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Gaussian Fluctuation for the Number of Particles in
Airy, Bessel, Sine, and Other Determinantal
Random Point Fields
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We prove the Central Limit Theorem (CLT) for the number of eigenvalues near
the spectrum edge for certain Hermitian ensembles of random matrices. To
derive our results, we use a general theorem, essentially due to Costin and
Lebowitz, concerning the Gaussian fluctuation of the number of particles in ran-
dom point fields with determinantal correlation functions. As another corollary
of the Costin—Lebowitz Theorem we prove the CLT for the empirical distribu-
tion function of the eigenvalues of random matrices from classical compact
groups.
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1. INTRODUCTION AND FORMULATION OF RESULTS

Random Hermitian matrices were introduced in mathematical physics by
Wigner in the fifties [ Wigl, Wig2]. The main motivation of pioneers in
this field was to obtain a better understanding of the statistical behavior of
energy levels of heavy nuclei. An archetypical example of random matrices
is the Gaussian Unitary Ensemble (G.U.E.) which can be defined by the
probability distribution on a space of n-dimensional Hermitian matrices as

P(dA) = const,, - e =2 Trace 4* 4 (1.1)
Here dA is the Lebesgue measure on n2-parameters set

{Rea,, 1<i<j<mImay, 1 <i<j<n a; 1<i<n} (1.2)
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and const, = (zn) ~"/?.2"?"= D2 is 4 normalization constant. (1.1) implies
that matrix entries (1.2) area independent Gaussian random variables
N(O, (1 +0J;)/8n). It is well known that the G.U.E. is the only ensemble of
Hermitian random matrices (up to a trivial rescaling) that satisfies both of

the following properties:

(1) probability distribution P(dA) is invariant under unitary trans-
formation

A->U"'4U,  UeUn)

(2) matrix entries up from the diagonal are independent random
variables (see [ Me, Chap. 21]).

The n eigenvalues, all real, of a Hermitian matrix 4 will be denoted by
A1y Agyees 4. For the formulas for their joint distribution density p,(41,..., 4,,)
and k-point correlation functions p,, z(4,,..., 4;) we refer to [ Me]. One has

Pu( Ay ) =const,- ] 14,— 4% exp <—2n- Y /112> (1.3)

1<i<j<n i=1
n!

(n—k)!
=det(K, (21, 2,))5 (1.4)

PoilFitsos D) 1= jRH Pt D) Dy -,

where K, (x, y) is a projection kernel,

n—1

K,(x, 9)=/2n- Y W (/2nx) -y ,(/2n-) (1.5)

and

—1Y 2 ¢
wf(x)zm.exp <);>.dxfexp(—x2) (1.6)

/=0, 1,.., are Weber—-Hermite functions. The global behavior of eigen-
values is governed by the celebrated semicircle law, which states that the
empirical distribution function of the eigenvalues weakly converges to a
nonrandom (Wigner) distribution:

T = #li<i) e F =] poax ()

— 0
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with probability one ([ Wigl, Wig2]) where the spectral density p is given
by

2
= J1—7 HES!

p(t)y=<n (18)
0, [7] > 1 '

To study the local behavior of eigenvalues near an arbitrary point in the
spectrum xe[ —1, 1], one has to consider rescaling

i
pn, l(x)’

dy=x+ i=1,.k (1.9)

and study the rescaled k-point correlation functions

Rn.k(.Vl’"" yk) = (pn, l(x))_k'pn,k(ila'"a )Vk) (110)

The biggest interest is paid to the asymptotics of rescaled correlation func-
tions when n goes to infinity. For G.U.E. the answer can be obtained from
the Plancherel-Rotach asymptotic formulas for Hermite polynomials [ PR ]:

lim Rn,k(ylr-': yk) :pk(ylb"'a yk) :det(K(yn yj))iijzl (111)

n— oo

The kernel K actually also depends on x but in a very simple way. It can
be represented as

A(y)-A'(2) —A(2) A'(y)
y—z

K(y,z)= (1.12)

where for all |x| <1 the function .o/ is just sin(zy)/z, and for x = +1 it is

1 o 1
Mi(iy)=;fo cos <3t3iyt> dt (1.13)

The function defined by (1.13) is known as the Airy function and the kernel
(1.12)—(1.13) is known as the Airy kernel (see [ Me, TW1, F]). The limiting
correlation functions (1.11)—(1.13) determine a random point field on the
real line, i.e.,, probability measure on the Borel g-algebra of the space of
locally finite configurations,

Q={0=(y)iez :VT>0#{y; : [y;| <T} <0} (1.14)
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The distribution of random point field is uniquely defined by the generating
function

k
Y(zys 23 Ly L) =E ] 2/
i=1

where I, j=1,.., k, are disjoint intervals on the real line, v;= #{y,el;} =
#(1;), the number of particles in /,, and k € Z', . It follows from the general
theory of existence and uniqueness for random point fields [ L1, L2], that
if K(y,z) is locally bounded than determinantal correlation functions
uniquelly determine random point field assuming that such random point
field exists. The generating function Y(z,,..., z;) is given by Fredholm deter-
minant of the intergal operator in L%(R!):

k
Y(z1sem 2x) = det(0 Z z;— 1) K(x, y) - x1(»)) (1.15)

where y 5 is an indicator of /;.

In partlcular these results are applicable to the Airy kernel (1.12)—(1.13).
We shall call the corresponding random point field the Airy random point
field. For one-level density formulas (1.11)—(1.13) produce

pi(y)= =y (i) (y) + (Ai'(y))? (1.16)

The asymptotic expansion of the Airy function is well known (see [Ol]).
One can deduce from it

1/2 4.19132/3
Iyl _COS( Bd /)+(_)(|y|’5/2) as y— —oo

pn~q T (117)
W-exp(—4y3/2/3) as y— + 0.
p, satisfies the third order differential equation
P (y)==2p\(y)+4y-pi(y) (1.18)
One can think about the one-point correlation function as a level density,
since for any interval /< R' we have E#(I)={, p,(y)dy. It follows from

(1.17) that E#((—T, +o0)) is finite for any T and E#((—T, +©0)) ~
(2T%?/37)+0(1) when T goes to +oco. The last formula means that
E#((—=T, +0))—(2T*?*/3n) stays bounded for large positive 7. Let
us denote v(T):=#{y;,>—T}=#((—T, +0)), vT):=#((—kT,
—(k—1)T1])), k=2,3,... Theorem 1 establishes the Central Limit
Theorem for v (T), k> 1.
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Theorem 1. The variance of vi(T) grows logarithmically

11
Var vk(T)~W-log T+0(1)

and the sequence of normalized random variables (v (T)— Evi(T))/
/ Var v, (T) converges in distribution to the centalized gaussian random
sequence {¢.} with the covariance function E&, &, =0, ;,—30k 41—

1
fék, I—1-

Remark 1. The first result about Gaussian fluctuation of the num-
ber of particles in random matrix model was established by Costin and
Lebowitz [ CL] for the kernel (sin z(x — y))/n(x — y). See Section 2 for a
more detailed discussion.

