is a function of two variables € Z*, p € S%, such that

h™(n,p) = dpm(p), for n=0, A (n,p) = am(n,p), for n70.
The matrix elements olf,(;gl)(p) in the natural basis are given by the formula

LI (p)wr = R — &, TEp).

0

It follows from Theorem 2 that ifl™(p) is a Morse function on the unit circle, having
two critical points, the famiI)Lg';“)(p) satisfies the conditions of the main theorem from
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[18]. For completeness we formulate this theorem belowri(et p) € C?(S?t) for any
n € Z'; h(0,p) be a Morse function with two critical points,

> [1h(n, p)ll sy €™ < & for some p > 0,
n
=0

andw satisfy the Diophantine conditiolDj with constants”, .

Theorem (18). One can finct = £(C, &, h(0, p), p) so that for anye| < ¢,

a) For a.e.p (with respect to Lebesgue measure), the spectrubﬁl’g@(p) is pure point,
its eigenvalues coincide with the values of some funatigy) € L>(S*) along the
trajectory {7} p}, ., of the pointp.

b) The corresponding eigenfunctions decay exponentially. They can be constructed with
the help of a function¥(n, p), measurable for any. € Z!, such that for a.ep
S |W(n, p)| e?!1"! < co. Then the set of eigenfunctiofigy } > _ is given by the

formulacy(n) = W(n — k, p + kw).
c) The spectrum is nondegenerate.

d) The spectrumasaset (i.e.the closure of the set of eigenvalues) has a positive Lebesgue
measure, greater that{Ran(h(0, p)) — const - €7,0 > 0.

Combining this result and the statement of Theorem 2 we arrive at

Theorem 3. Let Vy,m(p) = B2 [ Vo(y + p)Q2,(B2y)dy, m < M(B,eo,V) be a
— 00
Morse function with two critical points and = 2rB~! satisfies ). Then there exist
positive constantsg, £1(B, Vo, V1, C, k, m) such that for|eg| < &9, |e1] < &1 the
following statements hold:
i) For any fixeds € Z}, n € Z! there exist functiong™ (s, n; p), 1-periodic and
measurable i and 1-periodic measurable functions™ (p) such that

1
HA(m)(p) —((m + E)B +&0Vim,m(D)) < const - 5%;

Loo(S1)
fora.e.p € [0,1] s
Z ’c(m)(s, n; p)| (s> + 13" < o0; (2.10)

s,n

and for evenyk € Z' , a.e.p € [0, w] the series

0w, y) =3 (s, n — b, p+ kw)e?™ETT QB (y — p—nw))  (211)

s,n

and their first and second derivatives converge uniformly i giving generalized
eigenfunctions of..,(B) with the eigenvaluea ™ (p + kw),

Leo(BYOU (2, ) = AT (p + ko)D) (e, )

The constructed functions!")(x, ) are infinitely differentiable ir;
0" (x +1,y) = PP 00 (x, y), and they decay at infinity ip at least as_;
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const(p, k,m)

o™ ‘< 2.12
o )| < 0 (2.12)

If the functionslg, V; satisfy the stronger conditiofC*), then for any intege?vV > 0
one can find so small, £; (depending onV) that for a.e.p the functionsd,, x(z, y)
are infinitely differentiable in: andy and

const(p, k,m)

T (2.13)

ol )| <
(ii) One can construct a full family of eigenfunctions defining them for any real
parameterg € R? by the formula

(" (z,y) = (D({7’:})}w7[g]($a y)

w

so that for anyf (z, y) from the Schwartz spacER?) the Plancherel formula holds:
m 2 j—
157" = / 195(a)[*da,

whereP{™ is the projection ta£(™ and

gr(q) = /f(w, y)®y(x, y)dady.
RZ

(iii) The restriction of L. (B) to Eg“) is unitary equivalent to the multiplication

operator onL2(R?) with the multiplication functiom ™™; the Lebesgue measure of the
mth Landau band equals teyl(Ran(Vi, 1)) + o(€0).

Remark.The nature of the spectrum clearly depends on the type of the distribution
function of A™. For the Almost Mathieu operator the distribution functionrdf is
known to be absolute continuous ( see [15] ). However for the general quasi-periodic
operators with long-range potential, studied in [18], this is still an open question.

