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1. Introduction. The study of random matrix theory (RMT) can be
traced back to sample covariance matrices studied by J. Wishart in data
analysis in 1920s—1930s. In 1951, E. Wigner associated the energy levels
of heavy-nuclei atoms with Hermitian matrices whose components are i.i.d.
random variables.

In 1960s, F. Dyson and M. Mehta introduced three archetypal types of
matrix ensembles: circular orthogonal ensemble (COE), circular unitary en-
semble (CUE), and circular symplectic ensemble (CSE) (see, e.g., [8]). In
particular, the CUE is defined to be the ensemble of n X n unitary matrices
equipped with the Haar measure. The ordered eigenvalues are denoted as

{e }:&, where 0 < 0y < -+ < 0,1 < 27. The joint probability density of
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the angles {6; };-:01 is given by

c 1 10 %
P01 0n) = 2 I 1e% )P (1)

B 0L j<k<n—1

{ Zln 28111 } (2)
J#k
with 6 = 2 and
e _ (2m)™ T'(Bn/2+ 1) 3)
ATl T(B/2+1)

Similarly, the joint probability density for the COE/CSE is given by (1)—(3)
with 8 = 1 for the COE and 8 = 4 for the CSE. The generalized ensemble
for > 0 is named the circular 8-ensemble (see [9]). These random matrix
ensembles were originally introduced in physics, but recently have played an
important role in linking RMT with number theory, because of the connec-
tions with the Riemann zeta function. Recall that the Riemann zeta function

is defined to be
RIS | (B
- — ns - ps

for Res > 1 and can be analytically extended to the whole complex plane.

Many efforts have been made to find the deep connection between zeta
function and random matrices (see e.g. [14]-[16], [2], [5], and [4]). In 2000,
J. Keating and N. Snaith made an important contribution in connecting
the characteristic polynomial of CUE and value distribution of {(z) on the
critical line (see [13]). They showed that the distribution of values taken
by Indet(e’ — U,) averaged over U, € CUE is a good approximation to
the value distribution of In((1/2 + it) for large n,t given the relation that
n=1In(t/(27))(1 + o(1)).

In 1988, K. Johansson [11] proved the Central Limit Theorem (CLT) for
the linear statistics in the circular -ensemble.

Theorem 1.1. Let f € C'*¢(SY), e > 0. Then

n—1 o - 9 00
> 10~ 5 [ s@dn v (0.5 3 k)
§=0 0 k=—o0

where ¢ = (2m)~! 2” f(z)e ™ dg.

Remark 1.1. For B = 2, the result holds under the optimal condition
Soo o |Ellek]? < oo (see also [7], [17] and references therein).

To study the characteristic polynomial of CUE, one can write

In |det(e* — Uy,)| = Zln s — e,
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Due to the singularity of the logarithm function, we cannot use Theorem 1.1.
T. Baker and P. Forrester proved in [1] that v/21n |det(e?* — U,,)|/vInn con-
verges in distribution to standard normal distribution for fixed s. It was
proved in [10] that for the CUE (8 = 2), v/2In|det(e’® — U,,)| converges in
distribution to a generalized random function

T(s) = R@ \/'“EZQ (4)

where Z, are i.i.d. complex standard Gaussian variables (see also [1] and [6]).
We refer the reader to [12] for a detailed exposition of random trigonometric
series.

The generalized random function T'(s) makes another appearance in the
circular G-ensemble as follows. One can show that the joint probability den-
sity of (2) obtains its maximum at the lattice configuration 6; = 2mj/n +
const (0 <j<n—1). Write

2mg  t;
0; = ﬂ—l— 4 const.
n n

Let us choose the constant such that E?:_Ol t; = 0 and take the Taylor ex-
pansion of (2) around this critical configuration. If we ignore the cubic and
higher terms, then we get, as an approximation, a multivariate Gaussian
distribution on the hyperplane Z?:_ol t; = 0 with the density

_ 1 s 1 (t; — tr)’
Dg(t) = ~exp{— Z — 5 . (5)
Zg 16 2 sin (m(j —k)/n) n
It can be shown that ¢; from (5) can be expressed as

n .
< eZﬂ'z]k/n

2
tj \/BRe ; T
where €, is a negligible random error term with De,, = 0,,(1). Moreover, the
linear statistics Z?:_ol f(2mj/n + tj/n) satisfies the same CLT as in Theo-
rem 1.1.

Remark 1.2. We refer the reader to |18, Section 3.4] for a related discussion
of the mesoscopic structure of CUE eigenvalues.

This indicates that the generalized random function 7'(s) defined in (4)
gives a good approximation of the eigenvalue statistics of CUE. However, it
is not entirely clear in what sense we can ignore cubic and higher order terms
of the Taylor expansion of (2). This motivated us to consider a new model
of interacting particles on the unit circle with stronger repulsion than that
in the circular (-ensembles. The purpose of this paper is to establish the
Gaussian approximation for the distribution of strongly repelling particles
on the unit circle.

Zk> (1+e€n), (6)
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Throughout this paper, the letters Cy, C}, ¢, and ¢, (k € N) denote
positive constants whose values might change in different parts of the paper,
but are always independent of n. We write a,, < by, or a,, = o(by,) if ay, /b, — 0
as n — oo, and a, = O(b,) if there exists some positive constant C' such that
lan| < C|by| as n — oo. If a, — 0 as n — oo and the decay rate does not
depend on other parameters, we write a,, = 0,,(1). Also, we denote a,, ~ by, if
there exist positive constants ¢ and C' such that ¢b, < X < Ca, as n — oo.

2. Set up and notation. Consider a strong repulsion model of particles
distributed on

Tn/Sn = {9 = (90,... 79n—1) S [0,277']”: 90 < 91 <0 K 9n_1}.
The joint probability density is defined as

1
q(0) = e, (7)

n

where

_BZ

sin? 6;)/2)
and
Zp = / efns qg. (9)
Tn/S

For any measurable subset A € T"/S),, let P(A) = [, q(0) d. Note that
the repulsion in H,, g(6) is stronger than the logarithmic one in (2). Let

271 ZT;
n n
where ) is a constant chosen so that
n—1
Z €T, = 0 (11)
i=0
Thus,
m(n—1)
P = Z i — ——. (12)
For notational simplicity, define o; = 27i/n + ¢, a = (ag,...,Qn-1), T =
(70, ..., 2n_1), then § = a+x/n?. Further, we introduce some useful lemmas.

