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A Refinement of Wigner’s Semicircle Law in a Neighborhood
of the Spectrum Edge for Random Symmetric Matrices*
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§1. Introduction and Statement of Results

We consider a Wigner ensemble of n-dimensional real random symmetric matrices A, = ||a;;||, where
aij = aj; = &j/v/n, 1 <i<j<n,and the §; are independent real random variables. We assume that
the following conditions hold.

(1) The random variables ¢;; have symmetric distribution laws, and

E(&;)? =1/4 for i<j, and E(&;)* < const.
Here and in what follows, E denotes the expectation, and const stands for numbers independent of n.

(i) All the moments of &;; are finite and admit the estimate

E (&)™ < (const - m)™; (1.1)

this means that the distributions of the random variables &;; decay at least as fast as Gaussian distribu-
tions.

Let Mg, k = 1,...,n, be the eigenvalues of A, . The Wigner limit theorem [1, 2] claims that the
empirical distribution function for the numbers Ay,

Na(A) = %#{k A < A},

converges in probability as n — oo to a distribution corresponding to the Wigner semicircle law

A
lim N, () :/ p(u) du, (1.2)
n—0o oo
where
(u) = 0 foru>1oru<—1,
P = 2V1—u? for—1<u<l.

Later, this result was strengthened by Marchenko, Pastur, L. Arnold, Wachter, Girko, and others [3-13].
Consider the r,-neighborhood O, of the right spectrum edge A = 1, where 7,n%/? — 00 as n — co.
For example, one can take r, ~ const /nY, v < 2/3. By formally applying the semicircle law, we find that

the number of eigenvalues in O, behaves as const - r2/2n. Let us renormalize the eigenvalues by setting

)\k =1- gk n
and place the mass
1
pn (k) = —73
nrn
at each point f;. We thus obtain a measure p, on the real line such that ,un(IRl) = 7";3/2. The main

result of the present paper can be stated as follows.
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Theorem 1 (Main Theorem). As n — oo, the measures p, weakly converge in probability on each
finite interval to a measure p concentrated on the half-line Rt and absolutely continuous with respect to
the Lebesgue measure. The density du(z)/dx has the form (2v/2/m)\/z for >0 and is zero for x < 0.

If rp >n=%3 for some £ > 0, then the measures p, weakly converge to p with probability 1.

A similar theorem is valid for the eigenvalues in a neighborhood of the left spectrum edge A = —1.
The main theorem has a series of consequences. Let Apax(An) be the maximum eigenvalue of A, . We
write this value in the form

)\max(An) =1+ emax(An)n_2/3~

Corollary 1. The random variables Omax(A,) are uniformly bounded in probability. In other words,
for each £ > 0 there exists a number M such that

P (B (An) < M} <.

Corollary 2. Let vt(A,, z) be the number of eigenvalues lying to the right of 1 + n~2/3z  where
1s an arbitrary real number. Then

Evt(A,, z) < const(z).
3/2

It also follows from the main theorem that the number of eigenvalues in O, grows as nr;,
. . . _1.—1/2
the average distance between eigenvalues in O,, decays as n™"rp, ' ~.

The main theorem can be derived from the following theorem.

. Hence,

Theorem 2. Let p, — 0o as n — 0o so that p, = o(n?/3). In this case

2320 (7p3)=Y2(1 4 o(1))  if pn is even,

0, if pn 15 odd,

and the distribution Tr AP» — E (Tr AE) weakly converges to the normal law N(0,1/7).

E(Tr A7") :{

Theorem 2 is a refinement of a similar theorem proved by the authors in [14] for p, = o(n'/?).

Remark 1. We can also state a many-dimensional version of Theorem 2. Let

af) = cPpu-(1+0(1)),  i=1,...1

where the ¢(?) are positive constants and the differences qgl) — qﬁfé) are even. Then
. (1) (i2) 2 /¢, ¢ ..
lim COV(TrAg{‘1 ,TrA?{ﬁ):_&’ 1<iy,ip <1,
n—oo T iy + Ciy - -

(i) (i)
and the joint distribution of the random variables Tr Al _E (Tr Aln ) converges to a multivariate normal
distribution. On the other hand, if we choose q£i“) and qﬁ{” so that the difference q£i“) - qﬁ{” is odd,

then the centered traces are asymptotically independent as n — co.

Theorem 2 will be proved in §§4 and 5. In §2 we derive the main theorem and the corollaries from
Theorem 2, the latter being taken for granted.

The results of the present paper are also valid for a Wigner ensemble of complex self-adjoint matrices.
This, as well as other remarks, is discussed in §3.

§2. The Derivation of the Main Theorem and its Corollaries from Theorem 2

To prove the main theorem, it suffices to establish the convergence of the Laplace transforms of the
measures fi, , that is, to show that

o 1 < +oo 21/2 [ 2
/ e~ dp, (0) = er—cek P e—ct i\/éda: —, (2.1)
—co nry' " gy 0 T e

n—00

where ¢ > 0.
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We set s, = [(¢/2)r;!] and p, = 2s, and introduce the following renormalization for the positive and
negative eigenvalues:

/\k:1—9krn, )\k>0,
- (2.2)
)\j:—l—i—rjrn, )\j<0.
According to Theorem 2, the sequence n_lr;?’/z Tr A?*= converges in probability to
. 1 g5y 1 1 n 22
i TR E(TrA™r) = lim I TERN Ve
and n_lr;?’/z Tr A?s»t1 converges in probability to zero.
With regard for (2.2), we obtain
Tr A%» = E(l - Tnﬁk)ﬂ(c/z)r;l] + Z(l - Tj?”n)Q[(c/2)r;1] (2.3)
k J
and
Tr A28+ — Z(l _ rngk)Q[(c/2)r;1]+1 B Z(l i Tjrn)Z[(c/2)r;1]+1. (24)
k J

