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Abstract. We study the technique used in proving the exponential localization for
one-dimensional difference Schrodinger operators with quasi-periodic potential.
In this way we get some corollaries concerning the spectrum structure near the
boundaries and the existence of bounded, non-exponentially decaying solutions of
the equation on eigenvalues. .

1. Introduction

In this paper we study the family of Schrodinger operators, acting in /X(Z") as
follows:
O (H @) =¢- (pin— 1)+ + D)+ Vt+n- o) wln), (1.1)

with xeS!, weR!, Ve C¥S"), and ¢ being sufficiently small. One can consider
H,(x) as a metrically transitive operator in the sense of [5]. Indeed, H,(Ta)
=U"'H,(«)U, where Ta=(«+ w)(mod 1) and U is a unitary shift operator: (Uf)(n)
=f(n—1). For V(x)=cos(2ra) we get the Almost-Mathieu operator as an
important particular case. We shall use the results for (1.1) obtained by Sinai [1]
and Frohlich, Spencer, and Wittwer [3, 4]:

Main Theorem (Sinai, Frohlich, Spencer, and Wittwer). Let Ve CX(S') have exactly
two critical points, both being non-degenerate. Let we[0;1] be a Diophantine
number, i.e. a number, satisfying the condition |w—p/q|=const-q~°"* for some
8>0. Then there exists a positive number £,=¢o(V, 8) such that for any ¢, |¢| <&, and
a.e. a €S the operator H () has purely point spectrum. All its eigenfunctions decay
exponentially. The support of the density of states for Hya) is a nowhere dense
Cantor set of positive Lebesgue measure and the total Lebesgue measure of all
spectral gaps for Hya) is less than const - {el.

We shall derive in this paper several corollaries from the Main Theorem:

Corollary 1. For all ¢:1¢| <e, there exists a countable set 2(g)CS* such that for
every 0 € s Apay=5up{i: A SpH(a)} is an eigenvalue of H(x).
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Remarks. a) For all «, SpH,(x) does not depend on o (see [5]).

b) o is an exceptional set in the following sense: for a.e. a€S'; A, is not an
eigenvalue of H,(o) [5].

¢) The same result holds for A, =inf{1: Ae SpH(«)}.

d) The countable set of exceptional phases &/ is a trajectory of T on St

¢) For ae.o/ essential support of eigenfunctions (in the sense of [1, 2])
corresponding to 4., and A, is a one-point subset of Z'.

Corollary 2. Let | —p/q| = const-q~ 2~ for every p,qeZ' and some 6>0. Then
for every &:|e| <&, one can choose such a(e)e S"; Ae)e SpH(«) that there exists a
bounded solution of the equation H,(x)y = Mg) - y for which lim sup |y(n)| > 0.

Remarks. a) There exists a continual set of pairs (4, «) for which the statement of
Corollary 2 holds.

b) Corollary 2 is useful in connection with the following theorem, proven by
Riedel [6]:

Theorem (Riedel). Assume that the condition L' holds.

L : Every bounded solution y of the almost Mathieu equation ¢ - (p(n—1)+p(n+1))
+cos(2m{a +w - n) - w(n) = Ap(n); decays exponentially as |n|— + co. Then SpH (o)
is not a Cantor set.

Corollary 2 shows that generically the condition L' does not take place.

Corollary 3. Let be la—p/q|=const-q > -(Inq)~*; f>1;Vp; qeZ. Then for every
6>0 one can find such o €S*; A,€SpHy(a) that

a) the solutiony,(n) of the equation H ()w,= Ay, has a polynomial rate of decay at
infinity.

b) 1'1Iln sup [w(n)-n°|=0.

The plan of the paper is the following. In Sect. 2 we discuss the main steps of the
inductive procedure, suggested in [2]. Using the technique of [2] we prove in
Sects. 3, 4, and 5 all Corollaries 1, 2, and 3.

