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Recently Johansson (21) and Johnstone (16) proved that the distribution of the
(properly rescaled) largest principal component of the complex (real) Wishart
matrixXgX(X tX) converges to theTracy–Widom lawas n, p (the dimensions ofX)
tend to . in some ratio n/pQ c > 0. We extend these results in two directions.
First of all, we prove that the joint distribution of the first, second, third,
etc. eigenvalues of a Wishart matrix converges (after a proper rescaling) to the
Tracy–Widom distribution. Second of all, we explain how the combinatorial
machinery developed for Wigner random matrices in refs. 27, 38, and 39 allows
to extend the results by Johansson and Johnstone to the case of X with non-
Gaussian entries, provided n−p=O(p1/3).We also prove that lmax [ (n1/2+p1/2)2

+O(p1/2 log(p)) (a.e.) for general c > 0.

KEY WORDS: Sample covariance matrices; principal component; Tracy–
Widom distribution.

1. INTRODUCTION

Sample covariance matrices were introduced by statisticians about seventy
years ago (refs. 1 and 2). There is a large literature on the subject (see, e.g.,
refs. 3–19). We start with the real case.

1.1. Real Sample Covariance Matrices

The ensemble consists of p-dimensional random matrices Ap=X tX
(X t denotes a transpose matrix), where X is an n×p matrix with indepen-
dent real random entries xij, 1 [ i [ n, 1 [ j [ p such that



(i)

Exij=0, (1.1)

E(xij)2=1, (1.2)

1 [ i [ n, 1 [ j [ p.

To prove the results of Theorems 2 and 3 later we will need some
additional assumptions:

(ii) The random variables xij, 1 [ i [ n, 1 [ j [ p, have symmetric
laws of distribution.

(iii) All moments of these random variables are finite; in particular
(ii) implies that all odd moments vanish.

(iv) The distributions of xij, decay at infinity at least as fast as a
Gaussian distribution, namely

E(xij)2m [ (const m)m. (1.3)

Here and below we denote by const various positive real numbers that do
not depend on n, p, i, j.
Complex sample covariance matrices are defined in a similar way.

1.2. Complex Sample Covariance Matrices

The ensemble consists of p-dimensional random matrices Ap=XgX
(Xg denotes a complex conjugate matrix), where X is an n×p matrix with
independent complex random entries xij, 1 [ i [ n, 1 [ j [ p, such that

(iŒ)

Exij=0, (1.4)

E(xij)2=0, (1.5)

E |xij |2=1, (1.6)

1 [ i [ n, 1 [ j [ p.

The additional assumptions in the complex case mirror those from the
real case:

(iiŒ) The random variables Re xij, Im xij, 1 [ i [ n, 1 [ j [ p, have
symmetric laws of distribution.
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(iiiŒ) All moments of these random variables are finite; in particular
(iiŒ) implies that all odd moments vanish.

(ivŒ) The distributions of Re xij, Im xij decay at infinity at least as
fast as a Gaussian distribution, namely

E |xij |2m [ (const m)m. (1.7)

Remark 1. The archetypical examples of sample covariance matri-
ces is a p variate Wishart distribution on n degrees of freedom with identity
covariance. It corresponds to

xij ’N(0, 1), 1 [ i [ n, 1 [ j [ p, (1.8)

in the real case, and

Re xij, Im xij ’N(0, 1), 1 [ i [ n, 1 [ j [ p, (1.9)

in the complex case.
It was proved in refs. 14, 17, and 19 that if (i) ((iŒ) in the real case) is

satisfied,

n/pQ c \ 1, as pQ., and E |xij |2+d < const (1.10)

then the empirical distribution function of the eigenvalues of Ap/n converges
to a non-random limit

GAp/n(x)=
1
p
#{l (p)k [ x, k=1,..., n}Q G(x) (a.s.). (1.11)

where

lp1 \ l
p
2 \ · · · \ l

p
p

are the eigenvalues (all real) of Ap/n, and G(x) is defined by its density
g(x):

g(x)=3
c
2px`(b−x)(x−a), a [ x [ b,
0, otherwise,

a=(1− c−1/2)2, b=(1+c−1/2)2.

Since the spectrum of XXg differs from the spectrum of XgX only
by (n−p) null eigenvalues, the limiting spectral distribution in the case
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0 < c < 1 remains the same, except for an atom of mass 1− c at the origin.
From now on we will always assume that p [ n, however our results
remain valid for p > n as well.
The distribution of the largest eigenvalues attracts a special attention

(see, e.g., ref. 16, Section 1.2). It was shown by Geman (12) in the i.i.d. case
that if E |xij |6+d <. the largest eigenvalue of Ap/n converges to (1+c−1/2)2

almost surely. A few years later Yin, Bai, Krishnaiah and Silverstein (4, 18)

showed (in the i.i.d. case) that the finiteness of the fourth moment is a
necessary and sufficient condition for the almost sure convergence (see
also ref. 20). These results state that lmax(Ap)=(n1/2+p1/2)2+o(n+p).
However no results were known about the rate of the convergence until
recently Johansson (21) and Johnstone (16) proved the following theorem in
the Gaussian (real and complex) cases.

Theorem. Suppose that a matrix Ap=X tX (Ap=XgX) has a real
(complex) Wishart distribution (defined in Remark 1 above) and n/pQ
c > 0. Then

lmax(Ap)−mn, p
sn, p

where

mn, p=(n1/2+p1/2)2, (1.12)

sn, p=(n1/2+p1/2)(n−1/2+p−1/2)1/3 (1.13)

converges in distribution to the Tracy–Widom law (F1 in the real case,
F2 in the complex case).