Note that if |fg]| < rat’® and || < rat/® | then the corresponding terms in both (2.3) and (2.4) are

e—cb (1—1—0(7’,11/3)) and e~ °7i (1—1—0(7’,11/3)) . On the other hand, it follows from the estimate of the expectation
E (Tr A*») given in Theorem 2 that the subsums in (2.3) and (2.4) over 6 and 7; such that

10k > 13, |l > B,

converge to zero in probability. The same holds for the subsums, over the above ; and 7;, of the linear
statistics )", e and Zj e~ 7 . These considerations and formulas (2.3) and (2.4) yield

1
<TrA2s” + Tr A%s»+1 — 226_69") N 0,
k

TLT?L/z n— 00

and consequently
1 P 2
— E em — 5 [
7’LT3/2 n—>00 7T63
no ok

If r, = n~7, where v < 2/3, then it follows from Theorem 2 that the normalized traces n_lr;?’/z Tr A?*»
and n_lr;?’/z Tr A%s=*+1 converge to nonrandom limits with probability 1, and hence the convergence of
the measures p, in the main theorem also occurs with probability 1. It also follows from Theorem 2
that the fluctuations of the random variables ", e~ are of the order of a constant and converge in
distribution to the normal law N (0,1/27) as n — co provided that r, < n=2/5.

Below we prove Corollaries 1 and 2.

Let us represent the maximum eigenvalue in the form Ay = 1+ Omaxn ™23 . Suppose that there exist
sequences n; — oo and L; — oo and an ¢ > 0 such that

P{Amax(An,) > 1407 PLi} >e>0. (2.5)

Let us consider Tr AL"¢ | where p,. = 2 [n2/3/L3/2] (for convenience, we can always assume that L; < n?/3)
and apply Theorem 2. Then

" 2 _3/2
E(Tr A < —L; 2.
(T AT) < 1 (2.6
for sufficiently large n; .
On the other hand, it would follow from inequality (2.5) that
E(Tr AY) > Edmax(An, )77 > € (1 + ny 2020 IVED > ¢ oVT7 (2.7)

For sufficiently large L;, the last inequality contradicts (2.6). The proof of Corollary 1 is complete.
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Proof of Corollary 2. Corollary 2 can also be proved by contradiction. Suppose that there exist
sequences n; — oo and L; — oo such that

Evt(A,,, z) > L;, (2.8)

where vt (A, z) is the number of eigenvalues lying to the right of 1 + n~2/3x where x > 0 is arbitrary.
To obtain a contradiction to (2.8), we take pp, = 2 [n?/S/x/LZ-] and apply the estimate for the expectation
(provided by Theorem 2) to Tr Ap" . We obtain E(Tr A}") < (2/y/7) L?M for sufficiently large n;. On
the other hand,

E (Tr AY)

4 L3/4
(1— rn;2/3)2[”f/3/L:/2]

\/_E i

for sufficiently large n;, which contradicts (2.8) provided that IL; is also chosen to be sufficiently large.
The proof of Corollary 2 is complete.

Evt(An,, z) <

< 2E(Tr Ap%) <

§3. Additional Remarks

1. Similar results hold for a Wigner ensemble of complex self-adjoint matrices A, = {akj}lskijn,
where

__ Re&y; +iIm&y;, . Ekk
akj:ajk:#, 1<k<j<n, Uk = 975

E|[&; | = 1/4 for k < j, and E&Z, < const, as well as for an ensemble of positive definite matrices

k=1,...,n,

By, B} near the right spectrum edge under the assumption that all the matrix elements b;; = n_1/2mj are
independent random variables.

2. For the case in which the matrix elements are Gaussian random variables, explicit formulas are known
for many characteristics of the local distribution of eigenvalues [20, 16]. In particular, the distribution of
the point random field {z1, ..., z,} given by the formula

No=1+n"3, i=1,...,n, (3.1)

is known to have a limit as n — oo . The limit point random field (which is related to the local distribution
of the eigenvalues near the spectrum edge) is determined by its k-point correlation functions, k =1,2,....
For an ensemble of Hermitian matrices such that

Re&j ~ N(0,%), Imé&;~ N(0,3%), 1<k<j<n, ki ~ N(0, 1),

which is known in the literature on random matrices [20] as the Gaussian unitary ensemble, the k-point
correlation function is the determinant

pe(yrs s ys) = det (K (yi, yj))i<i i<k (3.2)

of the k-dimensional matrix whose entries are the values of the kernel

K(x,y) = A(I)A/(yi = fy‘l’(r)A(y) |

where A(z) is the Airy function [16, 17].
Interestingly enough, for the ensemble of symmetric matrices with Gaussian entries

&i; ~N(0,1), 1<i<j<n, &i~N(0,3), 1<i<n

(the Gaussian orthogonal ensemble), the local distribution of eigenvalues differs from (3.2) [15, 20]. In
both cases, the point random field is condensed as * — —oo, that is, the distance between neighboring
eigenvalues tends to zero, and the spectral density p1(z) is asymptotically equivalent to the Wigner density
as ¢ — —oo. This suggests that the (local) Wigner law holds in a neighborhood of the spectral edge for
any scale larger than n~2/3. The main theorem of the present paper asserts that the same result holds for
an arbitrary Wigner ensemble. Specifically, let us consider the point random field {z1,...,z,} defined
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in (3.1), choose a sequence R, — +oo such that R, < n?/3 and count the points z; lying to the right
of —Rn: Nn(—Rp) = #{z; > —R,}. By definition, N,(—Ry,) = #{X\ > 1 — n_z/?’Rn}. In this case, by

virtue of the main theorem, the variable N,(—R,) in the leading term is nonrandom and is equal to

n/l 2\/1—t2dt~(1—|—0(1)).

—n_2/3Rn T

The order of fluctuation of the random variable N,(—Rj) is so far unknown. It is natural to assume,
by analogy with the case of the local distribution of eigenvalues inside the spectrum for the Gaussian
ensembles [21], that the fluctuation is of the order of \/log(R,). This conjecture is partially justified by
the following corollary to Theorems 1, 2: for the smoothed counting functions >, e@ilBn ¢ 5 () with
R, < n2/3=2/5 the fluctuations are of the order of a constant, and the centered linear statistics

Eecz‘l/Rn _E (Eecxl/Rn>

) )

converge in distribution to the normal law N (0, 2-).