2. The Main Steps of the Proof of the Main Theorem

a) Assume that for all xeS' we constructed a family y(a) of eigenfunctions
(EF’s) having the eigenvalues (EV’s) 4(x). Then all functions y,(x)=U"p(a+n - )
n= —o00,..., + oo are EF’s for the individual operator with EV’s A(x +n-w). The
main idea of [1,2] was that in order to construct all EF’s y(«) for a fixed a e S* it
is sufficient to construct for all « e S* only those EF’s for which zero point is a left
boundary of an essential support of (). (In fact, ES is a finite subset of Z', where
EF takes values of order of 1; see [1,2] for precise definitions.)

Remark. Actually, eigenfunctions with the above mentioned condition on ES will
be constructed only for « belonging to some Cantor set of positive Lebesgue
measure, which will be sufficient for our purposes.

Denote the ES of y(x) by Z(y(a)) and

pos(y()) =min{k: ke Z(p))} .
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b) Exponential localization will be proven by induction, and on each step s > s, of
the inductive process we shall construct approximate eigenfunctions (AEE’s) ¢3(or)
and approximat¢ eigenvalues (AEV’s) Axa); 1=/ =n,, n,Sconst-s-Ins such
that:

L. pos(¢Aa) =
2. (H (o) — AH))p)=Fa), 2.1
o) =1(0) + hio),
[h(n, )| <exp(—(3—P)s); 0<f<1;

I¥(n, o) is different from zero only at the points n, where

dist(n, Z($¥(2)) —[2s/In(e” )] =0; 1.
3. |5n, @) < (ag)istm Z@HD 22
provided that
dist(n, Z($x@) <[2s/In(e” 1)].

+ o

4. |J U%¢*(a+nw))is acomplete set of functions in £ Z(Z 1), where we denoted

#109=) 62

We also define the many-valued function
A%e): o —*U ALa).

5. diam(Z(¢3(o)) < const - s/In(e ") (2.3)

Remark. U"(¢3(a+ nw)) is also an AEF of H,(x) in the same sense as in (2.1) with
AEV Ao+ nw) but pos(U¢Ha+nw))=n.
¢) Because we may assume ¢ to be sufficiently small, we can consider H,(a) as a
perturbation of the multiplicative operator

(Ho(a)y)(n)=V(x+n- o) y(n).

The EF’s of Hy(a) concentrated at one-point subsets of the lattice are AEF’s of
H,(«) and EV’s of H,(a), which are V(o +m - w); m= — 0, ..., + 00 are also AEV’s
of H,(x). So at the initial step of induction s,=[In(e” )/2]

PP(n;0)=0,,0;  AP(W)=V(®)
and
Fi(o) = (H (o) — AP(2))p7°(0)
38(5" -1 +5n; l)=o(8)‘ (24)
The set of functions U {Ur¢(a+n- w)} is a basis in £2(Z").

d) Let us discuss the constructlon of the first non-trivial approximations ¢** (a)
and A% * (). We shall use the perturbation formulas of the first order:
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50+ 1) = 450 (F(); U'gPa+t - w))
¢ o) =il + ,;o AP(o) — AP(o+ £ - )
x U'pPa+t- w);
A (@)= A+ (FP(@), ¢3(): 25)
Z (" @) =Z (7).