Lemma 2.1. The probability density q(0) in (7) obtains its mazimum at
0 = «, and

H, 5(0) ~ Hy 5(0)
B @ima)? [ 124 cos(nli— )t @ —a) (@)
2 §, =77y A
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This implies that the lattice configuration 6; = 27j /n+const is the ground
state of the strongly repelling particle system.
Lemma 2.2. The following identities hold:

— n2 -1
Z T (14)

— sin? Wk/n
= 1 (n? = 1)(n% + 11)
— sin(7k/n) - 45 ’ (15)
n—1 2
sin”(mmk/n)
=mn—m) (1<m<n-—1) (16)
— sin?(mk /n)

_ +§m(n_m) (l1<m<n—1). (I7)

The proof of Lemma 2.2 is a standard exercise in complex analysis and is
left to the reader. The identity (14) implies that the maximum of H,, g(#) is

n3 —n
Z O] "

sin?(m(i —j)/n) 6

The following lemma shows that typically H,, 3(6) is not far from H, g(a).
Lemma 2.3. For any C > 1, define

©={0cT"/S,: Hyp(a) — Hy3(8) < Cnlnn}. (19)
Then there exists some ¢ > 0 such that
PO)>1—n"".

Remark 2.1. If we choose C' = 1, then the condition on the set © should
be modified as H,, g(a) — Hy, 3(8) < nlnn — C'n for some C’ > 0.
Using Lemmas 2.1 and 2.3, we have the following lemma.

Lemma 2.4. For any C > 1, define © as in (19). If 6 € O, then there
exists some positive constant Cy such that

(z; — xj)2 nindn
2 et (nli - gy7m) < Conin (20)

Moreover, for all 0 <i#j<n—1,

|z — 25| < Coli — jlon'/? 3% n, (21)

where
i = jlo = min{|i — jl,n — [i — j|}. (22)
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Taking the Taylor expansion of the joint probability function ¢(f) around
the critical configuration § = «, we have that for some § € [0, 1],

— sin2 1—73)/n

exn] B 3 cos(m (i—j)/n+5($z’—l’j)/( %)

<o) 1 ;[nb‘ S (i — j)/n + 8(ai — ;)] (2n)

_cos(m(i —j)/n+d(xi — x;)/(2n%)) }(m x‘)s}.
nbsin®(w(i — 7)/n + 6(x; — x;)/(2n2)) !

(23)
Denote the quadratic term by
_ B~ —3/2 +sin’(x(i — j)/n) 2
i —Ti)°, 24
Z nsint(n(i — j)/n) (@i = ;) (24)

and the cubic term by

3cos(m(i—j)/n+0(xs —x)/(2 n?))
Z [nG sin® (7 (i — ) /n + 0(x; — ;) /(2n?))

B cos(m(i — j)/n+ o(x; — LUj)/(Qn?))
nbsin®(m(i — j)/n + 6(x; — z;)/(2n2))

[t @)

Using (10), consider the change of variable § — (z,1), where z is a de-
generate vector on the hyperplane

:{xeR”: gxizo}. (26)

Let
f(@) =q(0(z, ¢)). (27)

Note that the joint probability density f only depends on x. But the do-
main 2 depends on both z and ¢. If § € T™/S,,, then

(xz,7) € Q

s s
:{I’x |:—7T—|—,7T+:|Z.’L'Z‘—1Bi_1>—27'(n; —ﬁgwg——
n n n

Thus, the marginal density function for x is

pr= [ pan = (2T g,y

—x0/n2
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where

relA={zel:a—xi1>-2mn; xo > —mn(n+1);
<

Tp—1 < mn(n+1); xp—1 —x9 < 270}, (29)

Otherwise, if € A¢, then p(z) = 0. For any measurable subset A C I,
denote

P,(A) = /A p(x) d. (30)

It follows from Lemmas 2.3 and 2.4 that there exists a subset of A, namely

I'p = {33 € I': max LZ — IJ| < Dn'/? 1032 p;
i#i i —jlo
xo = —mn(n+1); xp—1 < mn(n + 1)}, (31)
such that
P,(I'yH) <n™ . (32)
In addition, if z € I'p, the probability density of x can be written as
1
p(z) = =IO (14 0,(1)), (33)
Zn,
where
7, = / (CEHF@) gy (34)
I'p
Let us define a Gaussian distribution on the hyperplane I' by its density
1
po(w) = e, (35)
g
where
Z, = / %@ dz. (36)
r

For any measurable subset A C T', denote

Py(4) = [ nyfo) e (37)

We use E; and Dy to denote the expectation and variance taken under this
Gaussian probability measure.

Remark 2.2. Refining the argument used in the proof of Lemma 2.4, we
can also prove that there exists a subset I'ps C I' such that (1) and (2) hold
where

1) if € T'pr, then we have max; |z;| < n, and thus ¢ ~ 1/n;

2) Po(T%)) = o0a(1).
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In addition, let 1) = n1b. Then

N 1 g
p(Y | z) fgﬂ_mnil/nf(:p) d?Z 91 — (¥n_1 — 70) /10 27]_(1 + 0, (1)).

—z0/n2

One can show that niy and x are asymptotically independent from each other
and ni converges to the uniform distribution on [0, 27]. However, we are not
going to use this in the paper.

3. Main theorems. In this section, we formulate our main results. We
start with an auxiliary proposition. Recall that we have defined P, and P in
(33), (34), (30), and in (35)—(37), respectively. Also, F'(x) is defined in (25).

Proposition 3.1. There exists a subset ' C I such that

P,(I')=1-0,(1), Py(I')=1-o0,(1),

and
sup F(z) = o,(1).
xel”
Proposition 3.1 immediately implies that the total variation distance be-
tween P, and P, goes to zero as n goes to infinity.
Theorem 3.1.

sup [P (A) — Py(A)] = on(1),
AcT

where the supremum on the left-hand side is taken over all measurable subsets
AcT.

Based on Theorem 3.1, we obtain the main theorem. For each fixed n,
we construct a random function in C]0,27], denoted as (,(t), by letting
(n(2mj/n) = z;/4/n and then connecting these lattice points with straight
segments. Define the limiting random function to be

Ct) = \/g Re <g ]ieiktZk> - \/Z g(cosékt) Xy — Sinlikt) Yk>, (38)

where X}, Y, are i.i.d. real standard Gaussian random variables, and Zj, are
i.i.d. complex standard Gaussian random variables. Note that this is a well-
defined random function since the variance is bounded. It can be viewed as
an analogue of (4) in the CUE case. We have the following theorem.

Theorem 3.2. (,(t) converges to ((t) in finite dimensional distributions.
Furthermore, the functional convergence takes place. In other words, (,(t)
converges to ((t) in distribution weakly on the space C|0,27].

Finally, we conclude this section by formulating two corollaries.