3. The first results concerning the traces of high powers of Wigner matrices are due to Furedi and
Komléz [18] and A. Boutet de Monvel and Shcherbina [19]. In particular, Fiiredi and Komléz treated the
case of uniformly bounded random variables &;; (whose distribution law is not required to be symmetric)
and proved a formula for the leading term of the expectation E(Tr AP») for p, < n'/6. Note that the
technique of the present paper can be generalized to the case of nonsymmetrically distributed random
variables ;. In this case, we face the necessity of studying paths passing through some edge an odd
(> 1) number of times (see §§4, 5).

For p, < n'/%, the main theorem and Theorem 2 remain valid for nonsymmetrically distributed &ij -
Moreover, for p, < n'/?, condition (1.1) on the growth of the moments of the random variables &;; can be
weakened by requiring that the distribution functions of &;; should decay at infinity at most exponentially,
that is, by replacing (1.1) by

E(&;)%* < (const - k)2 (1.1

§4. The Expectation E(Tr A2")

Theorem 2 will be proved by the moment method. To this end, we must prove that the moments of the
random variable Tr AL — E (Tr AE~) converge to the corresponding moments of the normal distribution
N(0, %) . In this section, we estimate the leading term of the expectation E(Tr AZ~). Clearly,

1

(TI‘ An ) nsn Z Egluh 62112 £Z2sn—1 o (4 1)

P
The sum in (4.1) is taken over all closed paths P = {ig, 41, ..., 42,1, %0} with a distinguished origin in
the set {1,...,n}. Tt is convenient to regard the set of vertices {1,...,n} as a nonoriented graph in

which any two vertices are joined by an unordered edge. Since the distribution of the random variables
&;; 1s symmetric, it follows that the only paths contributing to (4.1) are those for which the number of
occurrences of each edge is even. In what follows, we consider only such paths, which are said to be even.

Definition 1. An instant k is said to be marked if the (unordered) edge {ix_1, ik} occurs an odd
number of times up to the instant & (inclusive). The other instants are said to be unmarked.

Each even path contains equally many (namely, s, = p,/2) marked and unmarked instants. To each
path P we assign a trajectory X = {2(0), z(1),..., 2(2s,)} of a random walk on the positive half-line,
where z(0) = 0 and the difference z(k) — z(k — 1) is equal to 1 or —1 depending on whether the kth
instant is or is not marked. Obviously, z(t) > 0 for all 0 <t < p,,, and we have z(p,) = 0 for even paths.

118



Definition 2. An even path P is called a path without self-intersections if, for any two distinct marked
instants &’ and k" one has ig: # g .

Any path without self-intersections has the following structure. First, there is a series of marked instants
at which the path passes through distinct vertices (the number of vertices is equal to the length of the
series). Then, there is a series of unmarked instants at which the path passes through some of these
vertices in the reverse order. Then, there follows a new series of marked instants and the corresponding
series of vertices, etc. It is important that, for paths without self-intersections, the trajectory is uniquely
determined at the unmarked instants provided the trajectory at the marked edges is known. Each edge is
passed twice in such paths.

The subsum of (4.1) over the paths without self-intersections is equal to

11 2sp)ln(n—1)---(n—s,)
nsn 45n spl(sn + 1)!

1
Z(O) = nsn E E&'uil o 'gizsn—lio =
P without
self-intersections

(4.2)

Here (2sp)!/(sn!(sn + 1)!) is the number of trajectories, of length 2s, and with z(0) = z(2s,) = 0, of
the simplest random walk on the nonnegative half-line, and the product n(n —1)---(n —sy,) specifies the
number of ways in which the initial vertex and the vertices at the marked instances can be chosen. It was
shown in [14] that for s, = o(n'/?), the main contribution to E(Tr A2*~) is due to the paths without
self-intersections, that is,

E(Tr A2") = Z(0) - (14 o(1)) .
This is no longer valid in the general case, and we must study the statistics of self-intersections.

Definition 3. A marked instant m is called an instant of self-intersection if there exists a marked
instant m’ < m such that %,,, = %,, .

Definition 4. A vertex i is called a verter of simple (respectively, triple, quadruple, etc.) intersection
if there are exactly two (respectively, three, four, etc.) marked instances i,, such that i, =i.

According to Definition 4, all the vertices split into s, + 1 disjoint subsets:
Sn
{1,...,71}: I_lNka
k=0

where Ng is the subset of vertices of k-fold intersection. In other words, recasting Definition 4, we say
that a vertex 7 belongs to the class Ni, k> 0, if there are exactly k& marked instants my, ..., mg such
that i,,; =, j=1,..., k. All but one of the vertices from Ny do not belong to P. The initial point g
of the path may be the only exception provided that it 1s not visited at marked instants at the intermediate
steps. Let ng = #(Ni). We can readily see that

Sn Sn

Enk:n, ankzsn. (4.3)
k=0 k=0
We say that P is a path of type (ng,n1,...,ns,). For example, every even path without self-intersections

is a path of type (n — sp,sn,0,...0). It was shown in [14] that the subsum over the paths of type
(ng,n1,...,ns,) is bounded above by
1 n! (2s5)! Sp!
n
w1 (5m + 1)1 T, (H)

U(ng,n1,...,ns,), (4.4)

ns» nglng!- - -ng !

where

U(ng,ni,...,ns,) = max E(H&liHl)Wn,
=0

P is of type
(no,n1,...,ns,)
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and W, is the number of ways in which the trajectory can be chosen at unmarked instants provided that
the vertices at the marked instants have already been chosen. For example, W,, =1 for the paths without
self-intersections.