Remark 2. Tracy–Widom distribution was discovered by Tracy and
Widom in refs. 22 and 23. They found that the limiting distribution of the
(properly rescaled) largest eigenvalue of a Gaussian symmetric (Gaussian
Hermitian) matrix is given by F1(F2), where

F1(x)=exp 3 − 12 F
.

x
q(t)+(x−t) q2(t) dt4, (1.14)

F2(x)=exp 3 −F
.

x
(x−t) q2(t) dt4 , (1.15)
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and q(x) is such that it solves the Painlevé II differential equation

d2q(x)/dx2=xq(x)+2q3(x) (1.16)

q(x) ’ Ai(x) as xQ+. (1.17)

where Ai(x) is the Airy function. Tracy and Widom also derived the
expressions for the limiting distribution of the second largest, third largest,
etc. eigenvalues as well. Since their discovery the field has exploded with a
number of fascinating papers with applications to combinatorics, represen-
tation theory, probability, statistics, mathematical physics, in which Tracy–
Widom law appears as a limiting distribution (for recent surveys we refer
the reader to ref. 24 and 25).

Remark 3. It should be noted that Johansson studied the complex
case and Johnstone did the real case. Johnstone also gave an alternative
proof in the complex case. We also note that Johnstone has n−1 instead of
n in the center and scaling constants mn, p, sn, p in the real case. While this
change clearly does not affect the limiting distribution of the largest eigen-
values, the choice of n−1 is more natural if one uses in the proof the
asymptotics of Laguerre polynomials.

Remark 4. On a physical level of rigor the results similar to those
from the Johansson–Johnstone Theorem (in the complex case) were derived
by Forrester in ref. 10.

While it was not specifically pointed there, the results obtained in
ref. 16 imply that the joint distribution of the first, second, third,..., kth,
k=1, 2,..., largest eigenvalues converges (after the rescaling (1.12), (1.13))
to the limiting distribution derived by Tracy–Widom in refs. 22 and 23. In
the complex case one can think about the limiting distribution as the dis-
tribution of the first k (from the right) particles in the determinantal
random point field with the correlation kernel given by the Airy kernel
(2.8). We remind the reader that a random point field is called determinan-
tal with a correlation kernel S(x, y) if its correlation functions are given by

rk(x1,..., xk)= det
1 [ i, j [ k

S(xi, xj), k=1, 2,... (1.18)

(for more information on determinantal random point field we refer the
reader to ref. 26). In the real case the situation is slightly more complicated
(correlation functions are given by the square roots of determinants, see
Section 2, Lemma 1 and Remark 6). We claim the following result to be
true:
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Theorem 1. The joint distribution of the first, second, third, etc.
largest eigevalues (rescaled as in (1.12), (1.13)) of a real (complex) Wishart
matrix converges to the distribution given by the Tracy–Widom law (i.e.,
the limiting distribution of the first, second, etc. rescaled eigenvalues for
GOE (b=1, real case) or GUE (b=2, complex case) correspondingly).

Theorem 1 is proved in Section 2. Our next result generalizes Theorem 1
to the non-Gaussian case, provided n−p=O(n1/3).

Theorem 2. Let a real (complex) sample covariance matrix satisfy
the conditions (i− iv)((iŒ− ivŒ)) and n−p=O(p1/3). Then the joint distri-
bution of the first, second, third, etc. largest eigenvalues (rescaled as in
(1.12), (1.13)) converge to the Tracy–Widom law with b=1(2).

Similar result for Wigner random matrices was proven in ref. 27. For
other results on universality in random matrices we refer the reader to refs.
28–33.
While we expect the result of Theorem 2 to be true whenever

n/pQ c > 0, we do not know at this moment how to extend our technique
to the case of general c. In this paper we settle for a weaker result.

Theorem 3. Let a real (complex) sample covariance matrix satisfy
(i)–(iv) ((iŒ)–(ivŒ)) and n/pQ c > 0. Then

(a) E Trace Amp=
(`c+1) c1/4

2`p

pmmn, p
m3/2

(1+o(1)) if m=o(`p).

(b) E Trace Amp=O 1
pmmn, p
m3/2
2 if m=O(`p).

As a corollary of Theorem 3 we have

Corollary 1.

lmax(Ap) [ mn, p+O(p1/2 log(p)) (a.e.).

We prove Theorem 1 in Section 2, Theorem 2 in Section 3 and
Theorem 3 and Corollary 1 in Section 4.
The author would like to thank Craig Tracy for useful conversations.

2. WISHART DISTRIBUTION

The analysis in the Gaussian cases is simplified a great deal by the
exact formulas for the joint distribution of the eigenvalues and the k-point
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correlation functions, k=1, 2,... . In the complex case the density of the
joint distribution of the eigenvalues is given by: (15)

Pp(x1,..., xp)=c
−1
n, p D

1 [ i < j [ p
(xi−xj)2 D

p

j=1
xapj exp(−xj), ap=n−p,

(2.1)

where cn, p is a normalization constant. Using a standard argument from
Random Matrix Theory (34) one can rewrite Pp(x1,..., xp) as

1
p!
det

1 [ i, j [ p
Sp(xi, xj) (2.2)

where

Sp(x, y)=C
p−1

j=0
j (ap)j (x) j

(ap)
j (y) (2.3)

is the reproducing (Christoffel–Darboux) kernel of the Laguerre ortho-
normalized system

j (ap)j (x)==
j !