Remark. The condition o/, ,, (p) formulated in the Theorem 3 is satisfied for example
by Vo(y) = cos(2ry).

Remark.B.Helffer and J.Sjstrand applied in [19, 20] the semiclassical analysis of the
Almost Mathieu equation to the case of the Stinger operator with a strong symmetric
externalfield§o >> 1). They showed (under some conditions on the continuous fraction
expansion of 2/ B) that in the neighborhood of the first eigenvalue of the approximating
hamiltonian with a quadratic potential, the spectrunh &f a Cantor set of zero Lebesgue
measure.

We will discuss Theorem 3 in more detail in Sect. 5.
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3. Reduction of the Matrix Representation ofL., , in the Neighborhood of the
Low Landau Levels to the Special Block Type

We will prove Theorem 2 in the case of the lowest Landau level. The generalization to
the case of a few Landau levels is straightforward.
Let us write the matrix of_., , in the block form:

0.0) (0.1) (02) (0.3)
2.0) 1) (31)

which consists of the countable number of blocks, enumerated by the double index
(m,m1), m € Zr, my € Z%. Each block is infinitely-dimensional and its matrix

elements correspond to the interaction betweemtﬁkaandmtfh Landau levels. In this
special representation we are looking for a unitary opefd{p), such that the matrix
U(p)~1L<, ,U(p) has zero non-diagonal blocks, (1), (ma, 0) for my # 0, and block
(0, 0) is given by an operator of the type (2.7-2.9). We represent the matfix, gfas

L = Dy + Aff) + A%, whereDy, is a diagonal part,

D(l)(m7 n,maq, nl) = 5m,m,15n,n1L(m7 n,ma, n1)7
A% corresponds to the interaction of the zero Landau level and the other levels,
Agg(mv n;mi, nl) = 50,’m(1 - 50,’rn1)L(m7 n;mi, nl) + (1_ 5O,'rn)(SO,mlL(’n’La n,mai, nl)v
andA{j) = L — D — A%). We can write the conditions dii = ¢/ as

(e‘iWLeiW) (0,n;my,ny;p) =0 if my >0
(3.2)

> H (e‘iWLeiW) (0, n; 0, n1;p)ch(51) e30lm—nl < 400
ni

We also requirdlV (p) to be an ergodic family of operator$V’(m, n; my,nq;p) =
W(m,0;mq,n1 —n;p+nw). To definel’ we use the well known formula

. . o 'k
e—zWLe’LW:L+Z%[...[L’W]’...W]_
k=1

k times
In the first approximatior/y is the solution of the equation
i[D@), Wyl = —AJ, (3.2)
i.e. forms < mo
Wiay(ma, na;ma,mz) =0 if mq >0

AB0, ng; ma, n2) } (3.4)

Wy(0, n1;ma, m2) =i
@)(0, na; ma2, m2) ZD(O, n; 0,n1) — D(ma, nz; ma, n2)

Then for Lz = e~ "W Le?"o we obtain the analogous representatiqs = D(p) +
Agg + A% in which A% has a norm of ordes3. In the same way we can find the next
approximation solving the equatiof D), W(z)| = —A%, and so on. Itis clear that
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|D(1)(0, ni, 0, nl) — D(l)(TrLg, N, My, n2)| >
B
> mZE — €0 (”VO.,Ochogl) + vaz,mzch(sl)) > mZZ

if m, > 0 andeg is small enough.

The same inequality foD(s) immediately follows from the inductive assumptions
(I, — I11,) (see below). It means that the small denominators do not appear on each
step of our inductive procedure and the standard perturbation theory can be applied. The
most convenient way to formulate the inductive hypothesises is to use the functions

l(my, ma;n, p) := L(ma, 0;mz, n; p), such that
L(ma,ny; mo,ng; p) = l(ma, mo; ng — ng; p+ niw).