In [14], we used the following estimate for U(ng, n1,...,ns,):

1 n, Sn
U(ng,n1,...,n,,) < (Z) H(const1 ) 2R

k=2
This estimate is far from being optimal if ng > 0 for large k. Below (in Lemma 1) we show that

1 ni Sn
U(ng,ny,...,ns,) < <Z> H(COHSt2~k’)knk. (4.5)

k=2

By performing the summation over all paths of type (ng,ni,...,ns, ) such that

Sn 2
S kne> 1020

n
k=2

and by using the estimates (4.4) and (4.5), one can readily find that the subsum over such paths is o(1),
and hence it is small compared with the value (established in Theorem 2) of the total sum

E(Tr AZ") =

= (1+0(1)).

TS;

In what follows, we study the sum over the paths for which we always have
Sn 52
> kng <1072 (4.6)
k=2 n

Let M =3 ;" ,(k—1)ng. If a path P contains only simple self-intersections, then M = n,. We shall
show that in our case (s, = o(n?/3)) it is the paths with simple self-intersections that make the main
contribution to E(Tr A2%#). Let us denote the sum over paths with M simple self-intersections by Z(M).
The following assertion holds.

Proposition 1.

Z(M) = — 6—51/2"#<%)M(1+o(1)) (4.7)

uniformly with respect to 0 < M < 10s2 /n.

Remark 2. By formula (4.7), the number M of self-intersections for typical paths is of the order of
s2/n and is equal to (s2/2n)(1 4+ O(\/n/s,)) for s, > /n.

Proof of Proposition 1. Let us calculate Z(M) as follows. First, we choose s, = p,/2 marked
instants ¢; and assume that 0 <#; <it3 < --- <15, < 2s,. Recall that to any choice of marked instants
there corresponds a trajectory z(t), 0 <t < 2s,, of the simplest random walk on the positive half-line,
namely,

2(0) = 2(2s,) =0
z(t;) —z(t; — 1) =1, j=1,...,s,,
zt)—z(t—-1)=-1 fort;étl,...,ts

_—

Then, among the marked instants we choose M instants of self-intersection t;,,%;,,...,t;,, (that is, we
choose indices ji, ..., ju such that 1 < j; < j2 <+ < ju < s,). After this, we choose the origin of the
path and the vertices occurring at the marked instants. (The origin can be chosen in n ways, and then we
successively choose, in n—1,n—2,... n—s,+ M ways, the vertices occurring at the marked instants that
are not instants of self-intersection.) At the instants of self-intersection, the vertices are chosen as follows.
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At the first marked instant £;, of self-intersection, we can choose one of the vertices that occur in the
path before the instant ¢;, , and there are exactly j; — 1 such vertices because our trajectory z(t) of the
random walk made j; — 1 steps to the right for 0 <t < ¢;, . At the next instant of self-intersection, t;,,
there are exactly j2 —2 possibilities of choosing a vertex (as long as we deal with simple self-intersections,
the vertex chosen at the instant ¢;, cannot occur at any later instant of self-intersection). Likewise, at the
last marked instant of self-intersection, ¢;,, , there are jar — M possibilities of choosing the next vertex.
For a path with self-intersections, the choice of vertices at unmarked instants (the choice of the “backward
trajectory”) may be ambiguous. For the “first return” from a vertex of simple self-intersection, one of the

following three edges can be chosen:
(a) the edge used to arrive at the vertex for the first time;
(b) the edge used to leave the vertex;
(c) the edge used to arrive at the vertex for the second time.

We shall show below that only the third possibility is realized for typical paths since, by the instant of
self-intersection, the edges (a) and (b) have already been passed twice. Let Z3(M) be the sum over the
paths with M simple self-intersections such that the edge used to arrive at a vertex of self-intersection for
the last time is always chosen for returning. If each edge of P is passed twice, then

E<2§1£im+l) - G) (4.8)

In the general case, some edges can be used four times. Let m be the number of such edges. In this case,

28,—1 1 Sp—2m
B( [T euin) < (3) 7 Ccomsta™ (49)
=0

Let us show that the main contribution to Z;(M) is due to paths in which each edge is passed twice.
In the Appendix, we study the following characteristic of P: the maximum number of vertices that can
be visited at marked instants from a given vertex. Let us denote this number by v, (P). By definition,
each vertex i of the path P is the left end of at most v, (P) marked edges. In the Appendix, we prove
that v, (P) cannot grow too fast for typical paths; for instance, it grows no faster than s} for any =,
0 <y < 1. In other words, the sum over paths with v, (P) > s} is o(1) (see Lemma 2). In what follows,
we always assume that

vn(P) < s/, (4.10)

Let ju,, ..., ju, be the indices of the instants of self-intersection corresponding to edges that are passed
four times. In this case,

Z1 (M) = Z Z nn—1)---(n—s, + M)
X={z(t)} 1<j1<<jm<sn 1 <2sn—

x (1 — 1)(ja = 2) - - (jar — M) II gml+1). (4.11)

nén

The probability of choosing a vertex of self-intersection corresponding to an edge used four times is of the

order of v, (P)/s, , and the average number of such vertices is O(Mv, (P)/sn) = o(1) because v, (P) < 3}/4

and M < 10s2/n < 5,1/2 . More precisely, the above argument can be carried out as follows:

Z(M)=Y" > n(n—1)--(n—s, + M)
X 1<j1<<jm<sn 1 <1

x (1= 12 —2) - (jn — M) Z)sn'i'Z{(M)’ (4.12)

nén
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where

x S =D Guy —w) e (u — tm) - (g — M)

1€u1 < <um <M

1/4\m 1 1 Sno2m m c

X (/)™ — 1 = (consts) (4.13)
nn

—

(we write (ju, — u1) - (Ju,, — Um) to indicate that these terms are absent in the product). The subsum
Z1 (M) corresponds to the paths that contain edges passed four times. Let B(M) be the subsum

> (1 —=1)- (i — M)
1<1<<jm<sn

in (4.12). The estimate

B(M) 3 jl...jM:%(iMj)M(lJrO(%))

0<j1<-Sjm<sn—M

1 <(5n—M)(5n—M—|—1))M<1+O< 5n )) _ 6™ ) (4.14)

M! 2 n2/3 M!

