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1 Introduction

The theory of random point fields has its origins in such diverse areas of science as life tables, particle
physics, population processes and communication engineering. A standard reference to the subject
is the monograph by D.J. Daley and D.Vere-Jones [2].

This article is concerned with a special class of random point fields, introduced by Macchi in
the mid 1970s. The model that Macchi considered describes the statistical distribution of a fermion
system in thermal equilibrium. Macchi proposed to call the new class of random point processes
the fermion random point processes. The characteristic property of this family of random point
processes is the condition that k—point correlation functions have the form of determinants built
from a correlation kernel. This implies that the particles obey the Pauli exclusion principle. Till
mid 1990s, fermion random point processes attracted only a limited interest in mathematical and
physical communities, with the exception of two important works by Spohn (1987) and Costin-
Lebowitz (1995). This situation changed dramatically at the end of the last century, as the subject
greatly benefited from the newly discovered connections to random matrix theory, representation
theory, random growth models, combinatorics and number theory. Things are rapidly developing at
the moment. Even the terminology has not yet set in stone. Many experts nowdays use the term
“determinantal random point fields” instead of “fermion random point fields”. We follow this trend
in our article.

This article is intended as a short introduction to the subject. The next section builds a math-
ematical framework and gives a formal mathematical definition of the determinantal random point
fields. Section 3 is devoted to the examples of determinantal random point fields from quantum
mechanics, random matrix theory, random growth models, combinatorics and representation theory.
In Sections 4 we discuss the ergodic properties of translation-invariant determinantal random point
fields. In Sections 5 we discuss the Gibbsian property of determinantal random point fields. Cen-
tral Limit Theorem type results for the counting functions and similar linear statistics is discussed
in Section 6. Section 7 is devoted to some generalizations of determinantal point fields, namely
immanantal and pfaffian random point fields.
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2 Mathematical Framework

We start by building a standard mathematical framework for the theory of random point processes.
Let F be a one-particle space and X be a space of finite or countable configurations of particles in E.
In general, E can be a separable Hausdorff space. However, for our purposes it suffices to consider
E =R¢ or E = Z% We usually assume in this section that E = R?, with the understanding that
all constructions can be easily extended to the discrete case. We assume that each configuration
¢ = (z;), zi € E, i € Z' (or i € Z! for d > 1), is locally finite. In other words, for every compact
K C E the number of particles in K, #x(£) = #(z; € K) is finite.

In order to introduce a o-algebra of measurable subsets of X, we first define the cylinder sets.
Let B C E be a bounded Borel set and let n > 0. We call CZ = {¢ € X : #5(£) = n} a cylinder
set. We define B as a o-algebra generated by all cylinder sets (i.e., B is the minimal o-algebra that
contains all CP).

Definition 1. A random point field is a triplet (X, B,Pr), where Pr is a probability measure on
(X, B).

It was observed in 1960-1970s (see e.g. Lenard 1973, 1975), that in many cases the most convinient
way to define a probability measure on (X, B) is via the point correlation functions. Let E = RY,
equipped with the underlying Lebesgue measure.

Definition 2. Locally integrable function py : EF — ]RiL is called a k-point correlation function of
the random point field (X, B, Pr) if, for any disjoint bounded Borel subsets Aj, ..., A, of E and for
m

any k; € Z#, 1=1,...m, Z k; = k, the following formula holds:

=1

Eﬁﬂ:/ pk(xl,...,xk)dxl...da:k, (1)
i1 (#Az — ki)! A’flx---xAﬁmm

where by E we denote the mathematical expectation with respect to Pr. In particular, pi(x) is the
particle density, since

E# 4 Z/Apl(m)dm

for any bounded Borel A C E. In general, pi(z1,...,z;) has the following probabilistic interpreta-
tion. Let [z1,z;+dz;], i = 1,...,k be infinitesimally small boxes around z;, then py(z1, z2, . .., zg)dz1-
... -dxy is the probability to find a particle in each of these boxes.