(j+ap)!
xap/2 exp(−x/2) Lapj (x), (2.4)

and Lapj are the Laguerre polynomials.
(35) This allows one to write the

k-point correlation functions as

r (p)k (x1,..., xk)= det
1 [ i, j [ k

Sp(xi, xj), k=1, 2,..., p (2.5)

(for more information on correlation functions we refer the reader to refs.
18, 34, and 36). As a by-product of the results in ref. 16 Johnstone showed
that after the rescaling

x=mn, p+sn, ps (2.7)

the (rescaled) kernel

sn, pSp(mn, p+sn, ps1, mn, p+sn, ps2) (2.7)

converges to the Airy kernel

S(s1, s2)=
A(s1) ·AŒ(s2)−AŒ(s1) ·A(s2)

s1−s2
=F

+.

0
Ai(s1+t) Ai(s2+t) dt.

(2.8)
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The convergence is pointwise and also in the trace norm on any (t,.),
t ¥ R1.
In the real Wishart case the formula for the joint distribution of the

eigenvalues was independently discovered by several groups of statisticians
at the end of thirties (see refs. 1 and 2):

Pp(x1,..., xp)

=const−1n, p D
1 [ i < j [ p

|xi−xj | D
p

j=1
xap/2j exp(−xj/2), ap=n−1−p. (2.9)

(note that in the real case ap=n−1−p, while in the complex case it was
n−p.) The k-point correlation function has a form similar to (2.2), (2.3)
however it is now equal to a square root of the determinant, and Kp(x, y)
is a 2×2 matrix kernel (see, e.g., refs. 16 and 37):

r (p)k (x1,..., xk)=( det
1 [ i, j [ k

Kp(xi, xj))1/2, k=1,..., p, (2.10)

where (in the even p case)

K (1, 1)p (x, y)=Sp(x, y)+k(x)(Ef)(y) (2.11)

K (1, 2)p (x, y)=(SpD)(x, y)−k(x) f(y) (2.12)

K (2, 1)p (x, y)=(ESp)(x, y)− E(x−y)+(Ek)(x)(Ef)(y) (2.13)

K (2, 2)p (x, y)=K (1, 1)p (y, x), (2.14)

operator E denotes convolution with the kernel

E(x−y)=
1
2
sign(x−y), (SD)(x, y)=−

“S(x, y)
“y

,

and k(x), f(x) are defined as follows

k(x)=(−1)p
(p(p+ap))1/4

21/2
(`p+ap tp(x)−`p tp−1(x)) (2.15)

f(x)=(−1)p
(p(p+ap))1/4

21/2
(`p tp(x)−`p+ap tp−1(x)) (2.16)

tk(x)=j
(ap)
k (x)/x. (2.17)

Remark 5. The formulas for Kp(x, y) in the odd p case are slightly
different. However since we are interested in the asymptotic behavior of the
largest eigenvalues it is enough to consider only even p case. Indeed, one
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can carry very similar calculations in the odd p case and obtain the same
limiting kernel K(x, y) as we got in Lemma 1. Or one may observe that
the limiting distribution of the largest (rescaled) eigenvalues must be the
same in the even p and odd p cases as implied by the following argument.
Consider an (n+p)×(n+p) real symmetric (self-adjoint) matrix B=(bij),
1 [ i, j [ n+p,

bij=˛
xi, j−n, if 1 [ i [ n, n+1 [ j [ n+p
x̄j, i−p, if p+1 [ i [ n+p, 1 [ j [ p
0, otherwise,

Then the non-zero eigenvalues of B2 and XgX coincide. If we now consider
a matrix X̃ obtained by deleting the first row and the last column of X and
construct the corresponding matrix B̃, then by the mini-max principle we
have lk(B) \ lk(B̃), k=1, 2,... . Repeating this procedure once more we
see that the kth eigenvalue of XgX for odd p is sandwiched between the
kth eigenvalues for p+1 and p−1.
The machinery developed in ref. 16 allows us to obtain the following

result about the pointwise convergence of the entries of Kp(x, y).

Lemma 1.

(a) sn, pK
(1, 1)
p (mn, p+sn, ps1, mn, p+sn, ps2)

Q S(s1, s2)+
1
2
Ai(s1) F

s2

−.
Ai(t) dt, (2.18)

sn, pK
(2, 2)
p (mn, p+sn, ps1, mn, p+sn, ps2)

Q S(s2, s1)+
1
2
Ai(s2) F

s1

−.
Ai(t) dt, (2.19)

s2n, pK
(1, 2)
p (mn, p+sn, ps1, mn, p+sn, ps2)

Q −
1
2
Ai(s1) Ai(s2)−

“

“s2
S(s1, s2), (2.20)

K (2, 1)p (mn, p+sn, ps1, mn, p+sn, ps2)

Q −F
+.

0
du 1F+.

s1+u
Ai(v) dv2 Ai(s2+u)

− E(x−y)+
1
2
F
s1

s2
Ai(u) du+

1
2
F
+.

s1
Ai(u) du F

s2

−.
Ai(v) dv.
(2.21)
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(b) Convergence in (2.18)–(2.21) is uniform on [s̃1,+.)×[s̃2,+.)
as pQ. for any s̃1 > −., s̃2 > −.. It is also true that the error terms are
O(e−const(s1+s2)) uniformly in p with some const > 0.