holds uniformly with respect to 0 < M < 10s2/n. Tt follows from (4.14) that

nn = el o (1-5)252(3) "ot + )

| |
Sp(Sn + 1) il n 4
1 n sa \ (sa/2m)™ ,
Ve <— g) (o)) +21(M). (4.15)
Similar estimates for 7] (M) prove that the relation
M81/4 1 n 52 (82 /2n)M
! n - _ S5n n
Z1(M) < 0< o ) N exp < 271) - (4.16)

holds uniformly with respect to 0 < M < 10s2/n. Thus,

n 52 s2 /an)M
(M) = %y&@(—i)%(l—l—o(l))’

and, by summing over all M, we obtain

Sn 1052 /n
Zv=>_ Z(M)y= Y Zi(M)+o(l) = \/i; 83%(1 +o(1)). (4.17)

The vertices of self-intersection for which there are several possibilities of returning will be called
nonclosed. Let r = r(P) be the number of such vertices. Moreover, let Ly, » l=1,...,7r, be the instants
of self-intersection corresponding to the nonclosed vertices. Obviously, a vertex is nonclosed only if the
edge used to arrive at this vertex has not been used for returning (i.e., at an unmarked instant) by the
current instant of self-intersection. Hence, the number of possibilities of choosing a nonclosed vertex of self-
intersection at an instant ¢ does not exceed z(t). We must also take account of the fact that in the general
case the geometry of self-intersections can be more complicated (along with simple self-intersections, the
path may contain self-intersections that are triple, quadruple, etc.).
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Let P contain M instants of self-intersection, that is,

M= "(k—1)m
k=2

We denote the indices of the instants of simple self-intersection by ji, ..., jn,, 1 <j1 <+ < Jn, < 8p,
and the number of nonclosed vertices by r. Let ji,,..., i, be the indices of the instants of simple
self-intersection corresponding to the nonclosed vertices. The pairs of indices of the marked instants
corresponding to the vertices of class N3 will be denoted by

G0, 68, G40 )
and ordered so that
1<) << <l <sn, G0 <D, k=1, ns. (4.18)

We assume that the kth vertex of triple self-intersection is visited for the second time (at a marked instant)
at tj(z) and, for the third time, at an instant tj(2) .
k,1 k,2

Likewise, by
(j (3)  .(3) (3)) (~(3) (3)  .(3) )

Ji,10J1,2:J1,3 v Uny19Inyg,29Iny,3

we denote the triples of indices of the self-intersection instants corresponding to the vertices of class Ny,
and we assume that

1<) <) << <m0 <P < k=1, n, (4.19)

etc. Let Z5 be the sum over the paths admitting only simple self-intersections and having at least one
nonclosed vertex, and let Z35 be the sum over paths admitting nonsimple self-intersections. In what follows,
we show that 75 and Z3 are small compared with 77, namely,

Zo=o(n/s3?),  Zs=o(n/s?). (4.20)
First, let us consider Z5. By the above reasoning, we have the upper bound

1082 /n

Zy3<> 0N > Z oo nn=1)-(n—s.+ M)

X M=1 1<j1<<jm<sn r=1 1<li<<I <M

><<j1—1>~~<jf—\11> (o =) -+ (g = M)

28,—1
xe(ty,) e, ) —— ( H EWHI) Wa +o(1). (4.21)

The last factor, W, , in (4.21) is the number of ways to continue a trajectory at the unmarked instants
provided that the vertices for the marked instants have already been chosen.

If all self-intersections in P are simple and there are exactly r» nonclosed vertices, then W, < 3". The
double sum

> S =)l —h) Gy =) G = M) x () 2 (t,)
1<j1< <M Ssn 1Sh < <Ur <M
is bounded above by

s M-r , s r M r M r
1 . - 1 1 (s 1/2M z(t)
wi(20-0) (B a(Zrom0) <5(3) 7Cemm 72)

j=1
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Thus, the subsum Z5 over paths in which each edge is passed twice does not exceed

2s,)! 1\ %" —s2/9n s sfl 2n > Zr 17"(602_?/2max%)7‘
e (a) “*"(”)(MZ:o( ) T A o)

(14 o(1)) (E (ex <% max ﬂ) - 1)) (4.22)
= \/_ 3/2 X\ n 0<t<2s, /5, ’ ’
The last factor (the mathematical expectation) in (4.22) tends to zero as n — oo . Indeed, the distribution
of a normalized trajectory z,(t) = (2([25nt])+ (250t —[25nt]) (2([25nt]+1)—2([25a1]))) (25,) "2, 0< t < 1,
of the random walk converges to the conditional distribution of the Bessel process on the positive half-line
under the condition b(1) = 0. Consequently,

Ex (exp <503r?sa§(sn j%)) ——E (exp <5 O%a;b(t)) ‘ b(1) = o)

for an arbitrarily small € > 0, and since the coefficient 6052/2/71 in formula (2.22) tends to zero as n — oo,
it follows that

0<E 60s3” W) _1) < z®Y_,
SEX\PN T o, e ) T ) SEX\OP S ) T

< (E (exp (6 rgax b(t ‘ b(1) = 0)) - 1) (I+¢) (4.23)

for sufficiently large n. By choosing € to be sufficiently small, we can ensure that the right-hand side
of (4.23) is as close to zero as desired. Hence,

Zy = o(Z) + 74, (4.24)

where 7! is the subsum of Zs over the paths in which at least one edge is used four times. The sum Z}
can be analyzed in the same way as 7], and we finally obtain Z} = o(Z;). This, together with (4.24),
yields 7y = o(71).