Remark. Actually, the sum in (2.5) contains only the finite number of terms and in
the case s=s,+ 1, in fact only two, corresponding to ¢ = + 1. But the formulas (2.5)
are applicable only under certain “non-resonant” conditions. More precisely, (2.5)
makes no sense if the denominator is zero, while the corresponding numerator is
nonzero, and the precision of that approximation is insufficient if the denominator
is small enough. This is the reason why the resonant zone [the neighbourhoods of
the points, where A5(x) = AP(a+ w); AP(x) = AP(x - w)] appear. The width of the
resonant zone on the a-axis at the s*" step of induction has an order of e ~* (see [2]).
The former and the latter resonant neighbourhoods play essentially different roles
in inductive constructions. Recall that we should construct only those AEF ¢3()
for which pos(¢3(«))=0. As was shown in [1, 2] in resonant zones there appear two
AEV’s which are close to each other and close to A(«); AP(x+ w), but the
corresponding AEF are linear combinations of ¢{(x) and U*'¢$(a +w) up to
terms of higher order of smallness. The ES of new AEF is defined as a union of the
ES’s for ¢%°() and U*'¢{(a + w). Therefore, in the case of Ug(x+ w) the new
AEF satisfies the condition pos(¢5°* !(«)) =0, while in the other case we have an
AEF with pos= —1. So we should exciude the RZ of the latter type from the
domain of definition ¢ * !(a), while in the former case there appears an additional
AEF in the resonant zone (RZ). We shall follow this strategy at all inductive steps
$2 8,50 in the limit s— + co the domain of definition of any ¢, = lim ¢;willbca
nowhere dense Cantor set. e
Let us write down the perturbation formulas, which are used in the RZ:

P2 W) =A% () $P(0)+B.(x), UpPla+w)+A ()
y ((Fi"(a); U‘¢i°(a+tw))>
e#0;1 \ AP(a) — AP(x+tw)
x U'pPa+tw)+ B (o)
y ((UFi"(am); U‘¢§°(oc+tw))>
#051\ AP(a+ ) —AP(a +tw)
x Ut + tw) . (2.6)
A2 )= 3 [47(0) +(FP(); $7(0)
+ A(o + @)+ (UFP(a + w); Ugp$P(a+ w))]
13 [(AP(@)+ (FP@); $7())
—(AP(x+ @)+ (UFP(a+ w); UdpP(x + w)))
+4(F(); UgP(a+ ) - (UFP(a+ w); gP@)]"?, 27

A,; A_
(3 4 oo
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g:>€0(2).
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(Figure 1 presents the graph of A%*! in RZ))
€} The exponential decay of AEF’s (and EF in the limit) is derived from the
representation (see [1, 2]):

@i Hn—1; ) =M(n; 2e); 0) - p(n; 0) +0¢ =),
dist(n, Z(p; " (@) ~[2(s + 1)/In(c )],
where ¢5*!; @it e U"dp(o +nw),

Min; A, 0)=¢-G(n—1;n—1; 4, 0)/(1+e-G(n;n—1; 4; )
and .

Gix s 45 o) § AT 2RV 28)

is an approximate Green function. Factors M®(n; Af; «) take values of order of ¢ at
“most” points n. Besides that, for points n which are in the fixed neighbourhood of
the ES we have:

o3 (n; ) — @ T H(m; )| Se” P const. (2.9)

Remark. The formulas (2.8), (2.9) are obtained from the perturbation formulas
(2.5)+2.7) and the inductive assumptions b).

f) The Lebesgue measure Mes(A,) of the set of points a € S' which take part in
more than k— 1 resonances for all “history” of the inductive procedure is estimated

IVICS Ak = E const CXp 5 exp _5 CXp _5 e exp S cve foae faa f.

—k—1—>
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+ o0 .
Therefore, ' Mes(A,) < o0, so according to the Borel-Cantelli lemma a.e. xeS!
k=1

takes part only in a finite number of resonances.

g) Define
)= lim ¢(),
A(a)= llgrn A%().
+ oo
For ae. aeS" the set ) U"(a+nw) is the basis of exponentially localized

+

eigenfunctions of Hy(x) and () A(x+n-w)is the corresponding set of EV’s.

3. Proof of Corollary 1

According to the inductive procedure at every step s = s, we have the real (in the
general case multi-valued) function A%(x)* with the domain of definition D CS!
such that D, , CD,; Vs=s, and D, , obtained from D, by deleting the resonant
zones, corresponding to the resonance of AY(«) and Ax+t-w) for some ¢,
(—2s/In(e™")]<t<0. A**'(x) is obtained from A%(x) with the help of the
perturbation formulas (2.5)+2.7). Passing to the limit, define A(x)= sliIPm A¥a)

with the domain of definition D,= (\D* Then D, is a Cantor set of positive
Lebesgue measure ¢
Mes(S"\D,) =ofe).