Remark 2. Basor and Widom [ BaW] recently proved the Central
Limit Theorem for a large class of smooth linear statistics >.;"° _ f(y;/T)
where f satisfies some decay and differentiality conditions. Similar results
for smooth linear statistics in other random matrix ensembles were proven
in [Sp], [DS], [Jol], [SiSol], [KKP], [SiSo2], [Ba], [BF], [BAMK],

[Br]; see also [ Sol] for the results about global distribution of spacings.

Another class of random Hermitian matrices, called Laguerre ensemble,
was introduced by Bronk in [ Br]. This one is the ensemble of positive n x n
Hermitian matrices. Any positive Hermitian matrix H can be represented
as H= AA*, where A is some complex valued n x n matrix and A* is its
conjugate. The distribution on such matrices is defined as

P(dH)=const), -exp(—n-Trace 4 - A*) - [det(4A*)]* dA (1.19)

where « > —1 and dA4 is Lebesgue measure on 2n>-dimensional space of
complex matrices. The joint distribution of n (positive) eigenvalues of H is
given by

P2y ses A) = const”” ~exp<—n- Y i,.>~ [T 4 (li—2;)?

= -1 I<i<j<n (1.20)

The Vandermonde factor in (1.20) implies that correlation functions still
have the determinantal form (1.4) with the kernel

n—1

Ky(x, y)=n- 3, ¢,(nx) -, ny) (1.21)

£=0
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where the sequence {¢,(x)} is obtained by orthonormalizing the sequence
{x¥.x*?.e7*} on (0, + o0). The limiting level density is supported on
[0,1] and given by the formula

1

Pl(x):%

x7V2 (1 —x)1? (1.22)
(It is not surprising to see that (1.22) is the density of a square of the
Wigner random variable!) Plancherel-Rotach type asymptotics for
Laguerre polynomials [ E], [ PR] imply that by scaling the kernel K ,(x, y)
in the bulk of the spectrum, we obtain the sine kernel (sinz(x— y))/
n(x — y), and by scaling at x =1 (“soft edge”), we obtain the Airy kernel.
As we already know, the same kernels appear after rescaling in G.U.E. This
feature, called universality of local correlations, has been established
recently for a variety of ensembles of Hermitian random matrices (see
[PS], [BI], [DKMVZ], [Jo2], [So2], [BZ]). To scale the kernel at the
“hard edge” x =0, we need an asymptotic formula of Hilb’s type (see [ E]),
which leads to

i Lk <x v >=Ja</§c)~ﬁ&(ﬁ)—ﬁ&(ﬁ)-@(ﬂ) (123)

4n’ 4n 2(x—y)

where J, is the Bessel function of order o [ F, TW2, Ba]. The kernel (1.23)
is also known to appear at hard edges in the Jacobi ensemble [ NW ]. For
a quick reference, we note that in the Jacobi case, a sequence {¢,(x)} from
(1.21) is obtained by orthonormalizing {x*(1 —x)**(1+ x)#?}. The ran-
dom point field on [0, + co ] with the determinantal correlation functions
defined by (1.23) will be referred to as the Bessel random point field. There
is a general belief among people working in random matrix theory that in
the same way as the sine kernel appears to be a universal limit in the bulk
of the spectrum for random Hermitian matrices, Airy and Bessel kernels
are universal limits at the soft and hard edge of the spectrum. The next
theorem establishes the CLT for vi(T)= #(((k—1) T, kT]), k=1, 2,....

Theorem 2. Let v(T) be the number of particles in (0, T") for the
Bessel random point field. Then

Evd(T)~ - TV — (k= 1)) £ 0(1)

1
Var vk(T)~4—n210g T+0(1)
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and the sequence of the the normalized random variable (v (T)— Evi(T))/

Var v, (T) converges in distribution to the gaussian random sequence
from the Theorem 1.

Theorems 1 and 2, as well as similar results for the random fields
arising from the classical compact groups (see Section 4) are the corollaries
of the general result about determinantal random point fields, which is
essentially due to Costin and Lebowitz. Recently a number of discrete
determinantal random point fields appeared in two-dimensional growth
models [Jo3, Jo5], asymptotics of Plancherel measures on symmetric
groups and the representation theory of the infinite symmetric group
[BO1, BO2, BOO, Jo4, Okl, Ok2]. If one can show the infinite growth of
the variance of the number of particles in these models (the goal which is
probably attainable since the asymptotics of the discrete orthogonal poly-
nomials arising in some of these problems are known) the Costin—Lebowitz
theorem should work there as well.

The rest of the paper is organized as follows. We discuss the general
(Costin—Lebowitz) theorem in Section 2. Theorems 1 and 2 will be proven
in Sections 3 and 4. In the Bessel case, we will see that the kernel
(sin #(x — y)/n(x — y)) + (sin #(x + y)/mn(x + y)) naturally appears in our
considerations. We recall in Section 4 that the sine kernel also appears in
the limiting distribution of eigenvalues in unitary group and the even and
odd sine kernels appear in the distribution of eigenvalues in orthogonal
and symplectic groups and then prove the Gaussian fluctuation for the
number of eigenvalues in these models in Theorem 3-6.