Now let us consider the sum Z3 over the paths that admit nonsimple self-intersections. Using the above
notation, we can write out the following estimate for Z3:

10s2/n

ne ¥Y D D> >

X={x(t)} M=1 nz+2ns+ +Mnyp=M r=0 1<j1< - <jny<sn 1<L1<<Up<nz

2 2

(2) ,(2) (2)  -(2) (3) .(3) -(3) (3) (3 (3)

(171:012) (]n3 10y, 2), Uiad120018) (-7n4 1Jng, 20dn,, 3)
1<](2)1<](2)< <](2) <sn, 1<](3)1<](3)< <](3;)) <sn,
i$20<i2 5, a2=1, 04 i$20<i82 <5 aa=1, 0 na

wn—n~«n—%+nnme4y~mf40~«if7»~um—nﬁ
n3 N4 28,—1
XmepII&%4%HOQﬁU ~~~~~ (Hﬁum) )
g2=1 gs=1

Here W, is again the number of ways in which a trajectory can be continued at the unmarked instants if
it is given at the marked instants. In [14], we have essentially used the following estimate:

M
Wn < ] (2k)5m3". (4.26)
k=3

This estimate would suffice here if the random variables {&;;} were uniformly bounded. In the general
case of the overexponential growth of the moments of &;; , the factor E (stn_l & .iug.) May be large since
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so may be the contribution of the edges used many times, and we need a somewhat finer estimate for the
last two factors in (4.25), which is proved below.

Lemma 1.

2sp,—1 sn M
n 1 n
u=0

k=3
Proof of the lemma. In [14], we used the estimate (4.26) for W, and the estimate

E(Hf)f@ T Gheonst-I((i, i)t (429

the edges {i,j} of P

where {i,j} stands for an edge of P and 2{({7,j}) for the number of occurrences of the edge {i,j} in
P. The estimate (4.26) follows from the fact that, for a vertex of k-fold intersection, there are at most
2k possibilities for each “return.” The estimate (4.28) is a direct consequence of condition (1.1) imposed
on the growth of the moments of the random variable {£;;}. The meaning of Lemma 1 is that these two
factors cannot be large simultaneously. If an edge is passed more than twice, say, 2/ times (2! > 2), which
results in the appearance of the factor (4 const-{)! on the right-hand side in (4.28), then we can reduce
the estimate for W, on the right-hand side in (4.26) by a factor of {! because the “returns” occur [ times
along the same edge. Thus,

9s,—1 . Ny
I const - 1({4. s1))({#:31) # o\ Enkor
(1T e 1 (5) 7 T teomse 66,0 00 gt Tl ™3

{i,5}
N T i T
7, kngar
< (Z) H (consty)! (177 H (2k)""*3
{i, 7} k=3
< (1 sn(constl)EkM:ak“kﬁ(zk)k“k:’f (4.29)
<3 1 : .

This is just the estimate from Lemma 1. In (4.29), the product Hf{l i is taken over the edges {i, j} such
that {({:,5}) > 4.

The subsequent estimates for Z3 are similar to those for Z; and Z;. Namely, in (4.25) we consider

the subsum
2 2 2 2

1<51<<Jny<sn 1< << <N (G :(2) (2)) G ((2)  +(2) ), G (3) . (3) (3))

J1, 1J1. 5 Ins, 1;Jn3 2 Ji1, 17‘71 2:J1,3
1<](2) < <](2) <sn (-75;1) 1 7-77(31) 27-7513;) 3)
J§2)1<];2)2)Q2 1,...,n3 1§](?)< <J(3;), <sn
=1 G =) G, =) (Gny — n2)
n3 Ng NAM41
.(2) .(3) (M :
x va i) I Gan =0 - TT G =1 T 63 =1 (4.30)
q2=1 qz=1 gum=1

The subsum (4.30) is majorized by

s ng—r s r M r
1 ~ . 71 -
@(Z(h—l)) ;(Zl) <l_10§1§§3nr(t)~1)

ji1=1 j2=1
1 1 Sn Sn ns 1 1 Sn Sn . na
(2,2(33—1) Zl) (3'2(]5_1) 2121)
a=1 Ja=1 s=1 je=1  jr=1

< Unk (% _1)!)nk%<%maxf/(§_i)r. (4.31)
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Tt follows from (4.31) and Lemma 1 that

Sn 1033;/” spn—M

s 1ONDINNNP Y | § ()

M=1 ny+42nz+--+Mny4p1=M i=1

y 1L /s2\™ Sﬁl 1 sk (consty - k)F\™*
na! \ 2n Pei np! \ 2nF-1 (k- 1)!

3

Sn 10s2/n sn—M

e Ee O NP Y (N )

M=1 na+42nz+ +Mnpyp=M i=1

1 /s2\™ = 1 s constg - KB\ "* 6052/2 z(t)
[ 2n ) - n E _1 1
8 n21(2n> h nk!<2nk—1 (k—1)! ) X(exp( n ogr?g:inw/sn> ) +ol)

sn+1

n s k
< Gl (oo (X g ) 1)
1on k=3

60s5/” z(t) n o
+EX<exp <T0§Ht1§a§(sn Sn)—l)}_o<siw>. (4.32)

Thus, we have proved formulas (4.20). In conjunction with (4.17), this implies the following estimate for
the leading term of the expectation:

3w

E(TrAZ") = —=

—(1+0(1))  for s, < n*/>. (4.33)

TS}

As a by-product, we obtain the following estimate for the number of even paths of length 2s, .
Proposition 2. Let 1 < s, < n*?. In this case, the number of even paths of length 2s, is equal to
n5n+145n71'_1/25;3/2(1 +o(1)).

§5. Estimates for the Variance and for the
Higher Moments of the Random Variable Tr AP~

The treatment of the variance and the higher moments of Tr AP~ essentially follows [14]. For the
reader’s convenience, we give here the main ideas of the proof.

Proposition 3. Let 1 < p, < n?/3. In this case, Var (Tr A2~) < conste for all n, and we have the
relation Var(Tr ALr) — 1/m as n = 0o, p, = 00, and pan~2/3 5 0.