Remark also that the product of two ergodic operaf®y§’ corresponds to the convo-
lution of functionsb, c:

(b - c)(ma, ma;n1,p) = Z b(ma, m;n,p) - c(m,ma;ng —n;p+nw).

m,n

Now we are ready to formulate the inductive assumptions at#hstep of induction:
(Is,l)

a) i Ha&)(m7ml;0;p)‘

m1=0

casy (my+1) < (m"™+1) &),

25Inl | . (mll + 1) <er (ml+1 + 1) 5(5).

b) i > Haﬁiﬁ(m,ml;n;p)‘

m1=0 \ n70

(IISJ)

C2(St) ¢

2 .o !
a) > Hagsg(O, ma; 0,19)‘ oy (mi +1) < &),
ma

D YD [a@omunin| el - (mh+ 1) < caeg.
c2(sy)
my nF0
(IIISJ)
1
dsy(m, m; 0;p) — (m + E)B —0Vin,m(p) < £0d(s)-
c2(sY)

We will see later that there exist some constamtsnsts;(Vo, V1, B) and
consta (Vo, V1, B), such that

0 < é5) < consts - e,

0<ege < (const47l . 60)5 .
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Proposition 4. The inductive assumptior(sﬁ,l - HIl,l) are valid fors = 1 and
eq = 6 = constsi1(Vo, Vi, B) - 0. If Vo, Vi satisfy (C*) , inductive assump-
tions ([, —III1;)1 = 1,2... are valid at the first step of induction = 1 with
€@ = (5(1) == const5yl(V0, V1, B) - p.

Remark. Various constants appearing in the proof of Theorems 2,3 depend only on the
magnetic field and external potentid(x, y). Proposition 4 will be proven in Sect. 4.

Lemma 5. Assume that the inductive assumpticém@ - IIISJ) are valid on thest
step of induction. Defin®/,) with the help of the formula

_ A2
[Dgs), Wi = iA3).
Then the inductive assumptio&.1; — I11,1,) are valid for
L) = e_iw(”)L(S)eiw(“’)7
E(s+1) = E(s) - consty - 5(5), 5(S+1) = 5(5) (1 +const5’la(s)) .

Moreover @
w0, mi n) ~ 2O
i m+1

Remark.The last relation allows us to write an additional powemnoin the r.h.s. of
inequalities {; ;).

The proof of inductive lemma is rather standard and will be omitted.
The operatot/(p) = etV = lim [] e is well defined and satisfies the statement
§—00

of Theorem 2.

4. Checking the Inductive Assumptions at the First Step of Induction

Writing L., , = D + A®D + A®@ we have the following representation for the matrix
elements:
1 1
d(m,m; 0;p) = (m+5 ) B+eoVmm(p) = (m+3 ) B+
7 (4.1)
reon? [ Valy +p)n (BHy) 2, (By) do.

—00

a®(m, my; n,p) = oea W, (0) =

= ege1B? 7 Vi (y + p)Qn (B By + nw)) Qm, (B %y) dy

— 00

(4.2)

if n 70, whereV")(y) are Fourier coefficients dfy(-, ):

Vi(e,y) = Y V()

n=—oo
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(clearly we can assurriél(o)(y) = 0 or add it toVy(y)),

D m,ms;0,) = Vi 0) = 0B* [ Votu+ 92 (BEy) 2o (Bhy) dy

- (4.3)
if my 7 m 70;
@) : _ b r 1 1
a'*”(0,m1;0,p) = oVo,m(p) =c0B2 | Vo(y +p) (B2y) Qm, ( B2y ) dy (4.4)
if my > 0; and
a®(0,my;n,p) = EOEIWéTiZH(p) =
(4.5)

o
= coe1 B} / ViOy+ )20 (BAy +nw)) , (Bly) dy

if nZ0, my > 0.
Condmons([ll — II1y;) rewritten in terms ofV;, .., (p), W, (p), lead to the
inequalities:

Z va”mluCz(Sl) (mll + 1) < constg (ml+1 + 1) , (46)

m1

Z <Z I ’I(T’;L)m;lH(/VZ(sq) 6") (m} +1) < constz; (m'*™+1). 4.7)

mi

The main part of the proof of estimates (4.6), (4.7) is contained in lemmas 6—7.