In the discrete case E = Z% the construction of a random point field is very similar. The
probability space X and the o—algebra B are constructed essentially in the same way as before.
Moreover, in the discrete case the set of the countable configurations of particles can be identified
with the set of all subsets of E. Therefore X = {0,1}¥, and B is generated by the events {C,, = € E},
where C; = {z € £}. The k-point correlation function p(zi,...,zx) is then just a probability that
a configuration ¢ contains the sites z1,...,z. In other words, pg(z1,...,25) = Pr(ﬂf:1 Cy,;)- In
particular, the one-point correlation function pi(z), = € Z% is the probability that a configuration
contains the site z, i.e. p;(z) = Pr(Cy).

The problem of the existence and the uniqueness of a random point field defined by its correlation
functions was studied by Lenard (1973-1975). It is not surprising, that Lenard’s papers revealed many
parallels to the classical moment problem. In particular, the random point field is uniquely defined



by its correlation functions if the distribution of random variables {# 4} for bounded Borel sets A is
uniquely determined by its moments.

In our paper we study a special class of random point fields introduced by Macchi in [8]. To
shorten the exposition, we give the definitions only in the continuous case E = R%. In the discrete
case, the definitions are essentially the same.

Let K : L?(RY) — L?(R?) be an integral locally trace class operator. The last condition means
that for any compact B C R? the operator Kxp is trace class, where yp(z) is an indicator of B.
The kernel of K is defined up to a set of measure zero in R% x R%. For our purposes, it is convenient
to choose it in such a way that for any bounded measurable B and any positive integer n

Tr((xsKxs)) = /B K (z,7)dx 2)

We refer the reader to [11], p.927 for the discussion. We are now ready to define a determinantal
(fermion) random point field on RY.

Definition 3. A random point field on E is said to be determinantal (or fermion) if its n-point
correlation functions are of the form

pn(T1, ... xn) = det(K($i’$j))1gign (3)

Remark 1. If the kernel is Hermitian-symmetric, then the non-negativity of n-point correlation
functions implies that the kernel K(z,y) is non-negative definite and, therefore K must be a non-
negative operator. It should be noted, however, that there exist determinantal random point fields
corresponding to non-Hermitian kernels (see an example (18) in Section 8). The kernel K(z,vy) is
usually called a correlation kernel of the determinantal random point process.

In the Hermitian case, the necessary and sufficient conditions on the operator K to define a
determinantal random point filed were established by Soshnikov ([11]; see also [8]).

Theorem 2.1 Hermitian locally trace class operator K on L?(E) determines a determinantal ran-
dom point field if and only if 0 < K < 1 (in other words both K and 1 — K are non-negative
operators). If the corresponding random point field exists, it is unique.

The main technical part of the proof is the following proposition.

Proposition 1 Let (X, B, P) be a determinantal random point field with the Hermitian-symmetric
correlation kernel K. Let f be a non-negative continuous function with compact support. Then

B6) — qut (Id (1 —e ) 2K - e—f)1/2) : (4)

where (€, f) is the value of the linear statistics defined by the test function f on the configuration
€ = (z;), in other words (&, f) = >, f(x:).

Remark 2 . The r.h.s. of (4) is well defined as the Fredholm determinant of a trace class operator.
Letting [ = Zle sixr;, one obtains Eelé:S) = EH§:1 zz#li, with z; = e%. In this case, the Lh.s.
of (4) becomes the generating function of the joint distribution of the counting random variables

#r,,1=1,...,k.



Unfortunately, there are very few known results in the non-Hermitian case. In particular, the
necessary and sufficient condition on K for the existence of the determinantal random point field
with the non-Hermitian correlation kernel is not known.

We finish this section with the introduction of the Janossy densities (a.k.a. density distributions,
exclusion probability densities, etc) of a random point field.