The formula for the variance of the random variable Tr AP~ reads
Var (Tr AL) = E (Tr Ab")* — (E(Tr AL"))?

n n

1 Pn Pn
= E Z P : (E (H&z_ﬂz : H Ejm—ljm)
10,91, -, ipp—1=1J0,51, -, Jppn—1=1 =1 m=1
Pn Pn
_E<H£iz_1iz> E( H gjm—ljm))’ (51)
=1 m=1

where it is assumed that 2, =14, and j,, = jo.
Since the symmetrically distributed random variables &;, ¢ < j, are independent, it follows that most
of the terms in (5.1) vanish. The term corresponding to a pair

P={iv—=i1 = —ip,_1 =0}, Pr=Ajo—= 1= = Jpa—1 = Jo}

of closed paths of length p,, is nonzero if and only if

(a) the paths P and P’ have at least one common (nondirected) edge;

(b) the number of occurrences of each edge in the union P U P’ is even (here the union P U P’ is
understood as the union of the sets of edges of P and P’ with regard to the multiplicities of their passage).
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Fig. 2

Definition 5. An ordered pair of paths satisfying conditions (a) and (b) is said to be correlated.
A correlated pair is said to be simply correlated if each edge occurs in the union P U P’ exactly twice.

The computation of Var(Tr AP~) is essentially reduced to that of the number of correlated pairs of
paths counted according to the corresponding statistical weight. In particular, our argument will prove
the following assertion.

Proposition 4. Let 1 < p, < n?/3. In this case, the number of correlated pairs of paths in the leading
term is equal to the number of simply correlated pairs of paths and coincides with 7= 1nP=22P=(1 4 o(1)).

The technique developed in §4 permits one to find the leading term of the number of even paths of
length 2s, . Indeed, if the events &;; = +1/2 for the random variables &;;, i < j, are equiprobable, then

E(Tr A%*") = 4*=n*» . (the number of even paths of length 2s, ),

and Proposition 2 follows from (4.33).

In what follows, to each correlated pair of paths of length p,, , we assign an even path of length 2p, —2.
This correspondence is not one-to-one, and each path of length 2p, — 2 has several preimages in general.
As a result, the calculation of the number of the correlated pairs of paths is reduced to that of the number
of even paths counted according to the multiplicities equal to the numbers of the corresponding preimages.
The construction of the above correspondence is illustrated in Figs. 1 and 2.

Definition 6. By the first common edge of an ordered correlated pair we mean the first edge in P
that belongs also to P’.

The new path of length 2p, — 2 will consist of edges of the paths P and P’and will be denoted by
P VP’ The path P VP’ is constructed as follows: first we go along P to the left end of the first common
edge of P and P’, then jump to P’ and make p, — 1 steps on P’ (along P’ if P and P’ have opposite
direction on the common edge and in the direction opposite to that of P’ if P and P’ have the same
direction on the common edge). After p, — 1 steps on P’ we again arrive at the common edge of P and
P’. Then we jump to P and finish the path P VP’ by going along the first path. The path

TVTIZ{ZQZiQ—)"'—)l,«:ir:jm—>ZT+pn—1:ir+1:j_>"'_>l2pn—3_>10:i0}
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thus obtained, where {7, i,41} is a common edge of the paths P and P, is even because the pair (P, P”)
is correlated.

Now let us estimate the number of ways in which a given path of length 2p, — 2 can be obtained from
various correlated pairs. First, we must choose some vertex [, in the first half of the path, 0 <r <p, -1,
and join it with the vertex l,4,,_1. The choice is made so that the edge {/,,l,4p,—1} is the first common
edge of P and P’. Moreover, we must choose the beginning of the second path P’, which can be done in
pn Ways in a typical situation, and the direction of motion along P’, which can be done in two ways. It
is convenient to restate the condition that {l,, !4, ,_1} should be the first common edge of the paths P
and P’ in terms of the random walk

X ={z(t)>0,0<t<2p, —2, z(0) = z(2p, — 2) = 0}

on the positive half-line. Recall that z(¢) —z(t — 1) = 1 if the number of occurrences of the edge {l;—1,0;}
in the first ¢ steps is odd, and z(¢) — z(t — 1) = —1 otherwise. In this case, a necessary condition for
the edge {l;,l4p,—1} to be the first common edge of the pair (P,P’) is that for r <t <r+p, — 1
(half the total time of the walk) the trajectory z(¢) should not fall below z(r). For typical paths (i.e.,
those with simple self-intersections and without nonclosed vertices) this condition is also sufficient. Let
K,(z(-)) be the number of instants r;, 0 < r; < p,—1, j=1,..., K,, such that z(t) > z(r;) for
r; <t<rj+p,+1. It was shown in [14, Lemma 1] that

Ex K, = 2@(1 +o(1)). (5.2)

We have shown in §4 that the uniform distribution on the space of closed even paths of length 2p, — 2
induces a distribution on the space of trajectories of the random walk such that the latter distribution
tends to a uniform distribution as n — co. Following the lines of §4, we can readily show that
(2pn - 2)! -

————Ex(K,(z(-)))  2pn - (L +0(1)). (5.3
A B (K (a(-)) 2 (14 0(1) . 63)
Proposition 4 follows from (5.2) and (5.3). When calculating Var (Tr A2~), one must also take into account
the statistical weight

1 Pr Pr Pn Prn
nPn (E (Hgil—lil : H gjm—ljm) -E <H£iz—1i1) . E( H gjm—ljm))' (54)
=1 m=1 =1 m=1

The factor (5.4) is equal to 272 provided that the following two conditions are satisfied:

(a) the path P VP’ contains each edge exactly twice;

(b) the path P VP’ does not contain the unordered edge {l,,{r4p,—1}.
The proof of the fact that the paths satisfying conditions (a) and (b) are typical and make the main
contribution to Var(Tr APr) essentially reproduces the argument in §4. The proof of Proposition 3 is
complete.

The case of higher moments can also be considered in a manner similar to that in [14]. To prove
Theorem 2, we must show that

(the number of correlated pairs of length p,) = nP»

2% — 1)
E(Tr AP» — E(Tr A2))% = % +o(1), (5.5)

E(Tr AZ» — E(Tr AR»))?F+1 = o(1) . (5.6)
The following identity holds, which is similar to (5.1):
1 L n Pn Pr
E(Tr AL — B (Tr A27))E = —7 B H < Z (H Eiomy yom) — B H 52'5’1‘12'&’”))) (5.7)
m=1 2yl ()il = =L r=1
Let us consider an arbitrary set of L closed paths
P = (i 5™ i =y m=1,

of length p, .
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Definition 7. We say that paths P, and P,,» intersect each other by an edge if P,y and P,,» have
a common (nondirected) edge.