Lemma6. Letm > m, b > 0. Then

E(m) e (5) )

o 1
a) Z |[I(m, my;b)| - (m} +1) < 4 (max(4m; m + 18b2))l 2 + constg <

m1=0

< (12 +12) ((Sm)”% + (3\@())2“1) + constg.

I(m, i3 b) = / Q0 ()2 (y)dy =
_ _b (rm—m) 1 2 (om0
_ jm—m) <> . . ( ) (4.8)
V2 ((m — m)")? m

Lemma?7.

(b) Let the functionf(y) be periodic with periodr and (2] + 2) - times continuously
differentiable. Then
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Z sup / f(y + Q)Qm(y)le(y)dy (mé_ + l) <

[}
m1=0

< Hf(2l+2)||L2(sl) - consto (T) - (ml+% + 1) .

Proof of Lemma 6.

oo

10.171:1) = / M Q)2 () dy

— 00

is a well known integral (see [21, 22]):

10,7 b) = i" ()m et (4.9)

It is not difficult to see that

I(m,m;b) = \/Ef(m —1m—1b)+ 1\2\/5 I(m — 1,m;b). (4.10)

Iterating (4.10)n times we arrive at (4.8).

Proof of Lemma 7.

max(4m,m+18b%)

Q) S [emmih) mi+n= Y+ >

m1=0 my=0 my>max(4m,m+18h2)
We use a rough estimate for the first sum. Since

max(4m,m+18b?)

> Hmmy )2 <Y [Him,ma b)) = 1,

m1=0 m1=0

max(4m,m+18b%) . (4.12)
> [I(m, ma; b)| - (m} +1) < (max(4n, m +18?%) +1)% .
m1=0

- ((max(4n, m + 18?%))' +1) .

The second sum is uniformly bounded by a constant. To see this, we need

Lemma 8. Let
m > max(4n, m + 185?). (4.12)

(1) (3) <

=0

Then
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I
Denoting(”—ﬁ) Am—m)l_hy (1) we can write

(m—m+l)!
S () o=@
Where&r(l) — ’I“(l _ 1) _ T(l), I=1,---mand (&’%«) (l) = & (&k*lr> (l)

In our case _
2(m —m) . 2 1)

Ar(l) = ( = %

and, in general, for <[

(3) = <2(me m) , 20 +b1_ H_ 1) AL — 1722 (A7) 0. @13)

(D),

Equations (3.12) and (3.13) imp(y&tr) () > 0, (Etr) 0 > (&“‘%) Q).
Finally ‘ (&tr) (l)‘ <[ (w - 1)
=0

_ m—1 _ . m—1 2
and|(A™r) (m)| < r(m) I] (@ - 1) <11 (1_ ﬁ) < 1. To finish the
=0 §=0 :

proof of Lemma 2 a) we write

> [I(m,m,b)| (m' +1) <

m>max(4m,m+18b2)

DS (é);kf(kmﬂ

k>max(3m,18b2)

((k+m) +1) < >~ (b)kle—’fz’“ (k) +1).
k>18h2 \/E ‘/H

It is clear that the sum of the last series is uniformly boundéd in

Partb) of Lemma 7 follows from part a) and estimates on decay of Fourier coefficients
of differentiable functions. Lemma 2 is proven.

Remark. Since for Weber-Hermite functions

/ Qi (y — nw)Qu, (y)dy | = L / €Y (1) Qs (y)dy |

the estimates from part a) of Lemma 7 imply

3 (my+1) <
(4.14)

n=— m1=0

DY L/ Qi (y — nw)Qmy (y)dy

oo

1
< constioy - (m“? + 1) .
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Now we are ready to prove inequalities (4.6)—(4.7). The first of them immediately follows
from Lemma 7 b). To check (4.7) we consider the Fourier serieifar, y):

o
Vi) = Y V() = Y gl ) - BT B

n=—oo n,l

The condition C) implies

1
lg(n, )] <e —30lnl T+1 - const(V1).
Then

i Z e3‘5|”‘sup/ (B%(y—nw)>~

m1=0 \ n=

.Vl(”)(y + @), (Béy) dyD S(mp+1) =

oo

=y Hlsup) [ @ (Biy—nw))-

le:O n—z . ‘O/o ( Y " )