The form of the graph of A%«) for s=s,+2 is presented in the Fig. 2. In the more
general case s> 5, +2 the graph A%(«) differs only by a larger number of resonant
zones and resonances.

ASO+2

Fig. 2
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The proof of Corollary 1 requires the analysis only of the behaviour of the top

part of the graph A%x). Namel] , let us denote by o, the point, where A%(a) takes its
maximal value.

Proposition. Let all conditions of the Main Theorem be valid and ¢ be sufficiently
small: |e] <£o(V, ). Then there exists a positive constant a,(w) such that for every
525, the neighbourhood Os=(a,—a /s’ a,+ a,/s%) of the point o belongs to a non-
resonant zone at the st step;

Os+ l(as-f- 1) C Os(as)

>exp-(—§s). (3.1)

Remark. Assume that the proposition is already proven. Then the set of

exceptional phases < is the trajectory {T"x,,, n<> o, Where ey 18 the unique

common point of all O (x,); §2 58, Le. o, = () Odey). [

s25

and

2%
ae g:{;s) do 2

Choose a,(w)>0 such that for any 25, and any o€ Oay)
=(x,—a,/s’ a,+a,/s% and all ¢, 11 <[2s/In(e ™ 1)], we have

a+tod O a,). (3.2)

The existence of this positive constant follows from the Diophantine condition
on .

We shall prove the proposition by induction. At the first step s=s, one can
verify the validity of the proposition, provided ¢ is sufficiently small. Assume the

proposition on the s* step of induction is true. Take «f,, which is the nearest center
of the resonant zone on the st step, to ay:

Joeg — o | = min {loy— o], where « is such that there exist #> (ERTY
=[2s/In(e™ )], A3(0) = Ao + tw)}.

It follows from (3.2) that Ues € O(ar). This is the origin where the resonant
neighbourhood of the point o, does not intersect O (24 1). Actually, A(x) is a
monotone function on the required interval and the following estimates hold:

Sup [ A%0) — Ao )| < e~

aeR%(afes)
(this is a consequence of the definition of RZ) and

,As(asia1/sa)—‘As(as+ 1ta s+ 1)5)'
2 45

do?

2
gconstexp(- gs)-s_z””.

= inf

€ Og(ag)

X Elas—a“ 1 i(al/s(s-al/(s+ 1))

So, we get A+ (@) from A%(«) in the top neighbourhood with the help of the non-
[esonant perturbation formulas (2.5):

A" o) = A + (f3(@); p3a).
Below we verify the validity of (3.1) on the (s+ 1) step of inductive procedure.
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Lemma.

1(f50); @@)lic2 Sconst - exp(—2s(1 —Ina/ln(z™ "), Vi j.

The proof of this lemma is inductive, too. We have:
(93(@); [ (@) =(@i(e); Heoi —A70)),

(fzs 1,(Ps l .
<P (pl 1+J;' /15 1 lls 1 (P] 1’

=R (el D,
according to the perturbation formulas. Therefore,
(fHe)=0F"" el
(fs l, (ps 1 . . .
+ X Fral ii 1 4 l'(‘l’j Seih

j¥Fi
7NN pemr. s
+2‘j;l ,{s 1 /1‘; 1 (L 1’(pl 1

) Fhen )
1 /1 1 i iz
+ + j;zii('lf 1 )'jx 1 J1 ls 1 /1.;2 1

x(@3 505 ")

(fFhe ) S el D,
+i§:l /1: 1 /1;11 /1.: 1 /1_;2 1 (f s(pu

J2¥i
—(fFh e Y (@ e Y

- e
—(f; 1,(P. 1) 2—/1;—1—%—1((0; 1;(pi 1)