Remark 6. Lemma 1 implies the convergence of the rescaled k-point
correlation functions skn, pr

(p)
k (x1,..., xk), xi=mn, p+sn, psi, i=1,..., k, k=1,

2,..., to

rk(s1,..., sk)=( det
1 [ i, j [ k

K(si, sj))1/2,

where the entries of K(s, t)=(Kij(s, t))i, j=1, 2 are given by the r.h.s. of
(2.18)–(2.21). The limiting correlation functions coincide with the limiting
correlation functions at the edge of the spectrum in the Gaussian Orthog-
onal Ensemble (see, e.g., ref. 11) (it also should be noted that the formulas
(1.15) and (1.16) we gave in ref. 27 for K(s, t) must be replaced by
(2.18)–(2.21)).

Proof of Lemma 1. The proof is a consequence of (2.11)–(2.14),
(1.12) and (1.13) and the asymptotic formulas for the Laguerre polynomials
Lapj (x), ap Q., j ’ ap, near the turning point derived in ref. 16. Later we
prove (2.18) and (2.21). (2.19) immediately follows from (2.14) and (2.18).
(2.20) is established in a similar way to (2.18), (2.21). To prove (2.18) we
employ a very useful integral representation for Sp(x, y): (37)

Sp(x, y)=F
+.

0
f(x+z) k(y+z)+k(x+z) f(y+z) dz, (2.22)

where f(x), k(x) are defined in (2.15)–(2.17).
The asymptotic behavior of f(x), k(x) was studied by Johnstone (16)

who proved

sn, pf(mn, p+sn, ps), sn, pk(mn, p+sn, ps)Q
1

`2
Ai(s) (2.23)

and that the l.h.s. at (2.24) is exponentially small for large s1, s2 (uniformly
in p.) While Johnstone stated only pointwise convergence in (2.22) his
results (see (3.7), (5.1), (5.19), (5.18), (5.22)–(5.24) and (6.11) from ref. 16)
actually imply that the convergence is uniform on any [s,+.). This
together with (2.22) gives us

sn, pSp(mn, p+sn, ps1, mn, p+sn, ps2)Q S(s1, s2), (2.24)
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where the convergence is uniform on any [s̃1,.)×[s̃2,.). To deal with
the second term at the r.h.s. of (2.11),

k(x)(Ef)(y)=k(x)1 12 F
.

0
f(u) du−F

.

y
f(u) du2 , (2.25)

we use

1
2
F
.

0
f(u) duQ

1

`2
(2.26)

(see ref. 16, Appendix A7). (2.23), (2.25) and (2.26) imply

sn, pk(mn, p+sn, ps1)(Ef)(mn, p+sn, ps2)Q
1
2 Ai(s1) F

s2

−.
Ai(t) dt. (2.27)

This proves (2.18).
To establish (2.21) we consider separately (ESp)(x, y) and (Ek)(x)

(Ef)(y).We have

ESp(x, y)=1 12 F
+.

0
du−F

+.

x
du2 F+.

0
f(u+z) k(y+z)

+k(u+z) f(y+z) dz (2.28)

=1
2 F

+.

0

1F+.
z
f(u) du k(y+z)2 dz (2.29)

−F
+.

0

1F+.
x+z
f(u) du k(y+z)2 dz (2.30)

+12 F
+.

0

1F+.
z
k(u) du f(y+z)2 dz (2.31)

−F
+.

0

1F+.
x+z
k(u) du f(y+z)2 dz (2.32)

Let us fix s1, s2 and consider

x=mn, p+sn, ps1, y=mn, p+sn, ps2. (2.33)

It follows from (2.23) that the integrals (2.30) and (2.32) converge to

− 12 F
+.

0
du 1F+.

s1+u
Ai(v) dv2 Ai(s2+u).
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Let us now write (2.29) as

1
2
F
+.

0

1F+.
0
f(u) du k(y+z)2 dz (2.34)

−
1
2
F
+.

0

1F z
0
f(u) du k(y+z)2 dz (2.35)

=
1

`2
F
+.

0
k(y+z) dz (2.36)

−
1
2
F
+.

0

1F z
0
f(u) du k(y+z)2 dz (2.37)

Using (2.23) one can see that (2.36) converges to 12 >.s2 Ai(u) du.
The integral (2.37) tends to zero as pQ.. Indeed, suppose that

n−pQ+. [the case n−p=O(1) can be treated by using the classical
asymptotic formulas for Laguerre polynomials for fixed a (see, e.g., ref. 35)].
Let us write >+.0 (>z0 f(u) du k(y+z)) dz as

F
`p

0

1F z
0
f(u) du k(y+z)2 dz+F

.

`p

1F z
0
f(u) du k(y+z)2 dz. (2.38)

Similar calculations to the ones from Appendix 7 of ref. 16 show that
for z <`p

F
z

0
f(u) du=O((const p)−(n−p)/4), where const > 0.

This estimate coupled with the following (rather rough) bounds

F
`p

0

|k(y+z)| dz [ p1/4 1F.
y
k(z)2 dz2

1/2

[ const p1/4 11F.
y
japp (z)

2 dz2
1/2

+1F.
y
japp−1(z)

2 dz2
1/22

=O(p1/4)

take care of the first term in (2.38). If z \`p one has

|k(y+z)|=|k(mn, p+sn, p(s2+z/sn, p))|

< exp(−const(s2+z/p1/3)), const > 0,
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where we have used the exponential decay of k(mn, p+sn, ps) for large s (see
(2.23), (2.15)–(2.17) and ref. 16, formula (5.1)). Since

:F z
0
f(u) du : [`z 1F z

0
f(u)2 du2

1/2

[ const p`z,

we conclude that (2.37) is o(1). Using >.0 k(u) du=0 one can prove in a
similar fashion that (2.31) is also o(1). To establish (2.21) we are left with
estimating

(Ek)(x)(Ef)(y)=11
2
F
.