Definition 8. A subset P, Py, ..., Py,
paths if the following conditions hold:

(a) for each pair Pp,,, ‘ij there exists a chain of paths from this subset such that P,,, is the first
path in the chain, P,,; is the last path in the chain, and any two neighboring paths intersect each other
by an edge;

(b) property (a) is violated if we add an arbitrary new path to this subset.

of the set of paths is called a cluster of intersecting

It follows from the definition that the sets of edges corresponding to different clusters are disjoint.
This, in conjunction with the independence of the random variables {;;}i<; , implies that the expectation
in (5.7) can be represented as the product of the expectations of the factors corresponding to various
clusters. Formulas (5.5) and (5.6) follow from the fact that the main contribution to (5.7) corresponds to
the situation in which each of the clusters contains exactly two paths. (Obviously, if at least one cluster
consists of a single path, then the expectation of the corresponding term is zero.)

Lemma 2.
l n Pn Pn ¢
1 * 1/m+o(1) forl=2,
E—— (m) (m) — E (m) +(m = 5.8
wr IU( 3 (Meme -2(eme))) ={ o™ rise 69
m= g™, il =1 = r=

where the product [[* in (5.8) is taken over the paths forming a cluster.

The proof of Lemma 2 is given in [14]. Note that the case | = 2 corresponds to Proposition 3 of the
present paper. The case [ > 2 can be treated in a similar way. To each cluster of [ paths we assign an even
path of length [, — ¢, where [ < ¢ < 2{. The number of preimages under this correspondence is bounded
above by K!=1! where K, is the number of instants ¢;, i =1, ..., K, , such that ¢; < ({ — 1)p, — ¢ and
z(t) > z(t;) for t; <t <t; + p, — 1. The corresponding analog of (5.2) is given by the inequality

Ex K'™! < const, ~pg_1)/2.

Appendix

In this Appendix, we prove that the sum over paths in which some edge is passed at least four times is
small compared with the total sum (4.1).

Let P = {ig > i1 = -+ > is5, = 40}, and let v,(P) be the maximum number of vertices into which
one can get at marked instants from a given vertex. By definition, each vertex i of the path P is the left
end of at most v, (P) marked edges. In what follows, we show that, for typical paths, v,(P) grows slower
than any positive power of s, .

Lemma 3. For each v, 0 < v < 1, the subsum in (4.1) over the paths P such that v,(P) > s},
0<vy<1,is o(l) and hence is negligibly small compared with the total sum.

To understand why v, (P) cannot be large for typical paths, let us consider a path with simple self-
intersections and without nonclosed vertices. In this case, if a vertex is the left end of v, marked edges,
then, for the corresponding random walk z(¢), 0 < ¢ < 2s, , on the positive half-line, there exists a time
interval [t1, %3] on which the trajectory z(¢) falls v, /2 times into the level z(¢1) but never falls below
this level. Indeed, to make each new step from the vertex i, , we must first return to this vertex along the
trajectory, and the coefficient 1/2 of v, responds to the fact that é;, can be a vertex of self-intersection.
Obviously, the probability of such trajectories of the random walk decays exponentially as v,, — co, that
18, there exists a constant const; such that the fraction of such trajectories does not exceed

(28n)26—const7~un. (Al)

Let n, be the number of edges passed four times by a path with simple self-intersections. In this case,

28,—1

1\°"
E H iviugr < <Z> (8 const) 7.
u=0
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For a given v,, we can readily write out an upper bound both for the number of edges passed four
times and for the quantity (8const)?7=. We still denote the total number of instants of self-intersection
by M. As was shown in §4, it suffices to consider the case M < 10s2/n. For each of the M instants
of self-intersection, the number of possible choices of the vertex of self-intersection that is an end of a
fourfold edge does not exceed v, ; at the same time, the number of all possible choices of the vertex of
self-intersection is of the order of s, in the general case. Thus, the mean value of 5, is of the order of
(Un/sn) M = O((Vn/ﬁ)(sg/z n)). A similar argument shows that the mean value of (8const)?"* does

not exceed 5,1/2(8 const)(”n/\/ﬁ)(m‘*i/?/”) . As a result, we see that the subsum of 7; over the paths with

fourfold intersections and with v, > s} behaves as

AR O( max {(8 COIlSt)(QOSi/?/n)(V"/\/E)(28n)26_ constz - ¥n }) =o(Z1).
sp<vn<sp

For an arbitrary even path, let N, be the number of unmarked instants for which the choice of the
continuation (“return”) of the trajectory is ambiguous. By definition, N, < r+ > ;= kng. It follows
from the reasoning in §4 that the probability of choosing the vertices of the path so that N, > N is
O((consts ~sn/n2/3)N) uniformly with respect to N. The above N, instants divide the interval [0, 2s,,]
into N, + 1 subintervals such that at least one of them contains a subsubinterval [¢1,%5] on which the
trajectory falls at least vy, /(N +1) times into the level z(¢;) but never falls below it. The fraction of such
trajectories z(+) does not exceed (2s,)%e” constz vn/(Nn+1) (cf. (A1)), and by carrying out computations
similar to those used in §4 for Z;, Z5, and Zs, we find that the subsum over the paths with v, > s} is
bounded above by

205‘3/2

Sn Sn N,
consts - sy, . constyz vy n ,V/_n = y
Z1 . < E E (W) € t7 /(N +1)(8 COHSt) sn " ) (AZ)

yn:s;; N,=0

Elementary computations show that the second factor in (A2) is o(1). The proof of Lemma 3 is complete.
The sum over the paths with edges of multiplicity >4 and with v, < s} was studied in §4 (see the
estimates for 7] and 74), where it was shown that this sum is also o(77).
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