2. THE CENTRAL LIMIT THEOREM FOR DETERMINANTAL
RANDOM POINT FIELDS

Let {7} ,cr! be a family of random point fields on R such that their
correlation functions have determinantal form at the r.h.s. of (1.11) with
Hermitian kernels K,(y, z), and {/,} reml @ collection of Borel subsets R
We denote by A4, an integral operator on I, with the kernel Ky, z),
A,: L*(I,) — L?(1,), by v, the number of particles in I,, v,= #(I,), and by
E,, Var, the mathematical expectation and variance with respect to the
probability distribution of the random field %. In many applications
the random point field £, and therefore the kernel K, will be the same
for all ¢. In such situations 7, will be expanding.

Theorem (O. Costin, J. Lebowitz). Let 4,=K,-, be a family
of trace class Hermitian operators associated with determinantal random
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point fields {#} such that Var,v,=Trace(4,— A?) goes to infinity as
t— +oo. Then the distribution of the normalized random variable
(v,— E,v,)/</Var, v, with respect to the random point field Z weakly con-
verges to the normal law N(0, 1).

Remark 3. The result has been proven by Costin and Lebowitz
when d=1, K,(x, y)=(sin n(x — y))/n(x — y) for any ¢ and |I,| =25 o
(see [CL1]). The original paper contains a remark, due to Widom, that the

result holds for more general kernels.

Remark 4. There is a general result that a (locally) trace class
Hermitian operator K defines a determinantal random point field iff
0< K<1 (see [So4] or, for a slightly weaker version, [ Ma]).

The idea of the proof is very clear and consists of two parts. Let us
denote the /th cumulant of v, by C,(v,). We remind that by definition

C,iz)/t ! =log(E, exp(izv,))

=1

Lemma 1. The following recursive relation holds for any ¢ > 2:

cf(v,)=(—1)f.(/—1)!Trace(A,—Af’)Jrffas,,cs(v,) (2.1)

s=2

where o, 2<s</—1, are some combinatorial coefficients (irrelevant for
our purposes).

The proof can be found in [ CL] or [Sol, Section 27]; (of course one
has to replace everywhere (sinz(x — y))/n(x—y) by K/(x, y)). For the
convinience of the reader we sketch the main ideas here. We start by intro-
ducing the Ursell (cluster) functions:

ri(xy) = p(xy), Fo( Xy, X3) = pa(xy, X3) — pi(xy) p(x5)
and, in general,
k m
Xy )= 3 Y (=1 m =) [] g (x(G))) (22)
= G

i=1

where G is a partition of indices {1, 2,.., k} into m subgroups G,,.., G
and x(G;) stands for the collection of x; with indices in G;.

mo
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It appears that the integral of k-point Ursell function rp(x,,..., x;) over
dk-dimensional cube I,x --- I, is equal to the linear combination of C;(v,),
j=1,..., k. Namely, let us denote

T = o rr 2 dy i,

1, 1,

Then
i C,(iz)*/k! = i (exp(z) — 1)* Ty(v,)/k! (2.3)
k k=1

Taking into account that for the determinantal random point fields
T,(v,)=(—1)%-(k—1)! Trace(4,)*

the last two equations imply (2.1). The next lemma allows us to estimate
Trace(A4,— A?).

Lemma 2. 0<Trace(4,—AY)<(/—1)-Trace(4,— A?).

The proof is elementary: 0 < Trace(A4,— A7) = Y/=} Trace(4]—A]*")
<3020 | A]7 || - Trace(A, — A7) <(/ —1) - Trace(4,— 47). 1

As a corollary of the lemmas we have C,(v,) =0(C,(v,)) for any /> 2.
Since C,(v,) =Trace(4,— A%) —=> + o0, we conclude that for />2,
CA(v,—Ev,)/\/Var,v,) = C,(v)/((Cy(v,))"/2) == 0.

At the same time the first two cumulants of the normalized random
variable are 0 and 1, respectively. The convergence of cumulants implies
the convergence of moments to the moments of N(0, 1). The theorem is
proven. |

To generalize the Costin-Lebowitz theorem to the case of several
intervals we consider 1, m=1,..., s, and define v{™ = # (1{™). The equa-
tion

Z Ck] ..... k:(izl)kl/kl .. (izs)ks/ks! = log(Et exp(i(zl vEl) + -t ZSV£S))))
(24)

defines the joint cumulants of v{™’s.

Proposition 1. C . (v{"...,v(s)) is equal to a linear combina-
tion of the traces

Trace K,z Ky §; 0 Kooy
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with some combinatorial coefficients (irrelevant for our purposes), such
that for any nonzero k; at least one indicator in each term of the linear
combination is the indicator of 7¢/.

The proof immediately follows from the analogue of (2.4) for the case
of several intervals.
In the next section we will apply these results to prove Theorem 1.

3. PROOF OF THEOREM 1

For the most part of the section we will study the case of one interval
(—T, +00). We start by recalling the asymptotic expansion of Airy func-
tion for large positive and negative y (see [ Ol]).

—Tnz

e x s Uy
%(|Y|)~W' 20(—1) s (3.1)
’ |y|1/4'e—7tz OO s Ug
Mi(|Y|)~W‘ Y (=1) = (3.2)
s=0
1 T © Uy
”Q/i(_|y|)~7w'{cos <nz+4>-sgo(_1) .Zis
+Sin<ﬂZ+Z>- Z (_l)siijii} (3.3)
s=0
’ |y|1/4 . T x 41 Uy
J?/i(—|J’|)~W- sin nz+Z -E‘O(—l) * =
—Cos <7IZ+Z>' > (—1)S+1'Z§§:11} (3.4)
s=0

where z=(2/3n) y-|y|V% uy=v,=1, and u,=((2s+1)-(2s+3)---- -
(6s—1))/(216-7)*-s!, v,= —((6s+ 1)/(65s—1)) u,, s = 1. In particular, as a
consequence of (3.1)—(3.4) one has (1.17). It follows from (3.1)—(3.4)
together with the boundedness of .<Z( y), .«Z;( y) on any compact set that for
any fixed aeR! all moments of #((a, +00)) are finite. Therefore it is
enough to establish the CLT for #((—17T, a)). We choose a= —(3r/2)*?
(y = —(3m/2)*? corresponds to z= —1). We are going to show that the
conditions of the theorem from Section 2 are satisfied by y(_ 7 o K- x(_1, 4>
where, as above, this notation is reserved for the integral operator with the

kernel X(fT,a)(x)K(xa ») 'X(fT,a)(y)'

Lemma 3. 0<y 7K x—ro<1 and g7 K- y(_1.4 is trace
class. |
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The kernel K(yy, y2)=(A(y1) -/ (y2) —L{(y1) - A(y2))/(y1— y2)
was obtained from K,(xy, X,) = /21 X228 Y, (/2n x1) - (/20 - x,) after
rescaling x; =1+ (y;/2n*?), i=1, 2, and taking the limit n — oo. The con-
vergence is uniform on compact sets. As a projection operation K, satisfies
0<K,<1. We immediately conclude that y_ ,K-x_r . satisfies the
same inequalities and since the kernel is continuous and non-negative
definite the operator is trace class (see, e.g., [ GK] or [ RS, Section XI1.4]).
Now the main step of the proof consists of

Proposition 2.