0
k(u) du−F

.

x
k(u) du2 11

2
F
.

0
f(u) du−F

.

y
f(v) dv2

=1 −F.
x
k(u) du2 1 1

`2
+o(1)−F

.

y
f(v) dv2 .

Using (2.23) and (2.33) we derive that the last expression converges to
− 12 >.s1 Ai(u) du+

1
2 >+.s1 Ai(u) du >

s2
−. Ai(v) dv. This finishes the proof of

(2.21). To obtain (2.20) we use (2.23) and

s2n, pfŒ(mn, p+sn, ps), s2n, pkŒ(mn, p+sn, ps)Q
1

`2
AiŒ(s). (2.39)

which follows from the machinery developed in ref. 16. Lemma 1 is proven.
Theorem 1 now follows from

Lemma 2. Suppose that we are given random point fields F, Fn,
n=1, 2,... with the k-point correlation functions rk(x1,..., xk), r

(n)
k (x1,..., xk)

k=1, 2,... such that the number of particles in (a,.) (denoted by #(a,.))
is finite F− , a.e., for any a > −., F is uniquely determined by its
correlation functions and the distribution of the numbers of particles in the
finite intervals (w.r.t. F) is uniquely determined by the moments. Then the
following diagram holds:

(d)2 (c)2 (b). (a),

where

(a) The joint distribution of the first, second,..., kth rightmost par-
ticles in Fn converges to the joint distribution of the first, second,..., kth
rightmost particles in F for any k \ 1.
(b) The joint distribution of #(a1, b1),..., #(al, bl), l \ 1 in Fn con-

verges to the corresponding distribution in F for any collection of disjoint
intervals (a1, b1),..., (al, bl), aj > −., bj [+., j=1,..., l, l=1,... .
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(c) rk(x1,..., xk) is integrable on [t,.)k for any t ¥ R1, k=1, 2,...
and

F
(a1, b1)

k1 × · · · ×(al, bl)
kl
r (n)k (x1,..., xk) dx1 · · · dxk (2.40)

Q F
(a1, b1)

k1 × · · · ×(al, bl)
kl
rk(x1,..., xk) dx1 · · · dxk (2.41)

for any disjoint intervals (a1, b1),..., (al, bl), aj > −., bj [+., j=1,..., l,
l=1,..., k, k1+·· ·+kl=k, k=1, 2,....

(d) For any k \ 1 the Laplace transform

F exp 1 C
j=1,..., k

tjxj 2 rk(x1,..., xk) dx1 · · · dxk

is finite for t1 ¥ [c
(k)
1 , d

(k)
1 ],..., tk ¥ [c

(k)
k , d

(k)
k ], where c

(k)
j < d

(k)
j , d

(k)
j > 0,

j=1,..., k, and

F exp 1 C
j=1,..., k

tjxj 2 r (n)k (x1,..., xk) dx1 · · · dxk (2.42)

Q F exp 1 C
j=1,..., k

tjxj 2 rk(x1,..., xk) dx1 · · · dxk (2.43)

for such t1,..., tk as nQ..

Proof of Lemma 2. (d)2 (c)
Suppose that (d) holds. Fix some positive t̃1 ¥ (c

(k)
1 , d

(k)
1 ),..., t̃k ¥

(c (k)k , d
(k)
k ). Denote by Hn(dx1,..., dxk), H(dx1,..., dxk), the probability

measures on Rk with the densities

hn(x1,..., xk)=Z
−1
n exp 1 C

j=1,..., k
t̃jxj 2 r (n)k (x1,..., xk),

h(x1,..., xk)=Z−1 exp 1 C
j=1,..., k

t̃jxj 2 rk(x1,..., xk),

where Zn, Z are the normalization constants (it is easy to see that Zn Q Z.).
The constructed sequence of probability measures is tight (by Helly
theorem), moreover their distributions decay (at least) exponentially for
large (positive and negative) x1,..., xk uniformly in n. It follows from the
tightness of {Hn} that all we have to show is that any limiting point of Hn
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coincides withH. Suppose that a subsequence ofHn weakly converges to H̄.
Then H̄ must have a finite Laplace transform for c (k)1 −t̃1 [ Re t1 [ d

(k)
1 −

t̃1,..., c
(k)
k −t̃k [ Re tk [ d

(k)
k −t̃k and the Laplace transforms of Hn must

converge to the Laplace transforms of H̄ in this strip. Since the Laplace
transforms of H̄, H are analytic in the strip and coincide for t1 ¥
[c (k)1 , d

(k)
1 ],..., tk ¥ [c

(k)
k , d

(k)
k ] they must coincide in the whole strip. Apply-

ing the inverse Laplace transform we obtain that H̄ coincides with H.
It follows then that

F
(a1, b1)× · · · ×(ak, bk)

r (n)k (x1,..., xk) dx1 · · · dxk

Q F
(a1, b1)× · · · ×(ak, bk)

rk(x1,..., xk) dx1 · · · dxk

for any finite aj < bj, j=1,..., k, and the exponential decay of r
(n)
k (x1,..., xk),

rk(x1,..., xk), for large positive x1,..., xk, implies that this still holds for
bj=+., j=1,..., k.

(c)2 (b) We remind the reader that the integral in (2.40) is equal to
the (k1,..., kl)th factorial moment

E D
j=1,..., l

(#(aj, bj))!
(#(aj, bj)−kj)!

of the numbers of particles in the disjoint intervals (a1, b1),..., (al, bl). Since
the joint distribution of the numbers of particles in the boxes is uniquely
determined by the moments, the convergence of moments implies the con-
vergence of the distributions of #(a1, b1),..., #(al, bl).