TS e ) (P e
s—1 ¢ i ! J2
;%::((f ’(pl ) /1.: 1 Ajn 1 /ls 1 Aszl
ja¥i

x(@5 05 Y

s— 1 s—1
;(———{s el D (e ) e ey Y
j¥i

s—1. 1)
—;]Slﬁl %1 WT%@”)
o Lo (e, -
_jé l L A,s 1 /1{: 1 ls 1 ljsz 1 ((lel,([)jz 1)
1 ¥i Iz
ja2¥i
=(fF e ) (=i e ) (3.3)

The remainder sum r, contains no more than const- s? terms, whose C*-norm is
not more than

const -exp(—4s(1 —Ina/ln(e""). O
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—lna/ln(s™"), Vi j.
We have:
@i —4i97),

s—1
j ) s—1.
s—1 (Pj ’

y)
i

fore,

~

S

’j‘l; (P?_l)

;o8 Y
1,(}2“‘;90?;‘))

s—1 s—1
)'i _lfz

{sz_l)( s—1. s—l)

st i P,
J2

s=y )
=@ el

J
R R (pj;‘))

s—1 s—1 s—1
A’q'jx ’li ~j‘jz

VN R (R

Leimh

s—1. .s—1

: ®j, ) 1. s—1

f/{‘izj(qojl l’ (Pj'z )
J2

D) 4r,. (3.3)

onst - 5% terms, whose C2-norm is

ey O
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The formul.as (3.1), (3.3) give us the estimate of |, ,  — . Namely,

d2A5+1
o1 —0od- inf
o1 =l Osir(ase)| da®
As+l s+1
é do (as + 1) - _‘F ((xs)

sconst-exp(—2s(1 —Ina/lne™ ")) = |, —ay <const-e”*,

The proposition is proven.

Now we can say more about the non-exceptional phases. Let us recall the main
result of the inductive procedure (see [1, 2] and the brief description in Sect. 2). For
a.c.aeS' there exists in £%(Z") the orthogonal basis of eigenfunctions of H,(a) such
that for every EF ¢ {(«) with EV A (x) one can find the finite subset of Z',named the

essential support of ¢, «) and denoted by Z(¢A2)). The smallness of the value
@ n; «) is estimated through the distance until n from Z(Pa)):

[ An; o) (a- g)listn: 2@,@M

Besides, for every ¢,«) with pos(¢{x))=m one can find a sequence of AEF’s
U¢ia+m- w); s=s, with AEV’s A+ mw) such that

_lj&n Aa+mw)= A, x),
Jim U ggtat me)=¢,00),
and

Z(UpHo+m - w))=Z (P Ax))

for all 5, except the finite number of ones. Now take o, such that: 1) « satisfies the
above-mentioned condition; 2)a does not belong to the countable set of
exceptional phases. Then 4,,, isn’t an eigenvalue of H,(a). Indeed, for such «
a+mo+a,,.. So there exists the number s’ such that a+mw¢ 0%(a,) and U¢S -
does not take part in any resonance for all s>5'. It means that on some step s”,
s">s"of inductive procedure a forbidden zone will appear, such that this forbidden
zone lies in O%(x,) and the length of the appearing gap on the spectral axis
separates the values A%, ) and A%a+mw) for every s=s”.

4. Proof of Corollary 2
Let us consider the complete set of AEF’s
(odei= U ¢etno)
of the operator H,(a) on the 5, step of the inductive procedure. AEF’s ¢(x) and

@ ja) are resonant in the neighbourhood R, ={a: [Ado) — Afe)| <e™*}. Let be
Pos(¢{«))=0, pos(pfa))=n, >0, then there exists £, 1 </ <n,:

Pl =¢3(),  Afo)=A3a),

Pl =U"¢}a+n ), Afa)=AHo+n ).