37\ 1
Var<#<—T,—<2”> >> ~ 5,2 log T+0(1)

Proof. We introduce the chanAS5 of variables

=l (35)
T

and agree to use the notations Q(zy, z,), ¢x(z1,-- Zi), k=1, 2,..., for the
kernel and k-point correlation function of the new random point field
obtained after the change of coordinates. It follows from (1.17) that ¢,(z) ~
1 4+ (cos 2nz/6mz) +0(z72) for z— — o0, so we see that the configuration
(z;) 1s equally spaced at — oo

The kernel Q(z,, z,) is defined by

v
Q(ZI’ZZ):W'K()}U.VZ)

_ T _=9/i(J’1)'=9/;'(J’2)_<5%:'(y1)'«9/i(y2)
|J’1|1/4'|y2|1/4 Yi— )2

Formulas (3.3)-(3.4) allow us to represent Q as the sum of six kernels
0%, i=1,.,6, with the known asymptotic expansions: Q(z,,z,)=
16:1 Q(i)(zu z,), where

Q(l)(zl P 22) ~

1 1 .
g-m'smn(zlfzz)
1 2

{ i (_1)m+n'u2m'02n

m,n=0

. (21—2m—1/3 . Zz—Zn + Zl—2n . 22—2m—1/3)} (36)
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1 1

2
Q( )(Zlazz)Ng'm-COS n(z,+z,)
1 2

{ Z (=17 Uz 02y
m,n=0

~<212”-222’””3—212’"”3-222")} (3.7)

1 1
Q(3)(Zl, 22) 725/3-2005 <7[ZI+Z>.COS <n22+z>

~ TR
3n z{°—

{ Z (_1)m+n+l’”2m‘vzn+1

m,n=0
-(zr2"‘“/3-z;2"‘1—zr2"“~z;2'”‘”3>} (3.8)

1 1 . z\ -
Q(4)(Zl, Z2) NQM 2 sin <7[Zl +4> . sin <n22 +4>

(o 0]
{ Z (= D)™ " Uy 1 - Uy
,n=0

~(zrz'"“‘”-z{z"—zrz”-z;z""““)} (39)

1 1

(5)
21y Zp) ~ o
Q ( 1 2) 371_ Z%/3—Z§/3

-sin 7(z, — z,)

o0
{ Z (_1)m+n+l'”2m+1'vzn+1

m,n=0
.(212m4/3.222n1+Z12n1.222m4/3)} (3.10)
1
(6)2 ,Zp)~5— 53 53 COST(Z;+Z
Q ( 1 2) 3 Z%/3_Z§/3 ( 1 2)

{ Z (_1)m+n‘“2m+1‘vzn+1

m,n=0

-<zr2”‘1‘252’"“‘/3—21‘2'"“‘/3~z;2”‘1>} (3.11)
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We denote by Qﬁfgn(zl, z,) the (m, n)th term in the asymptotic expansion
of 0¥(z,, z,). Then

sin 7n(z, — z,)

1
Mz )= —
0,021, 22) 2B 3p

( —1/3+Z—1/3)

_sinn(z;—z,) 2P +z21P 2P+ 23R
13

n(zy—2,) . 3.217%. 23

We note that near the diagonal Q“) is essentially the sine kernel. We also
will need

cosm(zy +z,) 23R -z} 23+ 233

@)z 2)= .
Qoo(21: 22 n(zy+25) 3.213.233

Let us define S(z,, z,) = Qo 0(21, Z,) + Qo O(Zla 2,), Ulzy,25) = 0(z4, 2,) —
S(ZI>ZZ)'

Lemma 4.

—1 a1 2
| ] 0 dz dn =L Sleg L0 (312)

—L Y-L

Proof. The integral can be written as

1 (L L /sinm(zy—z,)\? (2334213 213 +223\?
7[ f < (2, 2)>.<1 1 >dzld22
11

9 n(zy—123) z3. )3
2 (L=t fsinmu\? L-u[ fz+u\ - \1372
_§.J0 < o > |, K - > “+<Z+u> } dz du

We represent the inner integral as

L—u 2/3 1/3 2/3 1/3
IE () ) e m) e
1 z 4 z4+u Z4+u

— L) + L) +3-(L—u—1) (3.13)
with
L—u 2/3 1/3
ne=[ () w2 ()
1 z z

L—u - 2/3 z 1/3
Iz(u)=L <Z+u> +2'<Z+u> dz
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To calculate I,(u) we introduce the change of variables ¢ = ((z +u)/z)'>.
Then

(L+u)l3 u ’
Ii(u)= 12 +21)- dt
0= 420 (1)

LIL—wu))13

=((14+uw)?P+2-(14+u)'?)-(—1)

() () ) -z

(1 +u)l3 - 1 y .
t . t .
T J(L/(L—u))l/s (20+2) -1 ( )

We have

A +wls 1
u f (2t +2)-5——dt
(LAL—u))P3 t°—1

=u.f“+”’”3 4 < 1 412 >dt
(

L—uyp3 \i—1 2+i+1
4u 4u L \'3
= ol (14w~ 17— Llog| [——) —1
S etogl (141 ~1) = Fhog | (7] 1]

2
—gulog[(l +u) P+ (1+u)P+1]