The term Janossy densities in the theory of random point processes was introduced by Srinvasan
in 1969, who referred to the 1950 paper by Janossy on particle showers. Let us assume that all point
correlation functions exist and locally integrable, and I be a bounded Borel subset of R?. Intuitively,

one can think of the Janossy density Ji r(z1,...,2%), Z1,...,25 €I as
Tei(z1,..., H dx; = Pr{ there are exactly k particles in I and there is a particle in each
of the k infinitesimal boxes (z;,z; + dz;), i=1,...,k}. (5)

To give a formal definition, we express point correlation functions in terms of Janossy densities
and vice versa:

o
Pe(@1, .- 5 Tk Z /jlﬁ—j, Ty Thy Tl - - - 5 Tt ) ATh41 - - - AThy 5, (6)

o (1)
T (T1, -0, 7)) = Z i/ Pr4g(T1s e ooy Thoy Thot s -+ 3 Thip ) )ATpi1 * * + dTgo (M)
= 7

A very useful property of the Janossy densities is that

1
Pr{there are exactly k particles in I} = ol /k Te1(z1,. .., zk)dzy - - - doy. (8)
SJr

In the case of determinantal random point fields, Janossy densities also have a determinantal
form, namely

jk,I(.’L'l, c. ,.’L‘k) = det(Id — K]) . det(L[(iL‘i, $j))1§i,j§k' (9)
In the last equation, K is the restriction of the operator K to the L2(I). In other words, K;(z,y) =
x1(z)K(z,y)x(y), where x; is the indicator of I. The operator L; is expressed in terms of K; as

Ly =(Id- K 1)_1K 1. For further results on the Janossy densities of determinantal random point
processes we refer the reader to [13] and references therein.

3 Examples of Determinantal Random Point Fields

3.1 Fermion Gas

Let H = —% + V(z) be a Schrédinger operator with discrete spectrum on L?(E). We denote by
{pr}2, an orthonormal basis of the eigenfunctions, Hpy = Ay« @p, Ao < A1 < Ao < ... To define
a Fermi gas, we consider the n'® exterior power of H, A"(H) : A"(L*(E)) — A"(L?*(E)), where
A"(L?(E)) is the space of square-integrable antisymmetric functions of n variables and A™(H) =



Zi":l(—% + V(z;)). The eigenstates of the Fermi gas are given by the normalized Slater determi-

nants
/lpkl’"'ykn ('/I:]-’ tet "TTL) =
1 R 1 N (10)
ﬁ Ug;n(_l) Z]:[l(pkz(-'ﬂa(z)) = ﬁ det((pki(w]))lfz,]Sna

where 0 < k1 < ko < ... < ky. A probability distributionof n particles in the Fermi gas is given by
the squared absolute value of the eigenstate
1 -
2

p(-Tl, cee ,.’En) = |’(/J(.’L‘1, cee ,$n)| = E det (oni (‘Tj))lgi,jgn - det (onj (‘Ti))lgi,jfn (11)
1

== det (Kn(:cz, $j))1gi,jgn’
where Ky (z,y) = Y o ¢k (2)@k; (y) is the kernel of the orthogonal projector onto the subspace
spanned by the n eigenfunctions {¢y,} of H. The n—dimensional probability distribution (11)
defines a determinantal random point field with n particles. The k-point correlation functions are
given by

n n!
pgc )(:1:1, ey Tp) = ( /pn(a:l, ooy Tp )Ty ... ATy = det(Kn(xl,z]-))lsz.’jSk. (12)

n—k)!

3.2 Random Matrix Models

Some of them most important ensembles of random matrices fall into the class of determinantal
random point processes.

The archetypal ensemble of Hermitian random matrices is a so-called Gaussian Unitary Ensemble
(GUE for short). Let us consider the space of n x n Hermitian matrices {4 = (4;;)1<i j<n, Re(4;;) =
Re(4;i), Im(A;;) = —Im(A;;)} . A G.U.E. random matrix is defined by its probability distribution

P(dA) = const,, - exp(—TrA?)dA, (13)

where dA is a Lebesgue measure, ie., dA = [],;_; dRe(4;;)dIm(A;;) [I;—1 dAkk- The eigenvalues
of a random Hermitian matrix are real random variables, whose joint probability distribution is a
determinantal random point process of n particles on the real line. The correlation kernel has the
Christoffel-Darboux form built from the Hermite polynomials.