(b). (a) Trivial. Observe that

P(l1 [ s1, l2 [ s2,..., lk [ sk)

=P(#(s1,+.)=0, #(s2,+.) [ 1,..., #(sk,+.) [ k−1).

Lemma 2 is proven.

Proof of Theorem 1. It is worth noting that the limiting random
point fields defined in (1.18), (2.8) (complex case) and in Remark 6 (real
case) are uniquely determined by their correlation functions (see, e.g.,
ref. 26). Indeed, ;.

k=0 ( 1k! >Ak rk(x1,..., xk) dx1 · · · dxk)
1/k=. for any finite

interval A. Similarly, the distribution of the number of particles in any
finite interval is uniquely determined by the moments. To prove Theorem 1
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in the complex case we use a general fact for the ensembles with determi-
nantal correlation functions that the generating function of the numbers of
particles in the boxes is given by the Fredholm determinant

E D
j=1,..., l

z#(aj, bj)j =det 1 Id+ C
j=1,..., k

(zj−1) Spq(aj, bj) 2 (2.44)

(see, e.g., refs. 26 and 36), where q(a, b) is the operator of the multiplication
by the indicator of (a, b). Trace class convergence of Sp to K on any
(a,.), a > −., implies the convergence of the Fredholm determinants,
which together with Lemma 2 proves Theorem 1 in the complex case. To
prove Theorem 1 in the real case we observe that Lemma 1 implies that
after rescaling xi=mn, p+sn, psi, i=1, 2,... condition (2.40) and (2.41) of
Lemma 2, part (c) is satisfied. Theorem 1 is proven.

3. PROOF OF THEOREM 2

The proof of Theorem 2 heavily relies on the results obtained in refs.
27, 38, and 39. We start with

Lemma 3. Let Ap be either a real sample covariance matrix (i)−(iv)
or complex sample covariance matrix ((iŒ)−(ivŒ)) and n−p=O(p1/3) as
pQ.. Then there exists some const > 0 such that for any t1, t2,...,tk > 0
and

m (1)p =[t1 · p
2
3],..., m (k)p =[tk · p

2
3],

the following estimate holds:

(a)

E D
k

i=1
Trace Am

(i)
p
p [ constk D

k

i=1

mm
(i)
p
n, p

t3k/2i

exp 1const C
k

i=1
t3i 2 (3.1)

(b) If Ap, Ãp belong to two different ensembles of random real
(complex) sample covariance matrices satisfying (i)−(iv) ((iŒ)−(ivŒ)), and
n−p=O(p1/3), then

E D
k

i=1
Trace Am

(i)
p
p −E D

k

i=1
Trace Ãm

(i)
p
p (3.2)

tends to zero as pQ..

Proof of Lemma 3. Lemma 3 is the analogue of Theorem 3 in ref. 27
and is proved in the same way. Since the real and the complex cases are
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very similar, we will consider here only the real case. As we explained
earlier, we can assume without loss of generality that p [ n. Our arguments
will be the most transparent when k=1 and the matrix entries {xij},
1 [ i [ n, 1 [ j [ p are identically distributed. Construct a n×n random
real symmetric Wigner matrix Mn=(yij), 1 [ i, j [ n such that yij=yji,
i [ j are independent identically distributed random variables with the
same distribution as x11. Then

E Trace Ampp [ E TraceM2mp
n . (3.3)

To see this we consider separately the left and the right hand sides of the
inequality. We start by calculating the mathematical expectation of
Trace Ampp . Clearly,

E Trace Ampp =C
P

Exi1, i0xi1, i2xi3, i2xi3, i4 · · · xi2mp −1, i2mp −2xi2mp −1, i0 . (3.4)

The sum in (3.4) is taken over all closed paths P={i0, i1,..., i2mp −1, i0},
with a distinguished origin, in the set {1, 2,...n} with the condition

C1. it ¥ {1, 2,..., p} for odd t

satisfied. We consider the set of vertices {1, 2,...n} as a nonoriented graph
in which any two vertices are joined by an unordered edge. Since the dis-
tributions of the random variables xij are symmetric, we conclude that if a
path P gives a nonzero contribution to (3.4) then the following condition
C2 also must hold:

C2. The number of occurrences of each edge is even.

Indeed, due to the independence of {xij}, the mathematical expectation
of the product factorizes as a product of mathematical expectations of
random variables corresponding to different edges of the path. Therefore if
some edge appears in P odd number of times at least one factor in the
product will be zero. Condition C2 is a necessary but not sufficient condi-
tion on P to give a non-zero contribution in (3.4). To obtain a necessary
and sufficient condition let us note that an edge ik=j, ik+1=g, k=0,...,
2mp−1, contributes xjg for odd k and xgj for even k. Clearly the number
of apperances in each non-zero term of (3.4) must be even both for xjg
and xgj. This leads to

C3. For any edge {j, g}, j, g ¥ {1, 2,..., n}, the number of times
we pass {j, g} in the direction jQ g at odd moments of time 2k+1,

Distribution of the Largest Eigenvalues in Sample Covariance Matrices 1049



k=0, 1,..., mp, plus the number of times we pass {j, g} in the direction
gQ j at even moments of time 2k, k=0, 1,... must be even.