2u L \23 L \13
—1 1 3.15
3 Og{<L—u> +<L—u> * } (3.15)

and

u\13 u\ 23
Il(u)z—(1+u)2/3—2(1+u)1/3+L~<1—L> +2L-<1—L>

ﬁ 1/3 ﬁ < L \'3
+ 3 log[ (1 +u) 1] 3 log{ 7 1

Zul L \?3 L \'A3
- 1
+3 Og[<L—u> +<L—u> + }

~ S ol (14w + (1412 1] (3.16)
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In a similar way in order to calculate
L /z—u\*? z
I (5 e
1+u z
we consider the change of variables ¢ = ((z —u)/z)". Then
1/3

Iz(u):j:L/(Lt:) (2 +21)- <1il >dz
Ly \23 L—u\'3
(55
(1+u) 2P+2.-(1+u)" ). (14u)

(LAL—u))~
+u f
1/3

I(u)

z

\1/3
u> dz

1+u)

13 1

2t+2)-
(H)ﬂ—l

(14+u)—
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2/3 1/3
—(1+u)'?—2(1 +u)2/3+L.<1—Z> ”L'(l‘Z)

u

+i log| 1 <L_
3U'0g I
2 el (LY, (L=
3408\ T L

2
+3u-logl(1 +u)=?P+

1/3

) ]
(I+u)~"+11].
It follows from (3.13) that

[Ll J_ (06,021, 22))* dz, dz,

-2 jL 1<s1n7zu

> ~(Iy(u) + I(u) + 3L —3u—3) du.

We note that

L—1 1 2 L
J <sm7ru> Lau=L100),
0 Tu 2

J»L—l
0

(sin mu)?

u

1

1/3 _i B s
3u-log[l (14+u)="]

(3.17)

(3.18)

(3.19)

(3.20)
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JL—l <sin m‘>2.L.<l _”>1/3 du
o Tu L
L—1 /gin u\? lu u?
—I. A 1l=—=+0(-5]]d
) < m¢> < 3L+-<LJ> !
L 1
=———log L +0(1 321
2 e e LA, 2
JL—l <sin 7W>2‘L'<1 _u>2/3 du
o Tu L
L 1
:E—?logL-i-Q(l)- (3.22)

The combined contribution of all other terms to (3.18) is 0(1). Indeed,

jL—l <sin nu>2_(1 Fu)?=0(1),
0

u

JL—l <sin nu>2 (1 +u)P=0(1),
0

u

o - L1 e 2
j <s1n7m> .—ulog[(1+u)1/3—1]du—J <sm nu>
0 3 0

T u

2
?ulog[(] +u)2/3+(1 +u)1/3+1] du

2 (L1 sin® o (1+w)'?—1)2
zizf >—-lo 23 1/3 du
3 Jo m’u (I+u)+ (1 +u) " +1

2u JL_I sin? 7u
3n?

0(u="B) du=0(1),

o u

L—1 1 2 4
[ (O gt (1w =0t
o nu 3

L—1 /gj 22
J <sm7zu> M og[(14+u) "+ (1 +u)~ P +1] du=0(1).
o nu 3
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The last expression to consider is

JL_I sin 7w\ 2 ﬂu o L )1/3 : du+jL_l sin 7wu\?
0 T 3 g L—u 0 T
2 L \?*? L \' L-1 /sin tu\? 4
.3u.log{<L_u> +<L—u> +l} du+j0 < - > gu
L—u\'? L—1 /sin tu\? 2
B 1 — _ Rt
oe| 1-(“7%) a7 () 3
I—u\23 L—u\1/3
-10g[< Lu> +< Lu> +l}du

2 fL tsin {(1—(<L—u>/L)”3)

u (LAL=u))"”—1)
(LAL—=u))*> + (LNL—u))"” +1) d
(L —u)/L)** + (L — /L l/34-1)}

2 (L-1lgin?qu L
-1 — | di
T 32 J 08 <L — u> "

Combining all the above integrals and looking specifically for the contribu-
tions from (3.19)—(3.22) we obtain

[0 ooz ey

2/ L Lol L1
“2(3.k 3. DL dogL+2-2—2.— .log L
9( 2 2 R L TR PR

L ogrs2. b log L+0(1
Ty T3 2 620g

2
=L 3 ~— log L+0(1).
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In the next lemma we evaluate the integrals involving Q.

Lemma 5.

(a) [ZLIZL (0421, 22))* dzy dz, = (1/187%) log L+ 0(1).
(b) S:i SZIL Q&)o(zla Z,) - QEfZ)(Zl, Z,) dzy dz, =0(1).

Proof. The integral in part (a) can be written as

le JL cos m(zy +2,)\* (23 —z? -z + 23 2d p
90 W\ azi+z) ) 131 “1d%

272
1 pL+1 2w 1/3 _\1372
=5 [ (COS”“> 1 [( = ) —1+<” Z> } dz du +0(1).
9 Js U L \u—z z
We denote the inner integral by
u 2/3 1/3 _ 2/3 _ 1/3
s (2 () ) 25
1| \u—z u—z z z
u —_ -\2/3 o 1/3
=2.f <” Z> —2<” Z> dz+(u—1)
1 z zZ

—2~f0 (t2—2t)~< “ >,dt—|—(u—1)
- (u—1)13 t3+1

@@= (2_2¢).¢?
6u-j 2 ¢ 3 )2
0 ("+1)

dt+(u—1)

© *—2¢ )
- = /3
u<1+6[0 @ 1)2dt>+0(” )-

Taking into account |¢° ((r*—27)/(1*+1)*)dt=0, we obtain I(u)=
u+0(u*?), and

| L+ 2 1
7{ <cos nu> .(u—l—Q(um))d“:lgnZ log L+0(1)

9 J, T
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Now let us consider the integral in part (b):

1 fL jL cos (zy + z,) ' sin 7t(z, — z,)
1

§ 1 7z +2zy) n-(z1—23)

23 | 13 13, _2/3 23 13 13, _2/3
% 21/ +Zl/ 'Zz/ +Zz/ . 21/ _21/ ) +Zz/ dz- d=
zM3. 713 zV3. 713 =2