Gaussian approzimation of the distribution of strongly repelling particles 11

Corollary 3.1. Consider periodic function g on S* with complex Fourier

coefficients {cx}r>0, where ¢, = (2m)~! 027r g(x)e*® dx, which satisfy the

following condition: 332 |k|*/?|cx| < co. Then

Eexp{z‘t(ﬁgg(ﬁj) - n3/200>} _ exp{—’;i rckﬁ}(l +on(1)). (39)

k=1

In other words,

\fzg Cola—w>N<0 Z|Ck:|2>

Remark 3.1. Corollary 3.1 is expected to hold when f € C14(T).
Corollary 3.2. The following convergence holds:

Lj

vn

To simplify the notation, the proofs of these results are written for § = 2.
The general case 3 > 0 is essentially identical.

law
— sup [¢(t)].
t€[0,2m]

0<i<n—1

4. Proofs of the Lemmas in Section 2. We start this section by prov-
ing Lemma 2.1.

Proof of Lemma 2.1. Define ¢(7) := Hy,o(a + 72/n?). We compute its
first and second derivatives with respect to 7,

oy N oSl = )/ (i — ;) /(20%)) =
“)‘;sm%( D+ (s — )/ (2n2) w2

; (40)

vy L2+ cos(m(i = g)/n+ (i — 1)/ (202)) (1 — 2\
) = = 2 TS - o) (=72 -

Note that

' cos(m(i — j)/n) x; —
¢'(0) =
;sm (m(i—j)/n) n2

1 cos(m(i —7)/ s(m(i—j)/n)
~ n? (Z sin (77(1 7))/ z;é: 3 (e )/”) )
1

_ n22< cos(mk/n) )x <§ cos(rl/n) > 2 = 0,

sm (mk/n) sin3(7l/n)
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and ¢”(0) < 0. Thus,

_ — _ _ ! . " _ (%_xj)g
Ha(0) = Hya(0) = 6(0) = o(1) = = [ (1 =)o/ (ryar = 3
i#]

x /1 L2+ cos*(mli = )/n+ (@i = 2)/@0%) (g _ Ly s
0

sin(n(i — j)/n + 7(x; — x;)/(2n2))

This implies that H, 2(f) obtains its maximum at # = «. Lemma 2.1 is
proved.

Further, we turn our attention to proving Lemma 2.3.

Proof of Lemma 2.3. It follows from the definition of © in (19) and the
trigonometric identity (18) that

3 _
P(O° = Zi /C en2(0) gg < exp{n 3 n_ Cnlnn}Zlu(T"/Sn)
~(2m)n n®—n 1
= exp 3 Cnlnn Z—n, (42)

where p denote the Lebesgue measure on R"™. Choose any 0 < C’ < C and
define a subset of ©,

©' ={0e€T"/S,: Hy2(a) — Hyp2(0) < C'nlun}. (43)

Then

Zy = / efn2(0) 4o > / exp{H,2(a) — C'nlnn} do
Tn/Sn /

3 _
= exp{n 3 D _On lnn}y(@'). (44)

Note that if there exists some constant M > 0 such that |z;| < M, then

4M?
Hn,2(a) - Hn’2(9) < ; n4 sin4(7T(i - ])/TL)

1
2 !
<4M g 77T4|Z,_j|4<6‘nlnn.
1#£]

Therefore,

M
{9 S Tn/Sn: 0; —a; < —

— V0<i<n—1}c@’,

and thus the Lebesgue measure of the set ©' can be bounded from below as
follows:

1(0') > <%>n =exp{nln M —2nlnn}. (45)
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Therefore, by (44) and (45),

n3—n

Iy 2 exp{ —C'nlnn+nln M — 2nlnn}. (46)

Combining it with (18) and (42), we obtain

P(O° < (2;;) exp{—(C — C")nlnn —nln M + 2nlnn}

< C"exp{—(C —C" = 1)nlnn} = 0,(1), (47)

provided C' > 1 and 0 < C' < C' — 1. Lemma 2.3 is proved.
Using Lemma 2.3, we finish this section by giving the proof of Lemma 2.4.
Proof of Lemma 2.4. By Lemma 2.3, if # € ©, then for some constant
C > 1, we have

(2 — ;)2 [! (1—=7)dr am
2w |, St e~y <O 9

Let I ={(i,j): 0<i#j<n—1}, I ={(1,7) € I: |zi—zj| < nnpli—jlo},
and Io = I'\ I;. Let n, > 1. Then by (48)

(2 756],)2 1 (1—7)dr
crinn 2 %: nt /o sin(m(i — j)/n + 7(2; — x;)/(2n?))

(l‘i—ZL‘j)2 1 (1—7‘) dr
> |, G e =y
1

2 C/ Z(.%l — a:j)2

- mali = 3l5

Thus,

)2
Z M < C"nnpt Inn. (49)
L °

Next, it can be shown that Iy = @ for 7, satisfying
e = MIn'/?n (50)
for sufficient large M > 0. Note that

/1 (1—=7)dr
o sint(w(i—j)/n+7(x; —x;)/(2n?))

1 (1—7)dr
g /o (mli = jlo/n + Tlz; — 4]/ (2n?))*
_ 3li — glofn+ [z — a1/
6(m|i — jlo/m)3(wli — jlo/m + |zi — 25| /(2n?))*
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If (i, j) € Iz, then

T; — ;] - i — jlo

n? —ny
and
nn|i_j|0/n
RHS of (51) > const ——
(Ii = glo/m)3(|z; — x5]/n?)?
nnnG

> const

— . 52
(7= 12— 2,17 2
Note that by the triangle inequality, if (i,j) € I, then there exists at least
|i — jlo index pairs belonging to I, in the form of (i, k) or (k,j) where k is
between i and j. Thus by (48), (51), and (52),

nnn2 9 1

Cnlnn > C’ g > C'nnp—.
i — 72 i — jl

I o °

This implies that |i — j|, > C"nn, In~! n, and thus |z; —x;| > C"n*nIn"'n
Due to (50), we obtain
’.’E _ $]| C//M2 2

With a sufficiently large M, the last inequality contradicts that |z; — x| <
27n?. Therefore Iy = @ and there exists some positive constant Cy such that

)2
S @) o, (53)
I |Z - j ‘O
Furthermore, denote x,,4; = x;, ¢ = 0, then for 0 < j < n —1,

(zj41 — )% < Conln®n.
Therefore, by the triangle inequality, we have
|z; — x| < Coli — jlon 12103/2

Finally, since 2/7 <sin(z/z) <1, 0 < z < 7/2, we have

2
Z .(fz a:]) - < Cinln®n. (54)
— pisin®(m(i —j)/n)
7]
Lemma 2.4 is proved.

5. Estimate of the multivariate Gaussian distribution. Note that
G(z) defined in (24) can be written in the quadratic form of —J2 " Az, where