The G.U.E. ensemble of random matrices is invariant under the unitary transformation A —
UAU~',U € U(n). An important generalization of (13) that preserves the unitary invariance is

P(dA) = const, exp(—TrV(4))dA (14)

where, for example, V(z) is a polynomial of even degree with a positive leading coefficients. The
correlation functions of the eigenvalues in (14) are again determinantal, and the Hermite polynomials
in the correlation kernel have to be replaced by the orthonormal polynomials with respect to the
weight exp(—V(z)). For the details, we refer the reader to the monographs by Mehta (2004) and
Deift(2000).



There are many other ensembles of random matrices for which the joint distribution of the
eigenvalues has determinantal point correlation functions: classical compact groups with respect to
the Haar measure, complex non-Hermitian Gaussian random matrices, positive Hermitian random
matrices of the Wishart type, chains of correlated Hermitian matrices. We refer the reader to [11]
for more information.

3.3 Discrete Translation-Invariant Determinantal Random Point Fields

Let g : T? — [0,1] be a Lebesgue-measurable function on the d—dimensional torus T¢. Assume that
0 < g < 1. A configuration ¢ in Z% can be though of as a 0 — 1 function on Z% i.e. &(z) = 1 if
z € ¢ and £(z) = 0 otherwise. We define a Z%— invariant probability measure Pr on the Borel sets
of X = {0, l}Zdin such a way that

pe(@1, .., op) =Pr(§(z1) =1,...,&8(z) = 1) :=det (§(zi — 5)) 1 <; j<p» (15)

for z1,...,x; € Z% In the above formula, {g(n)} are the Fourier coeficients of g, i.e. g¢(z) =
>, §(n)e™®. It is clear from Definition 3, that (15) defines a determinantal random point field on
74 with the translation-invariant kernel K (z,y) = §(z — ). Below we discuss several examples that
fall into this category. For the further discussion we refer the reader to [7] and [11].

a) In the trivial case when g is identically a constant p € [0, 1], we obtain the i.i.d. Bernoulli(p)
probability measure.

b) The edges of the uniform spanning tree in Z? parallel to the2h0rizontal axis can be viewed
sSin” mx

——>—""»—_ Similarly, the edges of

sin? rx+sin? my

the uniform spanning forest in Z% parallel to the z; axis correspond to the function g(z1,...,z4) =
sin? w1

E?=1 sin? 7z;

and Pemantle (1993).
c) Let d = 1 and 7y be a parameter between 0 and 1. Consider g(z) =

as the determinantal random point field in Z?2 with g(z,y) =

(the uniform spanning forest on Z¢ is a tree only for d < 4). The result is due to Burton

(1—7)*
|627"m7’)"2 .

The corresponding
probability measure is a renewal process and K(n) = g(n) = L_L—jy'yw (see [11]).

d) The process with g(z) = xr(z), where I is an arbitrary arc of a unit circle, appeared in the
work of Borodin, Olshanski and Okounkov (2000). The corresponding correlation kernel is known as
the discrete sine kernel. The determinantal random point process on Z' with the discrete sine kernel
describes the typical form of large Young diagrams “in the bulk” (see the next subsection).

e) The discrete sine correlation kernel with g = X[0,1/2] appeared in the zig-zag process (Johansson,

2002) derived from the uniform domino tilings in the plane corresponds to g = X[o,1/2)-

3.4 Determinantal Measures on Partitions

By a partition of n = 1,2,... we understand a collection of non-negative integers A = (A1,...,Ap)
such that A\; +--- 4+ Ay, =nand Ay > Ay > --- > A,,. We shall use a notation Par(n) for the set of
all partitions of n.

The Plancherel measure M,, on the set Par(n) is defined as

(dim \)?