1 r2Lcosnmu (#—2sin 7z u+o\??  [fu—ov\*¥?
=5 ] : + +1| dvdu
9 J T 0 b)) U—v u+v

It is not difficult to see that because of the oscillations of trigonometric
functions this integral is of order of constant. To show this we write the

inner integral as 1,(u) + Is(u) + I¢(u), where

u—2 qi 2/3
L) =J sin 7o <u + v> i

0 v u—7uv
u=2giny [u+ v\
15(u)=f < > do
0 v u—v
u—2gin 7o
IG(u)zf dv
0 v

Integration by parts gives Ig(u) =3+ 0(u~"). Consider now

u—2ull4 sin + 2/3
L= () ()
0 v u—v

u—2 ; 2/3
+[ <sm 7w> ' <u+v> b (3.23)
w—2ulA\ TV U—7v

The second integral in (3.23) is 0(u"*- u =1 - u?*3) = 0(u~"'2). As for the first
one we introduce y([v] even), an indicator of the set where the integer part
of v is even, and write the integral in the following form

u—2u" gin v
f -x([v] even)

.<1.<“+U>”3_ ! <u+v+1>2/3>dv o)
v \uU—v v+1\u—v—1

0
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The absolute value of the last expression is estimated from above by

Juﬂu”“ |sin 7| <v-(u—v)2/3—(u—v— 3. (v+ 1)> p
v-(o+1)-(u—v)*? - (u—v—1)>»
1/4

_Ju—h |sin 7v| (u=v)**—(u—0v-1)>" d
~ 7 '<(u+1)-(u—v>2/3-<u—v—1>”3> '

0 T

" |sin 7v| 1

u—2u
+£) 7 .<v~(v+l)-(uv)2/3

= 0(u~1)

) dv

Therefore I,(u) =0(u~"%), and similarly I5(u)=0(u~"'2). As a result

1 JZL sin mu

9 (L4(u) + Is(u) + Is(u)) du

2

1 2L 1 2L
:*J Smm‘du—kff Smnu-(_)(u_l/u)duz(_)(l)
2 Tu 9J, Tmu

Lemma 5 is proven. |i

As a result of the last two lemmas we have

—1 =1
[ j Sz(zl,zz)dzldzzzL— ~log L+ o log L+0(1)
L

=L— log L+0(1)

1872

Remember that S was defined as S(z,, z,) = Q3 %(21, 22) + QFb(z1, 25). To
finish the proof of the CLT for # (—7, + oo) we just need to show that the
remainder term U(z,, z,) = O(zy, z,) — S(z4, z,) is negligible in the follow-
ing sense:

Lemma 6 j’ L_‘. ! 21,22 le d22=0(1)
S LS L Uzy, 22) S(lezz)dzldzzz_(l)
(C) ~1 Uz, 2) dz=0(1)

Proof. We shall establish part (a). The estimates (b) and (c) can be
obtained in a similar manner. Repeating the calculations of the last two
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lemmas, it is easy to see that for any fixed indices (i, m, n) such that
(i—1)i—2)+m+n>0, we have

f_l f_l (09 (21, 25))*dz, dz, =0(1)

Let us now choose N to be sufficiently large and write U(z,,z,)=
Un(zy, 25) + Vy(zy, 25), where

2

6
Un(zy,22) = Z Z ng’zn(zl,zz)-k z Z QEZ,,(Zl,Zz)

i=1 O0<m+n<N i=3 0s<m+ <N

We see that [Z) [} (Un(z,,2,))? dz, dz, =0(1). Asymptotic formulas
(3.6)~(3.11) imply that

const _ _
|Valz1, 22)] SM'(% Nz, 2N
2

consty 3
<L oy @R E T (62
It follows from (3.24) that if we choose N =2 then

Il (V21 22)) 2 dzy d=o = 0(1) (3.25)

lzy— 2, = (1/23)

(The integration in (3.25) is over the subset of [1, L] x [ 1, L]). Indeed, to
estimate the integral over z, we write

z; by 1
J , < > dz, < J Zl/ = Az
|z =2z = (1/23) (21_22 Zl_Z2 zZ

2

£ z}? 4 4/3
| ———5——-z;%dz,=0(z
‘[1 (21_22)2+1 2 2 7( 1 )
Integrating over z; we arrive at (3.25). To integrate V'3 near the diagonal
we observe that kernels Q(z,, z,), Q) (z;, z,) are bounded in [1, +0) x
[1, +o0); therefore there exists some consty such that |Vu(z;,z,)| <
consty and ”Ia.—m a2 (Valzy, 2,))?dz, dzy <[ ((2- constly)/z2) dz,
=0(1). Lemma 6 is proven. |
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Taking L =(2/37) T we deduce from Lemmas 4-6 and (3.5) that

Var ( ¥ <yi€<—T’ _<32n>2/3>>

—(37/2)%3 —(Br/2B = (3n/2)%? )
=f K(y, y)dy—f . f K*(yy, y2) dyy dy,

-T — -T

2 2 1 2
_ g1y — = T2 log (= T2 ) + 0(1
a0 P = T s log <37r >+Q( )

1

This finishes the proof of Proposition 2 as well as the proof of the CLT for
#(—T, + o).
In a very similar way one proves the CLT for arbitrary v (T)=

#((—kT, —(k—1)T)), k> 1. To prove the result for the joint distribution
of {vi(T)} we note that the decay of K(x, y) off the diagonal implies

C, 1OV(T), vi(T))=Cov(vi(T), v,(T))

—k—1)T (I—-1)T
J J K2(xy, Xx5) dxy dx,

—kT —IT
= —Trace y; i1, —u—1y 1) K- Xp—k1. ——1y1)* K

=0(1) if |k—1I>1

This together with

Var < i v,(T)> = 11/(127) log T+ 0(1)
\lfz(vk(T))zll/(unz)logT+(_)(1), k=1,2,..
implies that
C11vi(T), vi(T)) = Cov(vi(T), vi(T))
= — 11/(247%) log T+0(1)

for |k —[| =1. Therefore as 7T — oo.

E Vi T) — Evi(T) ) vi(T)—Ev/(T)

v Var v (T) \/\W

_’5k,1_1/2 (5k,171_1/2 (5k,1+1
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To take care of the joint cumulants of higher order it is enough to prove

Lemma 7. Let at least two indices in (k,..., k,) are non-zero. Then

Crpo .k (Vi(T ),y vy(T')) = O(log T')

1oeees

Proof. According to Proposition 1 Lemma 7 follows from

Lemma 8.
Trace y, Ky, K- Ky, Ky, =0(log T)

where X1, are the indicators of the intervals (—/,7, —(,—1)T], L,eZ',
and at least two intervals are disjoint.