3 n 2
ntsin(w(i — j)/n)  nisin?(x(i — j)/n)

Ay = — (i#3). ()
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and, by the identities (14) and (15) in Lemma 2.2,

(n* =1)(n*+11) n—2
A= 1)5<n4 Z A (56)
JFi

Since A is not invertible, pg defined in (35), (36) can be viewed as a degenerate
Gaussian distribution on the hyperplane I" defined in (26),

1 .7
pg(SC) — e ® Am/Z’

where Z; = fF e~ AT/2 o

Next, we aim to explore the covariance structure of this Gaussian distribu-
tion. Note that A is a circular matrix generated by the vector (Ao, Ao1,- - -,
Apn—1). Therefore its normalized eigenvectors can be chosen as

1
Sk Y (k=0,1,...,n—1), (57)

where wy, = €2™*/™. By using the identities (16) and (17) in Lemma 2.2, the
corresponding eigenvalues are given by

Vi =

A = A070 + A071wk + Ap gw,% +--+ Ao n— 1(4)2_1

_ (n*— 1)(n2+11) 2n? — Z cos 27le<:/n Z cos 27le<:/n
N 15n4 3nt 0t sin(jm /n) i ot sin?(jm/n)
6 — 1sm sin®(mjk/n) i . sin? (ﬂjk/n)
ni = sint(jm/n)  nt st sin?(jm/n)
2k*(n — k)?
S G NS (58)
n
Define
U=(vg,v{,...,0) 1), (59)

then we have U*U = 1 and A = UAU*, where A is the diagonal matrix
generated by (Ao, A1,...,Ap—1). Let s = U*z. Then for 1 < k,j <n-—1,

n4

_ 1
Btk = 5 ek

and Es;ps; =0, k#j. (60)

Note that sy = 0 because of the definition of I' in (26). We also note that

nfl

2

sj=5p—; if 7> (61)

For simplicity, we assume that n is odd (the even case can be treated in
a similar way). Then (s1,...,8(—1)/2) are (n —1)/2 independent complex
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Gaussian random variables. In particular, we can write

2 2
n n n—1
= X ] Y, f 1<k , 62
k=) k) k" 2 (62)
where { X} and {Y}} are independent real standard Gaussian variables.
Since x = Us, we can compute the covariance structure for x,
4
p2mim(k— _ 2mim(k— n
gajkx] Z o mim(k—j)/n _ 2n Z e mim(k—j)/ Q(n — m)Q' (63)
In partlcular,
Dyxj ~n. (64)
In addition,
1 n—1 1 (n—1)/2 (n—1)/2
L 2mijk/n ., _ 2mijk/n - —2mijk/n—
T = e S = e Sk + Z e Sk
vn k=0 v k=1 v k=1
(n—1)/2

k=1
(65)
For0<ij<n—-1,0<I<n—1,let
gj(.l) =24 — T, where x,y;=umx; 1>0. (66)

It is also useful for us to compute the covariance of fj(-l) and & ,(j).
Proposition 5.1. There exists some positive constant C' which is inde-
pendent of other parameters such that

= : 5
|Eg§1(gl)f§‘)| < len{l, M} (67)
In particular,
D, (&) < CL. (68)
Proof. By (63), we have

—_ l u -
ngl(f)ﬁﬁ') = Ey(zp1 — 21)(Tjp1 — Tj)

= ngk-',-lfj—i-l + ngkfj — ngk+lfj — EgJUkEj—Q—l

n—1
_ 1 Z L 27rzm(lc 7 /n( e27riml/n o e—27riml/n)
Am

3

m=1
n—1

-2
sin®(mwml/n) p2mi(k—j)m/n. (69)

(m/n)*(1 —m/n)?

S

m=1
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For the right-hand side of (69), we can find an upper bound as

n—1 n—1)/2

. ( . 9
= 2 sin?(mml/n 4 sin“(mml/n
!Eg&(c)()!é Z ( /n) _® Z ( ( /n)

J

n £~ (m/n)2(1 —m/n)2  n m/n)2(1 —m/n)?
161 "L sin?(7wmi/n) 1
ST X (e w (70

The right-hand side of (70) can be viewed as a Riemann sum of the function
sin?(mz)/x? corresponding to the evenly-spaced partition over [0,1/2] with
the subintervals of length I/(n — 1). Since the function sin?(wx)/x? can be
bounded from above by a monotone function m(x) defined by

7 fo<<e <1,

.

? if x > 1,

the right-hand side of (70) can be bounded by a Riemann sum of m(x). Note
that m(z) is monotone, the error between its upper and lower Riemann sums
is at most of the order [/n. Then there exists a universal constant C > 0
such that

~ 16, [1/? !
B8 < 1 [ m@anrof )

n
16l [
<

<3 m(x)dx (14 0(1)) < CL.
0

For large |k — j|o, the heavy oscillation of the exponential term leads to
cancellations between terms in the expression (69) for ngl(cl)ig»l). Thus the

upper bound that we have obtained above is not sharp in this case. Let

o = sin?(7wml/n)
T (m/n)A(1 = m/n)?’

and b, = e2™(k=)m/n By summation by parts, we have

n—1 n—2 m n—1
Z Ambm = Z (am — Am+1) Z by + an—1 Z bp.
m=1 m=1 p=1 p=1

Then

1— 627ri(k—j)m/n

off)

n—2
H=() 2
’Eggig)fj | < - E lam — am1]
m=1

1 — e2mi(k—j)/n
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By differentiating the function f(x) = sin?(7lz)/(2?(1 — z)?), we find that
the derivative is at most of the order 12 and we have

172
ool = o (2) () <22
n n n

Using the inequality

1— e27ri(kfj)m/n ) _ C'n
1 — e2mi(k—j)/n 1 — e2mi(k—j)/n| |k _ j|0’
we have
=) C'?
Eg&,. ¢ < —.
| Ik~ | |k = jlo

This finishes the proof of Proposition 5.1.
Combining (68) and (64) with (31), we have the following lemma.
Lemma 5.1. There exist some positive constants c1, co such that

P,I%) < 9e—c1n’ + n2e—canin®n. (71)

6. Proof of Proposition 3.1 and Theorem 3.1. We start with some
preliminary details. If z = (xg,...,zp,—1) € I'p, then by Lemma 2.4,

1 —3/2+sin®(7(i — j)/n) 5
G(z) = = p—y
(@) =3 ; st (i — j)m) o)
)2
~ —Z M = O(—nln3 n),
and
‘ﬁ_‘j]' = 0(n'/2m*2n). (72)