Mn(A) = nl

; (16)



where dim ) is the dimension of the corresponding irreducible representation of the symmetric group
Sy. Let Par = | |°° / Par(n). Consider a probability measure M? on Par

971
MP(\) = ¥ M, (X
where A € Par(n),n=0,1,2,..., 0 <6 < 0.

M? is called the poissonization of the measures M,,. The analysis of the asymptotic properties of
M,, and M? has been important in connection to the famous Ulam problem and related questions
in representation theory.

It was shown by Borodin, Okounkov and Olshanski (2000), and, independently, Johansson (2001)
that M? is a determinantal random point field. The corresponding correlation kernel K (in so called
the modified Frobenius coordinates) is a so-called discrete Bessel kernel on Z!,

WAL (V0T 11y VO~ T 1 VO, 1 (2V6)

ifzy >0
K(z,y) = FIEr ’ ’ 18
) \/5‘]\m|—%(2‘/§)"|m—%(2 2:;”‘%(2\/6)%%(2\/@), if zy <0, "

where J,;(+) is the Bessel function of order z. One can observe that the kernel K (z,y) is not Hermitian,
but the restriction of this kernel to the positive and negative semi-axis is Hermitian.
M? is a special case of an infinite parameter family of probability measures on Par, called the

Schur measures, and defined as
1

M) = sx(@)sx(v), (19

where sy are the Schur functions, z = (z1,%2,...) and y = (y1,¥2,...) are parameters such that

Z=Y" sa@)saly) = [J(1 - mayy) ™" (20)

A€EPar 2,]

is finite and {z;}2, = {y;}?2,. It was shown by Okounkov (2000), that the Schur measure belong
to the class of the determinantal random point fields.

3.5 Non-Intersecting Paths of a Markov Process

Let pt s(z,y) be the transition probability of a Markov process £(t) on R with continuous trajectories
and let (&1(t),&2(t),...,€,(t)) be n independent copies of the process. A classical result of Karlin
and McGregor (1959) states that if n particles start at the positions :1;50) < xgo) <. .. < :1:%0), then
the probability density of their joint distribution at time ¢; > 0, given that their paths have not
intersected for all 0 < t < t1, is equal to

n

1
mi, (21, all)) = — det(pos (2, 2f))7

provided the process (£1(t),&2(t),...,&n(t)) in R has a strong Markovian property.

Let 0 < t1 < 12 < ... < tpr+1- The conditional probability density that the particles are in the
(1) (1)

positions z; 7 < x5’ < ... < m%l) at time 1, at the positions :vg2) < ng) <... < :vg) at time to,...,



at the positions :ng) < mgM) < ... < m(nM) at time tps, given that at time tps41 they are at the
. (M+1) _ (M+1) (M+1) . . .
positions z; < Ty < ... < zp and their paths have not intersected, is then equal to
(1) L O (1+1)
1 M [ +1
Tt1,t2, 0ty (ml (A 7$$1 )) = H det(ptl,tH_l (Iz ,LI,‘]- ))?,j:la (21)

Zn, M 1=0
where ty = 0.

It is not difficult to show that (21) can be viewed as a determinantal random point process (see
e.g. [5]).

The formulas of a similar type also appeared in the papers by Johansson, Prahofer, Spohn, Ferrari,
Forrester, Nagao, Katori and Tanemura in the analysis of polynuclear growth models, random walks
on a discrete circle and related problems.

4 FErgodic Properties

As before let (X, B,Pr) be a random point field with a one-particle space E. Hence X is a space of
the locally finite configurations of particles in E, B is a Borel o-algebra of measurarble subsets of
X, and Pr is a probability measure on (X, B). Throughout this section we always assume E = R?
or Z%. We define an action {T"?};cx of the additive group E on X in the following natural way:

T : X — X, (T%); = (£); +t. (22)

We recall that a random point field (X, B, P) is called translation invariant if for any A € B,
any t € E, Pr(TtA) = Pr(A). The translation invariance of the correlation kernel K(z,y) =
K(z —y,0) =: K(z — y) implies the translation invariance of k-point correlation functions

pr(z1+t,...,z, +t) = pp(x1,...,2k), ae. k=1,2,...,t € E, (23)

which, in turn, implies the translation-invariance of the random point field. The ergodic properties
of such point fields were studied by several mathematicians (Soshnikov, 2000; Shirai and Takahashi,
2003; Lyons and Steif, 2003). The first general result in this direction was obtained in [11].