Proof. This has been already established for s=2. Let s> 2. Since
not all indices coincide by cyclicity of the trace we may assume /; # [,. Now
if /; =13 we can use the positivity of y, Ky, Ky, to write

|Trace(XllKXI2KXllKXI4 e KXISKXIIH < Trace()(llK)(lzK;(ll) : HKX14 e KXIXKXIIH
< Trace(y, Ky, Ky,

where we used |[K| <1, |y;ll<1. Since Trace()(llelszll)z(_)(log T)
Lemma 8 is proven when [, =1/ #/,.
If [, # 15 one more trick is needed. Let us denote

D=y, K1, Dy, =Ky, K-y, Ky,
Then
Trace(y, Ky, Kxs, - 21, Kx1,)
= Trace(D, D,) < (Trace(B, B¥))"? (Trace(D,D¥))"?
(see [RS, Vol. I, Section VI.6]). As before
Trace(D, D) = Trace(y;, Ky, Ky;) = 0(log T')

To obtain a similar bound for Trace(D, D) we define 1 <p < s as the max-
imal index such that /,#/,. Since we assume in Lemma 8 that there are at
least two different indices, such p always exists. Then

Trace(Ky, K-y Kyp, -+ Kyp, - Kya) - (K, K-+ 0 Ky - Ky - Ky )*
= Trace(Ky, K---y; Ky -+ Ky - Kyy))
'(XIIK"'XIIK"'KXIIKXIP"'KXI3K)
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Using the identity Trace(D,D,) = Trace(D, D) where
D, =K){,3K-~~)(,p71K
D2:XIPKX11K"‘X11KX11 '"XIIKXIPKXIP_IK"’KXI3K
we can rewrite and estimate the r.h.s. as
|Trace(}(lpK;{,l - ';{IIK"';{IIKXIP) : (KXIF,I"'KXgKKXgK' : 'le,lK)|
< Trace(}{lpK}(ll Ky K- 'Xl,Kle) : HKXIP_I o Ky KKy K- ‘XIP_IKH

Here we used the positivity of }(,pK){,l Ky, -+ Kxy, -+ Kyi,- The norm of the
last factor again is not greater than 1. Finally,
Trace()(,pK)(,lK)(,l Ky, - "}{IIKXII,) = Trace(%leszK}(zl Ky Ky,)
< Trace(y;, Ky Kyy) -1 =0(log T)
Here we also used cyclicity of the trace. Combining the estimates for
Trace D, Di and Trace D, D we finish the proof of the Lemmas 7 and 8. ||

It follows from Lemma 7 that the higher joint cumulants of the
normalized random variables go to zero which implies that the limiting
distribution function is Gaussian with the known covariance function.
Theorem 1 is proven. |

4. PROOF OF THEOREM 2 AND SIMILAR RESULTS FOR THE
CLASSICAL COMPACT GROUPS

The Bessel kernel has the form (see Section 1)

AN AN R AN A N R ANAR I ANED

2(y1—2)
ylayZE(Oa +OO), 0(>_1 (41)

K(yi, y2)=

The level density is given by
P =Ky, 1) = 3L =T ) T a(y) (42)

The asymptotic formula for large y is well known in the case of Bessel
functions (see asymptotic expansion in (4.5) below). In particular, one can
see that

for y—» 4+ (4.3)



Determinantal Random Point Fields 515

The last formula suggests to make the (unfolding) change of variables
z;= ﬁ/n i=1, 2. The kernel Q corresponding to the new evenly spaced
random point ﬁeld is given by

O(zy, z,) =2my{* - yi* - K(y1, y2)

1/2Zé/z_Ja(7T21) nzy-Jo(nzy) —mzy - J(nzy) - J(mz,)

(44)

22
1723

The asymptotic expansion of the Bessel function at infinity is given by (see,
for example, [ Ol])

J(2)~ <2>m[cos <z_;m_n> g  Axf)

nz Z

—sin<z—;oc7z—n> Z(— Azszji(la)} (4.5)

(402 —12) - (402 —32) ... (da® — (25— 1)?)

Ag) =1,  Ax)= o (4.6)
s!-8
Similarly,
) 2\ . 1 1 . Bay(a)
Jo(z)~ <nz> [ —sin <z—2oc7z—47r> -sgo (—1)°- 5
1 1 & . By ()
—cos <z—2an—4n>-;0(—1) 22;11} (4.7)

The coefficients B (o) can be obtained from (4.5)—(4.6); for example,

It follows from (4.5)-(4.7) that for «a= +3

O(zy. 23) = sin 7t(z; — z,) N sinn(zy+z,—a—1/2) (458)

n(z; —2z,) n(zy+25)

which can be further simplified as

sin 7(z; —z,) __sin n(z; + z,)

n(zy—25) n(zy +25)
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For general values of « a small remainder term appears at the r.h.s. of (4.8).
To write the asymptotic expansion, we represent Q(z,, z,) as the sum of six
kernels: Q(z,,z,) =Y°_, 0z, z,), where

sinn(z; —z,) &
(1) oo\l =2) —1)n+tm. g B
0"(zy, 2,) n(zf—z;) nr;:O( ) 2n(%) Boy,(0)
AT ) (4.9)
@ Nsinn(zl+22—oc—1/2)' o 1y g
0(zy, z,) n(z%—z%) ’“;20( ) 2n()
“Bo(o) - (27252 — 272 25T (4.10)

2 cos(mz; — (ma/2) — (m/4)) - cos(mz, — (mat/2) — (7/4))
1—23)

Q(3)(Zl yZa)~

n(z

Y (=)t gy () - Boyy ()

n, 0

A ) (4.11)

4))-sin(nz, — (no/2) — (7/4))

)
%_22)

Q(4)(21 2 Za)~

2 sin(nz; — (mo/2) — (7/
(z

(4

Z (_1)n+m'A2n+1(0() - By, ()

n,m=0

_(217172n Z; 2m+Z}72m.Z;172n) (412)

Z (—1)n+m+1 cApy o 1(&) - By g (@)

. .
n(z1—z3) n m=0

.(Zl—l—2n‘22—2m+21—2m‘22—1—2n) (413)