Then (z; — z;)/(2n?) = O((In*? n) /n®/?) is negligible, and thus

o) — 1 3cos(m(i — j)/n+ 6(z; — ) /(2n?))
Flo) Z[nﬁ sn®(n(i — §)/n + 6(zi — 7)) (2n))

6
i
~cos(m(i—j)/n+0(z — x;)/(2n%)) } (z; — z;)°
n® sin3(7r(7j —§)/n+ b8z —xy)/(2n2) ]
~ z;)3 (i—2)® ] (i)
Z [Zn() sin®(7(i — ) /n) * 616 sin? (7 (i — j)/n)] ; nli — 15
(73)
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Comparing F'(z) with G(z) and using (72), we have

— |z — 2]\ _ In®2 n _ 1/271,,9/2
|F(x)] = G(x)|0<nia727x TL|Z—]\0> = |G(x)|0<n1/2) =0(n'?1Im%?n).
(74)
In this section, we show that F'(z) = o0,(1) with probability 1 —o0,(1). To be
more specific, by (73), we show that

n—1 n—
o)~ Y55 2 @0°) = onlt) (75)

where 5](1) is defined in (66).

We divide the proof of (75) into three parts. The first step is to show
that the normalized constant Z, defined in (34) is not far from Z, defined
in (36). This implies that the probability distribution of x is not far from
the Gaussian distribution p,(z) defined in (35), (36). The second step is to
show that under the Gaussian distribution, F(z) = o,(1) with probability
1 —O(n=°). The last step is to combine the first two steps and obtain that
F(z) = op(1) with probability 1 — O(n™°¢) under the distribution defined
in (33), (34).

6.1. Step 1: Comparing 7, and Zn For reader’s convenience, recall
the definition of the normalized constants Zn and Z,:

zz/fﬂmﬂmm 4:/£wﬁ.
I'p r

We start with a lemma. Rescale the Gaussian distribution defined in (35)
and define two new Gaussian distributions,

py+ (@) = % exp{G(:E) (1 + CB(”)> }

g n

py- () = Zlg_ exp{G(w) <1 _ Cﬁlw) }

Lemma 6.1. If B(n) < n, then the normalized constants Z;t satisfy

(76)

7 =7, exp{:F;B(n)(l + on(l))}.

Proof. Change the variable to & = /1 — ¢B(n)/nx, then

Z; = /Fexp{—;mTAx(l - CBTE”)) } dx

e E AT/ - ;d:?:Z _—
/F jl_Il\/l—cB(n)/n gjl_Il 1—¢B(n)/n
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Note that

(1 - CBW) o exp{ By 4 on(1)>}.

Similarly, we have

<1+CB7”>_M2:eq{_fguwu+wmﬂ»}.

n

Thus ZgjE = Zgexp{F(c/2)B(n)(1+ 0,(1))}. Lemma 6.1 is proved.

Let B(n) = Dn'/21n®?n. By the definition of I'p in (31), we have the
inequality max;z;(|z; — x;|/|i — jlo) < B(n). Then by the first equation
of (74), there exists a universal constant ¢ > 0 such that

c¢B(n)

—p C@ S FE) < -— =

Similarly to Lemma 6.1, one can show that
de_CB(") < Zn < deCB(").

When we proceed to the Step 2 and Step 3 presented below, this estimate
will not be sufficient for us to show F(x) = 0,(1) because the exponential
term B grows faster than any polynomial. In order to get a better upper
bound of max;;(|x; — x;|/|i — j|o), we use iteration. We need the following
two lemmas.
Lemma 6.2. For some sufficiently large M > 0, let MIn'?n < B <
Dn'/21n%/2 . If there exists some v > 0 such that
P, <:c el'p: maxw = B> <n77, (77)
i#i i —jlo
then there exists a universal constant ¢ > 0 such that
de_CB < Zn < deCB. (78)

Proof. Denote A = {z € I'p: max;;(|z; — x;|/|i — jlo) < B} and then
P,.(I'p\ A) < n77. Because of (74), if z € A, then there exists a universal
constant ¢ > 0 such that

%G(a;) < F(z) < —%G(w)- (79)
By (79), we have

7, = / CG@)+F(@) g, — / eC@)+E(@) g0 4 P.(T'p\ A)Zn
I'p A

< / (@ =cB/m) go =17
A
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Then
(1—n""Z < / (C@—cB/n) g  o(eB/2)(1on(1) 7
I

Thus N
Z, < 6(03/2)(1+07L(1))Zg(1 +0(n™)) < €CBZg- (80)

For the lower bound, similarly,

Zn;/eG(l‘)-i-F(:t) dx}/ea(x)(l""CB/”) de
A A

:/eG(z)(l-l—cB/n) d:c—/ C@)(1+eB/n) g
r r\A

> / (C@+eB/n) g / G gy
r A

= (e~ (BA+on() _p (1\ A))Z,

By Lemma 5.1, we have

P,(I'\ A) < P,(T%)+P, <U| $3>B>

i — jlo

0]
<27 fp2emn 0 n 2 max Py (EJ’ g B> '
il Vi

Since the variance of SJ(J ) is at most of the order [ by Proposition 5.1, we have

€9 g
Pg 7 >DB)<e ) (81)

where ¢’ is a universal positive constant. Thus,
_ 3 _ 3 _ I n2
Pg(F\A) < 9e—C1N +TL2€ conln n+n2€ B ,
and

277, 2 (67(63/2)(1+0n(1)) _ TL2€*C/B2 _ 26761713 _ n26702n1n3 n) Zg.

If B> MIn'/?n with some sufficiently large M > 0, then n2e—¢B* 4
3
2e—c1n’ + n2e—c2nn” 1 ig yhych smaller than e <B/2, We have

Zy > e BT 7 (1 _ 0, (1)) > Zye~°E. (82)

Lemma 6.2 is proved.
Using the result of Lemma 6.2, we can prove the following lemma.
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Lemma 6.3. For some sufficiently large M > 0, let MIn'?n < By <
Dnt/21n%/% p. If there exists some v > 0 such that kn™'* <n™7 and

P, (ac elp: maxw P Bk) < kn 10, (83)
i#j |t —jlo
then
P, <:17 elp: maxw > Bk+1> < (k+1n™ 1, (84)
i#j i —3lo
with

4cBy 4+ 241nn
By =1/ — (85)

Here ¢, ' are universal constants that do not depend on n, k.