Theorem 4.1 Let (X, B, P) be a determinantal random point field with a translation-invariant cor-
relation kernel. Then the dynamical system (X, B, P,{T'}) is ergodic, has the mizing property of
any multiplicity and its spectra is absolutely continuous.

We refer the reader to the article on Ergodic Theory for the definitions of ergodicity, mixing
property, asbolute continuous spectrum of the dynamical system, etc.

In the discrete case (15), E = Z¢, more is known. Lyons and Steif (2003) proved that the shift
dynamical system is Bernoulli, i.e. it is isomorphic (in the ergodic theory sense) to an i.i.d. process.
Under the additional conditions Spec(K) C (0,1) and Y, |n||K(n)|? < oo, Shirai and Takahashi [9]
proved the uniform mixing property.



5 Gibbsian Properties

The first who asked the question of the Gibssianan nature of the determinantal random point fields
were Costin and Lebowitz (1995), who studied the continuous determinantal random point process

sin (7 (

on R! with a so-called sine correlation kernel K (z,y) = ﬂzizyil» The first rigorous result (in the

discrete case) was established by Shirai and Takahashi ([10]).

Theorem 5.1 Let E be a countable discrete space and K be a symmetric bounded operator on I*(E).
Assume that Spec(K) C (0,1). Then (X, B, P) is a Gibbs measure with the potential U given by
U(z|¢) = —log (J(x,x) - (ngjg,jg>> ,wherex € E, £ € X, {z}N&=0. Here J(z,y) stands for
the kernel of the operator J = (Id — K) 'K, and we set J¢ = (J(y,2))y,.ce and i = (J(z,y))yee-

We recall that the Gibbsian property of the probability measure P on (X, B) means that

E[F|Bpc] (¢) = — Z e~ Vmer ) p(n U gne),
nCA

where A is a finite subset of F, By is the o— algebra generated by the B— measurable functions with
the support outside of A, E [F|Bpc] is the conditional mathematical expectation of the integrable
function F on (X, B, P) with respect to the o— algebra Byc. The potential U is uniquely defined by
the values of U(z, £), as follows from the following recursive relation

Ul{z1,---s2n}é) = Ulznl{z1,- -y 2n—1} UE) + Ulzn-a[{z1,.. ., B2t U + ... + U(z1[§).

We refer the reader to the article on Gibbs states for additional information about the Gibbsian
property. In the continuous case much less is known. Some generalized form of Gibssianness, under
quite restrictive conditions, was recently established by Georgii and Yoo (2004).

6 Central Limit Theorem for Counting Function

In this section we discuss Central Limit Theorem type results for the linear statistics. The first
important result in this direction was established by Costin and Lebowitz in 1995, who proved the
Central Limit Theorem for the number of particles in the growing box, #[_r 1], L — oo, in the
case of the determinantal random point process on R! with the sine correlation kernel K (z,y) =

%. Below we formulate the Costin-Lebowitz theorem in its general form due to Soshnikov

(1999, 2000).

Theorem 6.1 Let E be as in (1.1), {0 < K; < 1} a family of locally trace class operators in
L*(E),{(X,B, P,)} a family of the corresponding determinantal random point fields in E, and {I;}
a family of measurable subsets in E such that

Var#p, = Tr(K; - xr, — (K¢ - X[t)2) — 00 as t — o0. (24)

Then the distribution of the normalized number of particles in I (with respect to P;) converges to
the normal law, i.e.,
#It E#It w

vV Var#ft

s N(0,1)



An analogous result holds for the joint distribution of the counting functions {# Lis-- #I, I3
where I}, ... IF are disjoint measurable subsets in E.