Sinn(21+22_a_1/2) i ( 1)n+m+1 A (O()
. - TA2n+1

nm=0

0)zy, z5) ~

m(zi—z3)
By (o) - (27 T o 2y T (4.14)

The analysis of (4.9)—(4.14) is very similar to Section 3. One can see that
the only contribution to the leading term of the variance comes from
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ob(z1. 22) + OF%(z1, z5) which is exactly the rhs. of (4.8). It can be
shown by a straightforward calculation that

j: (0= 2)+ QP2 2)) d= ~ L+0(1)

1
[ (@1 22+ 0z 2207 ey o~ L—3 s log L+0(1)

Taking into account that L = T"?/n we finish the proof. ||

The kernels (sin #(x — y)/n(x— y)) + (sin n(x + y)/n(x + y)) are well
known in Random Matrix Theory. For one, they are the kernels of restric-
tions of the sine-kernel integral operator to the subspaces of even and odd
functions and play an important role in spacings distribution in G.O.E. and
G.S.E. [ Me]. They also appear as the kernels of limiting correlation func-
tions in orthogonal and symplectic groups near A=1 [Sol]. Let us start
with the even case. Consider the normalized Haar measure on SO(2n). The
eigenvalues of matrix M can be arranged in pairs:

eXp(iel )9 exp( - lHl )a'") exp( ien)a exp( - ien)a 0 < Hl > 62 PR Hn Sy
(4.15)

In the rescaled coordinates near the origin x;,=(2n—1)-(0,/2xn), i=1,.., n,
the k-point correlation functions are equal to

sin 7(x; — X;)
-sin(z - (x;— x;)/(2n —1))

Rn’k(.xl geeesy xk) = det <(2n — 1)

sin w(x) i+ x;)

+(2n—1).sin(n(xi—i-xjj)/(zn_1))>i,j_1 . (4.16)

,,,,,

In the limit n — oo the kernel in (4.16) becomes (sin 7(x; — x,)/m(x; — X)) +
(sin (x; + x;)/m(x; + x;)). If we consider resealing near arbitrary 0 <6 <=
the limiting kernel will be just the sine kernel.

Let us now consider the SO(2n + 1) case. The first 2n eigenvalues of
M e SO(2n+1) can be arranged in pairs as in (4.15). The last one equals
1. In the resealed coordinates near 6 =0
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the k-point correlation functions are given by the formula

Rn, k(xl 9ees xk)

—det< sin 7(x; — X;) _ sin 7(x; + X;) >
B 2n-sin(m- (x;—x;)/2n)  2n-sin(z- (x;+x,)/2n) )5 _ 1.k

.....

(4.17)

In the limit n — oo the kernel in (4.17) becomes (sin 7(x; — x;)/7 - (x; — X;))
— (sin 7(x; +x;)/m - (x; + x;)). If we again consider rescaling near 0 <0 <,
the limiting kernel appears to be the sine kernel. The case of symplectic
group is very similar. Let M € Sp(n). Rescaled k-point correlation functions
are given by

sin 7(x; — X;)
(2n+1)-sin(n(x; —x;)/(2n + 1)

Rn’ k(xl gesesy .xk) = det <

sin 7t(x; + X;) > (4.18)

(2n+1)-sin(z(x; + x;)/(2n + 1))

One can then deduce the following result from the Costin—Lebowitz
Theorem.

Theorem 3. Consider the normalized Haar measure on SO(n) or
Sp(n). Let €[0, ), J,, be such that 0 <d, <m— 60 —¢ for some ¢ >0 and
n-9d,— + 0. Denote by v, the number of eigenvalues in [0, 0+J,]. We
have Ev, = (n/x) -5, +0(1),

1

— log(n-4,)+0(1) if >0
Varv, = nl
~—log(n-4,)+0(1) if =0
2n

and the normalized random variable (v, — Ev,)/./ Var v, converges in dis-
tribution to the normal law N(0, 1).

Proof. Let K,(x, y) be the kernel in (4.16), (4.17), or (4.18). We
observe that 0 <y, K, ;< Id as a composition of projection, Fourier trans-
form, another projection and inverse Fourier transform. To check the
asymptotics of Var v, is an excercise which is left to the reader. ||

The case of several intervals is treated in a similar fasion.
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Theorem 4. Let 6,>0 be such that 6,—0, né,— oo and v, ,=
#(k—1)0,,k0,]). Then a sequence of normalized random variables

(Ve.n—Evy, ,)/</Varv, , converges in distribution to the centalized
gaussian sequence {&,} ©°_;} with the covariance function

Op1—1/204 151—1/20, 1,  if k>0, >0
So.1—1//26..1, if 0=0.

Finally we discuss the unitary group U(n).
The eigenvalues of matrix M can be written as:

Eékél:{

exp(if,), exp(if,),..., exp(if,) - d, 0<46,,0,,.,0,<2rn (4.19)

In the rescaled coordinates x,=n-(6,/2x), i = 1,..,, n, the k-point correlation
functions are equal to

sin 7t(x; — X;)

n-sin(z - (x;—x;)/n)

R, 1(X10 Xz) = det < > (4.20)

i j=1,.k

In the limit » — oo the kernel in (4.20) becomes the sine kernel. We finish
with the analoques of the last two theorems for U(n).

Theorem 5. Consider the normalized Haar measure on U(n). Let
0e[0,2n), J, be such that 0<J,<2n—0—¢ for some &¢>0 and
n-9J,— +oo. Denote by v, the number of eigenvalues in [0, 0+6,]. We
have Ev, = (n/2x)-9,,

1
Varv,=—log(n-d,)+0(1)
n

and the normalized random variable (v,— Ev,)/./Varv, converges in
distribution to the normal law N(0, 1).

Theorem 6. Let 6,>0 be such that 6,—0, né,— oo and v, ,=
#(k—1)0,,k0,]). Then a sequence of normalized random variables

(Ve.n—Evy, ,)/</Varv, , converges in distribution to the centalized
gaussian sequence {&,} ©_;} with the covariance function

Efkflzék,l_ 1/2 5k,1+1 - 1/2 (Sk,lfl

Remark 5. Results similar to Theorems 5 and 6 in the regime
0,=0>0 have been also established by K. Wieand [ W].
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Remark 6. For the results about smooth linear statistics we refer
the reader to [ DS, Jol, So3].
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