Proof. Denote A, = {z € T'p: maxix;(|lz; — z;]/|i — jlo) < By} and
A¢om =T'p\ Ag. Then P, (A™) < kn~19 by (83). Since Byi1 < By, we see
that Agy1 C A C I'p and AP™ C A3, By Lemma 6.2, if © € Ay, then
there exists a universal constant ¢ > 0 such that

é < Bk,
Zn
Thus,
P:c( g—)i-r?) - Pz(Aiom> + Py (Ak N i?l—mﬁ

<kn-10 4 ~1/ O (1=cBy/n) g,

Zn k41
_ gm0 %gl/ C@)(1=eBi/n) g
Zn Zg Jagem
< kn™10 4 ¢Br <1 / G (@) (1=cBy/n) dm). (86)
Zg gy
Let £ = /1 — ¢Bg/nx. Then
—n/2
1 LC@(1=cBu/n) g _ (1 _ CBk) 1 C@ g
Zg Jasery n Zg ) A

1 o .
et [ 00 g = e, (), (57
g

com
Ak+1

where gioﬂ = {z € I'p: max;x;(|z; — Z;|/|i — jlo) > Brt1/1 — cBy/n}.
Note that

~ \:L‘Z — acj] / ch)
P gom <P,[max— > B 1-—
9( k+1) g( itj ‘Z ]’o k+1 n

B
<n? maXPg<|£(-l)| > Biyily/1— Ck)
Jil J n
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|f(‘l)| cBy
< n? IR 1=
<n H}?XXP9< Vi > Bri14/1 - >

where ¢ > 0 is the universal constant introduced in (81). Thus
2 I 2 By
LHS of (87) <n"expq —c¢Bj, 1|1 —— | +cBy
n
2 o ¢ o
< n”exp _§Bk+1 +cBj, ¢ = exp _§Bk+1 +cBr+2Ilnn . (88)
Therefore, combining (86), (87), and (88), we have
/
P, (A < kn 10 4 exp{—;BzH + 2¢By, + 21nn}. (89)
By letting the right-hand side of (89) equal (k+1)n "', we can solve —c’BzH—I—
4¢By +41nn = —201Inn for Byy1. We obtain By = \/(4¢By, + 241nn)/c.
Lemma 6.3 is proved.
Combining Lemmas 6.2 and 6.3, we have the following result.

Proposition 6.1. There exist some constants C1,Cy > 0 such that for
sufficiently large n,

P, <a: elp: maxw > CyIn'/? n) <n?, (90)
i#i i —jlo
and Lo ~ 1/2
Zge= O & T < ZyeC2 (91)

Proof. The definition of I'p in (31) indicates that for k = 0, (83) is satisfied
with By = Dnl/2 In*2n. Then we use Lemmas 6.2 and 6.3 to proceed the

iteration by setting
4c¢By, + 241nn
Buy =/ RN (92)

Note that in Lemma 6.3, ¢, ¢’ are universal constants.
The fixed point of the iteration (92) is

—C/B? +4cBy +4lnn = -20Inn

2
2c+ V4c* + 24 Inn o nl/2 g,

— Bf: c/

Recall that By~ n'/? In?/3 . Moreover, if By > C'lnn, then By~ v/ By.
This implies that for By, to reach the value of order In'/2 n, one needs about
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Inlnn iteration steps. In other words, the sequence { B} will starts from
By = Dnt'/? In%2n and after C]Inlnn number of iterations, By decreases
below the level

By = Cy1n'2n

Finally, we still need to check if the conditions of Lemmas 6.2, 6.3 are
satisfied. To satisfy the first condition of Lemma 6.3 (also Lemma 6.2), i.e
MIn'?n < By < Dn'/21n%/? n, we need to modify the stopping time of
the iteration process. We will end the iteration right before By falls below
M1n'/? n. But the result remains the same. Note that the number of itera-
tion steps is of the order Inlnn, so the second condition of Lemma 6.3 also
holds, i.e., kn™1% < n™" for some v > 0.

Therefore, we can find a subset, denoted as

Ay = {xEFD: maxw <Cllnl/2n}, (93)
i#j i —7lo
such that
P,(T'p\ As) <n™°. (94)

Moreover, by Lemma 6.2, there exists some constant Cy > 0 such that
_ 1/2 = 1/2
de Coln n < Zn < deCQ In n

Proposition 6.1 is proved.
Combining (94) and (32), we have the following corollary.
Corollary 6.1. There exists a subset Ao defined in (93) such that

P.(AS) <n™8. (95)

6.2. Step 2: Estimate of F(z) under Gaussian distribution. If x
belongs to the set Ay, which is defined in (93), then

max M < C In'/?n, (96)
i# i—jlo

and by (73), we obtain that

F(z) = 0(2 W) = O(In%/2 ). (97)

— 415
& nli =il

Note that

Z |x|l :E]’L < Cln®?n Z Cln=3?n=o, (1).  (98)
i>7; li—jlo>In®n J >In3n
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Thus, it is sufficient for us to estimate

T — 3 Indn n—1
> S ralizen) o
=0

5
nit —
i>4; |i—jlo<In®n | j|0 k=1

where fj(l) is defined in (66). Denote

< n_1/4}, 1<I<In’n, (100)

and Qe = (<13, - Note that if z € Q = Qs N As, then

ln3n — In3n
Z %Z Oyl < 1/ Z 5= O(n=1/4). (101)
=1 7=0

Combining (99), (101), and (98), we have
F(z) = O(In=3/%p). (102)

Using Proposition 5.1 and Lemma 5.1, one can show that

P,(45) < P, (max T2 > e ) 4 2y )
i#j i —jlo
< n2efCillnn + 2 cin’ +n26702n1n3n < n71/4 (103)

provided that C; and n are chosen sufficiently large.

Next, we want to show that P,(QS) = 0,(1). The following lemma is
useful.

Lemma 6.4. There exists some constant C > 0 such that

_ Cl*lnn
>n 1/4) < (104)

Proof. By the Wick formula, we have
! l l 1) 1) (1l
By ()° (€)= 9By(6]") By (&) )"Bog) ¢ + 6(Bye) )",

By Proposition 5.1, we have Ey(¢{”)? < Cl and Egé{"Ey€" < C12/[k — jl,
for |j — k|, = I. Then when |j — k|, > [, we have

4 6 174
(0y3(£0\3 < g3 L 3 10 C
R R TRy R TR A VR
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Similarly, if |j — klo < I, then Eg&{"Egel”) < Cl, and thus E,(¢")3(¢)? <
15C313 < C'1*/|j — k|o. Therefore, there exists some constant ¢’ > 0 such
that

n—1

<Z(f(l)> =nE +4ZE 5(” )3 < C'*nlnn.