The proof of the Costin-Lebowitz theorem uses the k—point cluster functions. In the determi-
nantal case, the cluster function have a simple form

1
(1, .., 2k) = (—1)l7 D K (@0(1), o(2) K (To@) To(3) - - - K (To(e), To(1))- (25)

o€ESy,

The importance of the cluster function stems from the fact that the integrals of the k— point
cluster function over the k—cube with a side I can be expressed as a linear combination of the first
k cumulants of the counting random variable #j7. In other words,

k
/1 ITk(-'Ela---a$k)d-'E1 codzg =Y BuCi(#1)- (26)
XX )

It follows from (25), that the integral at the .h.s. of (26) equals, up to a factor (—1)!(1—1)!, to the
trace of the k—th power of the restriction of K to I. This allows one to estimate the cumulants of the
counting random variable #;. For the details, we refer the reader to [11]. The Central Limit Theorem
for a general class of linear statistics, under some technical assumptions on the correlation kernel
was proven in [12]. Finally we refer the reader to [11] for the Functional Central Limit Theorem for
the empirical distribution function of the nearest spacings.

7 Generalizations: Immanantal and Pfaffian Point Processes

In this section we discuss two important generalizations of the determinantal point processes.

7.1 Immanantal Processes

Immanantal random point processes were introduced by P.Diaconis and S.N.Evans in 2000. Let A
be a partition of n. Denote by x* the character of the corresponding irreducible representation of
the symmetric group S,. Let K(z,y), be a non-negative definite, Hermitian kernel. An immanatal
random point process is defined through the correlation functions

pr(1, - mk) = Y XN 0) [[ K (i, 7o) (27)

O'GSn =1

In other words, the correlation functions are given by the immanants of the matrix with the entries
K(zi,z;). We will denote the r.h.s. of (27) by K*[z1,...,zy].

In the special case A = (1) (i.e. A consists of n parts, all of which equal to 1), one obtains that
xNo) = (-=1)?, and K*z1,...,75] = det(K(zi,z;)). Therefore, in the case A = (1*) the random
point process with the correlation functions (27) is a determinantal random point process. When
A = (n) (that is the permitation has only one part, namely n) we have x* = 1 identically, and
KMz1,...,7,]) = per(K(zi,z;)), the permanent of the matrix K (z;,z;). The corresponding random
point process is known as the boson random point process.

10



7.2 Pfaffian Processes
Ku(z,y) Kia(z,y)
Let K(z,y) = ’ ’
( y) ( K21 (xay) K22(xay)
Kij(z,y) = —Kji(y,z), i,j = 1,2. The kernel defines an integral operator acting on L*(E) @ L*(E),
which we assume to be locally trace class. A random point process on F is called pfaffian if its point
correlation functions have a pfaffian form

) be an antisymmetric 2 x 2 matrix valued kernel, i.e.

Pr(x1y .. zk) = pf (K (24, 75))ij=1,..k» k> 1. (28)

The r.h.s. of (28) is the pfaffian of the 2k x 2k antisymmetric matrix (since each entry K(z;,z;)
is a 2 x 2 block). Determinantal random point processes is a special case of the pfaffian processes,

. . K 5o
corresponding to the matrix kernel of the form K(z,y) = ( B K?y 2) (lg,y) ) , where K isa
scalar kernel. The most well known examples of the pfaffian random point processes, that can not
be reduced to determinantal form are 8 =1 and 8 =4 polynomial ensembles of random matrices

and their limits (in the bulk and at the edge of the spectrum), as the size of a matrix goes to infinity.

8 See Also

Integrable systems in random matrix theory. Growth processes in random matrix theory. Random
matrix theory in physics. Symmetry classes in random matrix theory. Young diagrams and stochastic
methods. Random partitions. Quantum Chaos. Ergodic Theory. Gibbs states. Dimer problems.
Statistical mechanics and combinatorial problems. Toeplitz determinants and statistical mechanics.
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