(Z g(n, l)627rily€27rila> le (B%y) dy > . (ml + 1) =
_Z Z 635\n|sup /ZI(mmlB 2)

m1=0 \ n=— (415)
Qi(Biy —nw))- Y gln, e - szml(B%mdy) (my+1) <
I=— oo
~const (V1)
T+
—oo m=0 If+1
Z Z 5 n| / By — .
e 12 Y — nw)
m1=0n=—oco 50 ( )
Qi ( B? ) dy’ (m1+1)<
1 const (V1) _3
TR (mz + 1) - constyg.

l=—o00 m=0

Here the last inequality follows from (4.14). Using the result of Lemma 7 a) once more
one can show that the r.h.s. of (4.15) is less than

oo

constqy - Z (m2 +14+ 1) . 171
l=—o0

The estimates of
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i Z eséln\ sup / m (B%(y _ nw)) .
m1=0 \ n=—oo

* 1 I
G+ )2, (Bly) dyD S(mi+1)

fork=12;1=10rk=0,1,2; [ > 1 can be derived in a similar way.
Proposition 4 is proven.

5. Proof of Theorem 3

Mainly we will consider the case of functiorig, V1 satisfying the condi_tion(t).
We proved in Sects. 3, 4 the existence of a unitary oper&igp) = " that
Up)~ 1LsopU(p)|E(m) is given by formulas (2.7-2.9). The columns of the matrix rep-

resentation o/ (p) produce the new basis
(e e ()(m.n) =™ (0, min — jip+ ju).
It follows from (2.3) and inductive assumption&/( 1), s =1,2,3,-- -, that
le;(p)(m, n)| - (m? + 1)e§6|"_j| < const. (5.1)
The last inequality, combined with the results a),b), concerning the spectrum of
L&) = U@ LeopU )] g,

gives us the series representation (2.10-2.11) for the generalized functibpg Bj.
The trivial estimate
|Q:(y)| < const - (I +1)

;
and the formulaﬁQl =5 — (ﬂ) Q41 imply the uniform convergence of

(2.11) and allow us to differentiate it twice inandy term by term. To prove (2.12) we
decompose the series (2.11) into two parts:

q)p,k(xay): Z + Z
<(%) =(%)

We derive the trivial bound of the second sum

S St ki kN (3 - )
(%) "
const(p, k)

1 2 Lin|
<—- Z|c(ln—kp+k;w)|const(l +1)-e < 1

- (%) +1 lin

To consider the first sum, we recall th@t(y) oscillates on the interva{l—zxﬁ, Z\ﬂ}
and decays superexponentially off this interval. In particular
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|szl(y)|<exp(—f£) it Jyl > vi-10 (52)

(see [22]). Thus

ST N el kp k) G, (B%(y —p- nw)) =

I:ly|>20v1 ™

=2 Dt D

Lly|>20vVinin|<3  i]y|>20vInin|>%

Using (5.2) in the first subsum and (2.10) in the second, we can easily show that they
are exponentially small ip. This gives us (2.12). I¥p, V; satisfy C*) we replace (5.1)
by
lej(p)(m, n)| (mN+1 +1) ed0In—il < const, (5.1)

where N can be taken arbitrary large éb,e1 — 0, and use similar arguments. The
infinite differentiability ofd)ﬁf’}c) follows from the Friedrichs theorem for strongly elliptic

operators ( [23] ). To prove part (iii), we consider for evérg Z! and a.ep € [0, ],
the eigenspacél,,, i (p) of the operatorLgT)(p), generated by the eigenfunctiqn (p)

with the eigenvalue\ ™ (p + kw). If we defineH,, , = @ g H 1, (p)dp, thenE(™ =

&@ > Hpk eachH,,  is L.(B) - invariant and the restriction df. (B) to H,,

k=—o0
is unitary equivalent to the multiplication operator bf([0, w]) with the multiplication
function A(- + kw).

Part (i) follows from the representation é£,(B) as the direct integral of the dif-
ference operators, Theorem 2 and the previous considerations. Theorem 3 is proven.
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