1=1 Jj#k

It follows from the Markov inequality that
1= sl ) B (T €9 Cfn
Pg( - ;(5 n~t/ > < d < .
1=

n3/2 = opl/2
Lemma 6.4 is proved.
By using Lemma 6.4, it can be shown directly that, for sufficiently large n,
we have

C'"In®n _ C'In%n 1
c —1/4
P,(Q < | I Q ) 1 < pYE <n ) (106)

(105)

I<In®n

Let € ' = Qo N Aso. Combining (103) and (106), we see that
Py () < Py(Q5) + Py(AS) <207 V% (107)

Therefore, we have the following lemma.
Lemma 6.5. There exists a subset of ' C I such that

Pg(Q/C) = on(1),

and if v € Y, then F(z) = o,(1).

6.3. Step 3: Combining Step 1 and Step 2. In this subsection, we
finish the proofs of Proposition 3.1 and Theorem 3.1 by combining the results
in Step 1 and Step 2. In Step 1, we have showed that P;(AS) = 0,(1). In
Step 2, we have obtained that P,(25) = 0,(1) and Py(AS) = on(1).

Proof of Proposition 3.1 and Theorem 3.1. We start by showing P, (QS,) =
on(1). Recall that @ = {|(1/n) Z:.L:_ll(ﬁi(l))?" <n Y4} 1 <1< nn, and
Qoo = MNi<in3 n - Then

P,(Q) < P.(TD) + Pr(AS) + Pu(Q N A NT'p).
By (32) and (95),

/2,
P () < n "+ / exp{ ( Ciln )}daz
c n

A 1/2
<o B4 22 L exp{G(w) <1 - Clln) } dx. (108)

n
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Changing the variable z = \/1 — C1(In'/? n)/nx, by Lemma 6.1, we have

P.(Qf) < 2% 4 1P (0f), (109)

where Q¢ = {|(1/n) X021 (€P)3] = n=V4(1 — €y (In"/2n) /n)**}. Using the
Markov inequality and following the arguments in (105) in Lemma 6.4, we
have

_ N 4 _ 174
P, () = 1/~ @ g7 < Cl ln(n1 2l) < C’lllzln' (110)
Zg J nt/2(1 — Cy(In / n)/n)3 nl/

Combining (110), (109), and (91), we obtain

C'1*(Inn)elC1+C2) n'/2n
n=® +

P,(9) <2 e
Thus,
. . - C'(In!3 1) eC3 In'/2n B
Pm(QOO)—Pz< U Ql) <2n 81 n+ ( n1)/2 =0(n~Y%).
lgln?’n
(111)

Repeating the arguments from Step 2, we have that (97), (98), and (99)
hold for x € A (recall that A is defined in (93)). If x € Q, then (101)
also holds. Therefore, if x € Q' = Ay N Qo then the bound (102) on F(x)
still holds. In addition, by (95) and (111), we have

P () < Po(Q5) + Po(45) = O(n~'/4). (112)

Thus, we have proved Proposition 3.1. Combining (112), (107), and (102),
one can show that

(1-C'n™*?n)Z, < Z, < (1+C' ™32 n)Z,.
If A is a measurable subset of €', then
1 1
P, (A) = — / SO 4 < (14 €2 / REOPR
Zn JA gJA
=P, (A)(1+0(n"32n)).

Similarly, we have
P.(A) > (1—C"In3/? n)Zl/ @ dy = Py (A)(1 - O(In~*%n)).
gJA

Combining with (112) and (107), we conclude that for any measurable set
AcCT,
IP.(A) — Py(A)| = O(In=32n). (113)

Theorem 3.1 is proved.
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7. Proof of Theorem 3.2. In this section, we prove the functional con-
vergence in distribution of ¢, (t) to ((¢).

First, we establish the convergence of finite dimensional distributions. Fix
finitely many 0 < t1,...,¢ < 27 Let j; = [nt;/2m)], I = 1,...,m.
Because of (96) and the construction of (,(¢), with probability 1 —o,(1), we
have

Ly Ti  Ti41

Vil Sy~ v

Using the definition of {(¢), one can also show that |((t;) —((277;/n)| = 0n(1)
with high probability. It is sufficient to prove that z;/\/n = ((27j;/n) +
on(1) with probability 1 — 0,(1). By Theorem 3.1, the finite dimensional
distribution of (z;,,...,x;, ) can be approximated by the finite dimensional
distribution of the Gaussian law defined in (35). Without loss of generality,
assume that n is odd. For even case, similar considerations hold. Using the
representation (65) for x;, we have

gn(tl)

= o,(1).

(n—1)/2 9 . 2
T 2 2mjk n . [ 2m3k n
— X — Y;
N kzl [ ( n >2k(n—k) b Sm( n ) 2kin—k) "
12 7 cos 27rjk:/n) sin(2mjk/n)
E Xk_TYk
(n—1)/ . .
Z <cos 21k /n) X, - 81n(37272/n) Yk)

for 0<j<n—1,

i(cos (2mjk/n) Xk B sin(Qij/n)Yk> te

k=1
(114)

where { X} and {Y;} are i.i.d. real standard normal random variables. Here

.= i <cos(27rjk/n) x _sin(27rjk:/n)Yk>

k . k
k=(n+1)/2
D2/ cos 27Tjk:/n) sin(2mjk/n)
k=1

is negligible because

o0 1 (2 N2 1

k=(n+1)/2 =1
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Therefore, by (113), for 1 <1 < m,

Cn<27;ﬂ> B acT kZ( Ccos 27r]l/~c/n)X]C B sm(27rljlk:/n) Yk) ve
— C(H) +ep, (115)
n
where {Xj}, {Yi} are i.i.d. real Gaussian variables, e, is a random error
term with De,, = 0,,(1). Therefore, one proves that ¢, (t) converges in finite
dimensional distribution to ((t).

Now, we turn our attention to functional convergence. Note that the se-
quence of the distributions of (,(t) gives a family of probability measures
on the space C[0, 27]. Because of the finite dimensional distribution conver-
gence, it is sufficient for us to show the tightness of the distribution sequence.
A sequence of probability measures {P,,} is tight if and only if the following
two conditions hold [3]:

1) For any small n > 0, there exist corresponding a and ng, such that

Pn(f:|f(0)|>a)<77 for n = ng;
2) for any small £, > 0, there exist corresponding dy and ng such that
P, (f:ws(do) =€) <n for n=ng,

where wy(8) = sup{|f(s) — f(t)]: 0 < s,t <27, |s —t] < d}.
To check the first condition, by (115), we note that

oo
i) 1
(n(0) = —= =) —Xi+en, (116)
vn P k
and thus there exists sufficiently large ng such that if n > ng, then
o0
1 72
D — < —. 117
6 (0 kZ e 3 (117)
Then
2
P, (|G(0)] 2 a) < 32 (118)
a
we choose a = /7%/(3n).