Let us now consider the r.h.s. of (3.3). We can write

E TraceM2mp
n =C

P

Eyi0, i1 yi1, i2 yi2, i3 yi3, i4 · · · yi2mp −2, i2mp −1 yi2mp −1, i0 , (3.5)

where the sum again is over all closed paths P={i0, i1,..., i2mp −1, i0}, with a
distinguished origin, in the set {1, 2,..., n}. Since Mn is a square n×n real
symmetric matrix conditions C1 and C3 are no longer needed. In particular
the necessary and sufficient condition on a path P to give a non-zero con-
tribution to (3.5) is C2. It does not matter in which direction we pass an
edge {jg}, because both steps jQ g and gQ j give us yjg=ygj. Using the
inequalities Ex2rjgEx

2q
gj [ Ey2r+2qjg we show that each term in (3.4) is not

greater than the corresponding term in (3.5) and, therefore, obtain (3.3).
(3.1) (in the case k=1) then immediately follows from Theorem 3 of ref. 27
(the matrix An considered there differs from Mn by a factor

1
2`n
). In the

general case the proof of (3.1) and (3.2) is essentially identical to the one
given in ref. 27. In particular, part b) of Lemma 3 follows from the fact
that the l.h.s. at (3.2) is given by a subsum over paths that, in addition to
C1–C3 have at least one edge appeared four times or more. As we showed
in ref. 27 the contribution of such paths tends to zero as nQ.. Lemma 3
is proven.

Remark 7. If the condition n−p=O(p1/3) in Lemma 3 and
Theorem 2 is not satisfied the machinery from refs. 27, 38, and 39 does not
work, essentially for the following reason: when we decide which vertex to
choose during the moment of self-intersection (as explained in Section 4 of
ref. 39) the number of choices for odd moments of time is smaller because
of the constrain C1. If we now use the same bound as for the even
moments of time (the one similar to the bound at the bottom of p. 725 of
ref. 39) the estimate becomes rough when n−p is much greater then p1/3.
Therefore new combinatorial ideas are needed.

As corollaries of Lemma 3 we obtain

Corollary 2. There exist const > 0 such that for any s=o(p1/3)

P(l1(Ap) > mn, p+sn, ps) < const exp(−const s)
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Corollary 3.

F
(−., mn, p+sn, pp

1/6]k
exp 1 C

j=1,..., k
tjsj 2 r̄ (p)k (s1,..., sk) ds1 · · · dsk (3.6)

Q F
Rk
exp 1 C

j=1,..., k
tjsj 2 rk(s1,..., sk) ds1 · · · dsk (3.7)

for any t1 > 0,..., tk > 0 as nQ., where

r̄ (p)k (s1,..., sk)=(sn, p)
k r (p)k (mn, p+sn, ps1,..., mn, p+sn, psk)

is the rescaled k-point correlation function and rk(s1,..., sk) is defined in
Section 2, Remark 6 by the r.h.s. of (2.18)–(2.21).
To prove Corollary 2 we use the Chebyshev inequality

P(l1(Ap) > mn, p+sn, ps) [
El1(Ap)sn, p

(mn, p+sn, ps)p
2/3 [

E Trace Asn, pp
(mn, p+sn, ps)p

2/3

and Lemma 3. As a result of Corollary 2 we obtain that with proba-
bility O(exp(−const p1/6)) the largest eigenvalue is not greater than
mn, p+sn, p p1/6. Therefore, it is enough to study only the eigenvalues in
(−., mn, p+sn, p p1/6] (with very high probability there are no eigenvalues
outside). To prove Corollary 3 we first note that Lemma 3 implies

F
(−., mn, p+sn, pp

1/6]k
exp 1 C

j=1,..., k
tjsj 2 r̄ (p)k (s1,..., sk) ds1 · · · dsk (3.8)

[
constk

<k
i=1 t

3k/2
i

exp 1const · C
k

i=1
t3i 2 , (3.9)

with some const > 0. To see this we write

E C
g

D
j=k

j=1
exp(tj(lij −mn, p)/sn, p)

[ E C
g

D
j=k

j=1
(lij/mn, p)

[tjmn, p/sn, p](1+o(1))

[ E D
k

1
Trace A[tjmn, p/sn, p]p m−(;

k
1 tj) mn, p/sn, p

n, p (1+o(1))

where the sum;g is over all k-tuples of non-coinciding indices (i1, i2,..., ik),
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1 [ ij [ p, j=1,..., k, such that lij < mn, p+sn, p p
1/6, j=1,..., k, and

apply Lemma 3, (a). Part (b) of Lemma 3 implies that the differences
between left hand sides of (3.8) for different ensembles of random matrices
(i)–(iv) ((iŒ)–(ivŒ)) tend to 0. Finally we note that in the Gaussian case the
l.h.s. of (3.8) converges, which in turn implies the convergence for arbitrary
ensemble of sample covariance matrices. For the details we refer the reader
to the analogous arguments in ref. 27. Corollary 3 is proven.
Theorem 2 now follows from Lemma 2, part (d) and Corollary 3.

4. PROOF OF THEOREM 3

In order to estimate the r.h.s. of (3.4) we assume some familiarity of
the reader with the combinatorial machinery developed in refs. 27, 38,
and 39. In particular we refer the reader to [28] (Section 2, Definitions 1
and 2) or ref. 39 (Section 4, Definitions 1–4) how we defined (a) marked
and unmarked instants, (b) a partition of all verices into the classes
N0,N1,...,Nm and c) paths of the type (n0, n1,..., nm), where ;m

0 nk=n,
;m
0 knk=m(for simplicity we omit a subindex p in mp throughout this
section). Let us first estimate a subsum of (3.4) over the paths of some fixed
type (n0, n1,..., nm). Essentially repeating the arguments from refs. 38 and
39 we can bound it from above by

pn1+1
(n−n1)!

n0! n1!,..., nm!
m!