Further, to check the second condition, we need the following lemma.
Lemma 7.1. There ezist positive constants ¢, (1 < k < 6) such that

P (1G(t) = Ga(s)] < calt — s[Y2 + con V0 Vi, s € [0,27]: [t — 5| < 0)

>1-— ((:36704"4/5 + ¢50%5 + ¢gIn~3/? n).
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Assuming that Lemma 7.1 is proved, we can finish the proof of Theorem 3.2
by choosing d§p and ng such that

015(1)/20 < ; C2n81/101nn0 < %; (119)
4/5

Finally, we need to prove Lemma 7.1.
Proof of Lemma 7.1. Because of (113), it is sufficient to prove that

Py ([Cn(t) — Ca(s) < ealt — sV2° + con™V/0Inn Ve, s € (0,27 [t — 5] < 6)

>1- (036_64"4/5 + ¢56%/%).

Without loss of generality, assume that s < t.
Case 1: Let us fix Cp > 0 and assume that [t — s| < Cp/n. Then there
exist 4, j with |i — j| < Cp + 2 such that

e 2o 2ei)

)

n n

)

c [2;] 27T(jn+ 1)]

(121)

By the triangle inequality, we have

Py(|¢n(t) = Cals)| > )
 E () o (3 )

1<h<j+1
Note that (,(27k/n) = xx/+/n and D(z — xx—1) ~ 1 for all k. Then for
some positive constant Cy, C'5 depending on Cp, we have

Pg< c(z”(k_”) - cn(m)’ > 025) — Py (ay 1 — a4l > Caev/)

n n
Thus

2.2
§C3e CCQETL.

Py(Galt) — Gals)] > €) < (Co + 2)Cze¢ 2™, (122)

Furthermore, there exist positive constants Cy, C5 which only depend on Cy,
such that

P, <E| s, tef0,2n]: |t —s|< % and [(,(t) — Cu(s)| > 5) < n2CyCre 350

< 056—048271.
(123)
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Case 2: If |t — s| > 1/n, we introduce a new partition of [s,t]. We start
by dividing the interval [0, 27] into 2* disjoint subintervals

(k) 2 27 _ k
Al [2kl,2k(l+1)] [=0,1,...,2% — 1. (124)

There exist the smallest & = kg, and related [y, such that Al(fo) C [s,t].

Note that kg and Iy are unique. Let Sy = Al(fo). If [s,t] # Sp, then there
exists a unique smallest k1 > kg, and one or two values of [1, such that
Al(fl) C [s,t] \ So (we could potentially add Al(fl) on the left of Al(fo) or

add one on the right). If there is only one value of I;, let Agfl) = Al(fl)

and A(()]fl) = . If there are two values of [y, let a; be the smallest of

the two and by the largest. Set S; = Sp U Al(jfl) U Agﬁl). We continue
this process. For each m > 2, find a unique smallest k,, > k,,_1 such

that Agﬁn’"), A(km) C [s,t] \ Sm—1 (recall that AIE’T) might be empty). Let
Sm = Sm_1 U A(km) U A(km) We will stop at m = r, when either [s,t] = S,
or the length of Sr+1 = [s,t] \ Sy is not greater than Cy/n, where Cy > 0 is
some fixed constant. Thus,

[s,t] = So U Spsq U < U Agfnm)) U ( U Ag’fj)) (125)

m=1 m=1
Note that 5 . o )
0
%g‘s_t‘<%7 2kT<;<F7 (126)

e, ko~ —1Inl|s —t|, k. ~ lnn.

For any interval I = [a,b], define D, (I) := |(y(a) — (o (b)|. For example,
Dn(AM) = (¢, ((21/25) (1 + 1)) — Cu((27/26)0)]. Let ag = lp. Then by the
triangle inequality, we have

Dy([s,1]) < Da(AM)) + Z Dy (A% 4 Z Dy( )+ Dn(Sy41)

am

<2 Dp(APF) + Dy (Srp1).

Since |Sy41| < Co/n, using the result in Case 1 and letting e = n~/10

have for some constants C7,Co > 0,

, We

P, (Dn(sm) >n Y10 35 1 c0,27]: [Sq] < io> < CheCan’?,
(127)

To estimate D (A(km)) we need the following lemma.

am
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Lemma 7.2. Fix s,t € [0,27]. Then there exist some constants C1,Cs,
Cy4 > 0 such that

4/5

Py (Ga(t) = Guls)] > [t = 8]0 + 207 V10) < 2C1e” " 4 Cuft — 5|7
Proof. Fix s, t. Then there exist ¢, j such that

ce[rion i) fom i)

n "n n n

Thus, we have

(!Cn( Cn(s)] > It s['/20 4 207 1/10)

T
e () () )
on () () o).

Note that ¢,(27k/n) = z/\/n, and D(xy — x;) ~ |k — I|. Thus, we have

2 27 Chli — 712
P (o () - (522 e-o) < G e < cue ot

n?t
where the last inequality comes from 27|i — j|/n < |t — s|. Therefore,

Py (1Gu(t) = Cu(s)] > [t — 8|20 4 207 /10) < 2016~ 1 Oyt — 5)/5.

Lemma 7.2 is proved.
By the result of Lemma 7.2, we have

2k —1 o\ 1/20
Pg( U {D(Al(k)) > (2k> +2n1/10}>

=0

k Cond/5 2 9/5 k41 Cond/5 C5
<2 (2016_ 2n —I—C4< > > <2 + Cre 2" +

(2k)4/5'
(128)
Therefore,
ke 2F—1 i o\ 1/20
(0 U o> () o)
k>ko 1=0
ky —Cont/3 07
Ce -2 2 + COLE (129)
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Combining with (127), we have

k. 2F 97\ 1/20
(0 ({oa = () e
k>ko 1=0

C
" {D(STH) <n V10V S (0,27 |Sp] < no}>>
_ConA/s C
_ (((Ylﬁ—czg ok —Co +_(2%D;;/5>, (130)

Due to r < k, and (125), then

LHS of (130)
1/20
<Py <|§n(3) —G(t)| < Cs <2ko) +Cokyn ™10V s te (0,27 [t — 5| < 5>.

Therefore, combining with (126), we have

Py (|¢a(s) — Gu(t)] < s — HY2 4 eon Y0nn Vs, t € [0,27]: |t —s| < 8)
>1- (C3€_C4n4/5 + 0554/5).

Lemma 7.1 is proved.
The proof of Corollary 3.1 is rather straightforward and left to the reader.
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