<m
k=2 (k!)

nk
D
m

k=2
(const k)k ·nk C

X ¥ Wm

(n/p)#(X), (4.1)

where the sum ;X ¥ Wm
is over all possible trajectories

X={x(t) \ 0, x(t+1)−x(t)=−1,+1, t=0,..., 2m−1, x(o)=x(2m)=0}

and #(X)=#(t : x(t+1)−x(t)=+1, t=2k, k=0,..., m−1).
The only differences between the estimates (4.1) in this paper and (4.4)

and (4.27) in ref. 39 are

(a) the number of ways we can choose the vertices from N1 is
estimated from above by pn1(n/p)#(X)/n1! not by n(n−1) · · · (n−n1+1)/n1!,
because of the restriction C1 from the last section ,

(b) we have in (4.1) the factor (const2)2n2 instead of 3 r in (4.27) of
ref. 39, which is perfectly fine since r [ n2 (by r we denoted in ref. 39 the
number of so-called ‘‘non-closed’’ verices fromN2), and

(c) there is no factor 1nm in (4.1) because of the different normaliza-
tion. Let us denote by gm(y)=;X ¥ Wm

y#(X)(observe that gm(1)=|Wm |=
2m!

m! (m+1)! are just Catalan numbers).
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Consider the generating function G(z, y)=;.

m=0 gm(y) z
m, g0(y)=1.

It is not difficult to see (by representing gm(y) as a sum over the first
instants of the return of the trajectory to the origin) that

G(z, y)=1+yzGŒ(z, y) G(z, y)

GŒ(z, y)=1+zGŒ(z, y) G(z, y),
(4.2)

where

GŒ(z, y)= C
.

m=0
gŒm(y) zm, gŒm(y)= C

X ¥ Wm

y#Œ(X) and

#Œ(X)=#(t : x(t+1)−x(t)=+1, t=2k+1, k=0,..., m−1). (4.3)

Solving (4.2) we obtain

G(z, y)=
−yz+z+1−`((y−1) z−1)2−4z

2z

=
−yz+z+1−(y−1)`(z−z1)(z−z2)

2z
, (4.4)

where z1=1/(`y+1)2, z2=1/(`y−1)2, and we take the branch of

`(z−z1)(z−z2) , analytic everywhere outside [z1, z2], such that that
`(0−z1)(0−z2)=1/(y−1). Therefore

gm(y)=−
y−1
4pi

G
|z|=z1 − E

`(z−z1)(z−z2)

zm+2
, m \ 1, (4.5)

where the integration is counter-clockwise. An exercise in complex analysis
gives us

G
|z|=z1 − E

`(z−z1)(z−z2)

zm+2

=−2i
`z2−z1
zm+1/21 m3/2

F
.

0
`t exp(−t) dt(1+o(1))

=
2i`p y1/4(`y+1)

(y−1)

(`y+1)m

m3/2
(1+o(1)). (4.6)
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Therefore

gm(y)=
y1/4(`y+1)

2`p

(`y+1)m

m3/2
(1+o(1)), (4.7)

and the subsum of (3.4) over the paths of the type (n0, n1,..., nm) is
bounded from above by

(n/p)1/4 (`n/p+1)

2`p
pn1+1

(n−n1)!
n0! n1! · · · nm!

m!
<m
k=2 (k!)

nk

×D
m

k=2
(const k)k ·nk

(`n/p+1)m

m3/2
(1+o(1))

[
(n/p)1/4 (`n/p+1)

2`p

pmmn, p
m3/2

1
pm−n1

(n−n1)!
n0! n1! · · · nm!

×
m!

<m
k=2 (k!)

nk
D
m

k=2
(const k)k ·nk (1+o(1)) (4.8)

(the constant const may have changed). Using the inequality m! < n1!×
mm−n1 and ;m

k=1 knk=m,;m
k=1=n−n0 we obtain

(4.8) [
(n/p)1/4 (`n/p+1)

2`p

pmmn, p
m3/2

n−;
k
2 knkn ;m2 nkm ;m2 knk D

m

k=2

(constk)nk

nk!

[
(n/p)1/4 (`n/p+1)

2`p

pmmn, p
m3/2
1D
m

2

1
nk!
1 (const m)k
nk−1
2nk 2 (4.9)

Now we can estimate the sum of (4.9) over (n0, n1,..., nm), 0 <
;m
k=2 knk [ m as

(n/p)1/4 (`n/p+1)

2`p

pmmn, p
m3/2
1exp 1 C

m

k=2

(const m)k

nk−1
2−12 (4.10)

Since for m=o(p1/2)

C
m

k=2

(const m)k

nk−1
=O(m2/n)=o(1) (4.11)

we see that the subsum of (3.4) over P with ;m
k=2 nk > 0 is o(

pmmn, p

m3/2
). Finally

we note that the subsum over the paths of the type (n−m, m, 0, 0,..., 0) is

(n/p)1/4 (`n/p+1)

2`p

pmmn, p
m3/2

(1+o(1)), (4.12)
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because for such paths we can choose the vertices from N1 exactly in
pm(n/p)#(X)(1+o(1)) different ways (if m=o(p1/2)), and the first point of a
path in p different ways. Combining (4.11) and (4.12) we prove the first
part of Theorem 3. To prove part b) we observe that if m=O(p1/2), the
l.h.s. of (4.11) is still O(m2/n), which together with (4.10) and (4.12)
finishes the proof. Theorem 3 is proven.
To derive Corollary 1 from Theorem 3 we apply Chebyshev’s inequal-

ity (similarly to the proof of Corollary 2 in Section 3) and Borel–Cantelli
lemma.
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