474 A. Soshnikov

Two new AEF’s ¢% *!(a) appear in the resonant zone R, on the (s+1)* step of
induction. These AEF’s are the linear combinations of ¢,, ¢; to within the small
terms of order o(exp(—2s,(1 —Ina/lng™ 1)),

1 ) =A@ @) +B.(@) @)+ ... (4.1)

(the dots will systematically mean the smaller terms). The corresponding AEV’s
A () are:

A= 1O Ly e ash. “2)

Therefore, (5,, — A)(5,, — A)—s3,=0, where
5110 =40 +(f0) @),  fio)=(H () —A{a))pda),
$22(0) = 20) + (0, 0/00),  ff) = (H (0~ 1) (o),
Sy 2(“) = (f;(a)’ ‘P;(a)) -
Below, we follow only one branch of A(x), for definitiness, the plus branch of A(a):
/. (). Denote by «,, the point of intersection of graphs of s, (o) and s, ,(a), and by
o, the minimal point of 4, («). In fact, we intend to follow the countable number of
resonances, taking place in reduced resonant zones. The reduced resonant zones
will be embedded one into another and will be so small that |A(x)/B(x)| will take
values close to 1. The second resonance will appear in the neighbourhood of the
point «, where A,(x)=A,{x+n,w). The corresponding inductive step will be
denoted by s,. Then
¢ =Ay0) - (Ay(2) o) +By() @)+ ...)
+By(a) (Ao + ny0) - U@ e+ nyw) + By (a+ nyo) -
x U a+n,w)+ ....

In the case s, =5y, n, =1, @ a)=0, o; @{x}=45, , we have
¢ =An@) Ay(@)F, 0+ A0) By(0) 9, ,
+By(0) - A(a+n,0) - 6,y +By(0) Byla+n,w0) 0, 0y g + oo - (43)

It isn’t difficult to understand that after the k™ resonance, ¢%*!(«) is the linear
combination of 2* functions 8, o, 8, 15 0u.n,» On.x, + 1, a1d 50 0N, With the coefficients

n,nys

tljl At(a) s (:lflz At((x)> . Bl(a) s <,lf[3 At(“)) . BZ((X) . Al(OC + nzw) .

up to smaller terms. Suppose that there exist the limits

k k
lim (2"/ 2 < I1 A,(oz))) , lim <2"/ 1 A,(oc)) : Bl(oc)> , 4.4)
k—=+w t=1 k—+ t=2

and so on, uniformly with respect to all expressions which are bounded from zero

and infinity at the point «, where « is the intersection of all constructed reduced
resonant zones. Then, the needed bounded solution of the equation H,(a)y = Ay is

w= lim 22¢%*'(a), A= lim A%*'(x).
k—+ o k= + o
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. we have

n, 1

Bya+n,0) 0y i1t ... (4.3)

resonance, ¢ ' '(a) is the linear
.1, and so on, with the coefficients

z)> ‘B,(a)- A(a+n,0) ...

1¢ limits

tlA@) B@). @)

>ns which are bounded from zero
sction of all constructed reduced
on of the equation H(o«)y = Ay is

lim A%* Y(a).
k—+
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Note that 0 < lim sup|y(n)| < + c0. Below we pay attention to the technical details

(i.e. the construction of the reduced resonant zones and the estimates on smallness

of |l/§A+| -1, |]/5B+| —1,]A ./B,{—1). The coefficients A (), B, (a) are defined
as the solutions of the spectral problem:

(s11—44)A, +54, B, =0,
S12° Ay +(s2,—44)B, =0, 4.5)
A% +BZ =1

(see [2]). Since (B, /A ) =(s,; — A, )/(s2,— 4, ) we have to analyze the behavior of
(8,1 —A4)/s5,— A Na) in the resonant zone:

Lemma 4.1. a) If s,, —5,,=0(5,5), then IB+/A+|=1+Q<§“S——SB‘).
12
b) If 512:0.(511__522) and ggn(sn —S$3;)= —sgn(sy), then [B,/A.|
=(812/(511 —522)) +0(s2/(511—522))")-
) If s,y —8,, is of order of s,,then B /A ,|takes values of order the constant, but

sufficiently smaller than 1, i.e. .
YKk

Y ke

Si1—Sa=k 515 = (51— A ) (s22—44)

This lemma follows from (4.2).

Remarks. 1. ||s,,/|.«=o(exp(—2s(1 —Ina/In(e ™ 1))).

2. Case a) takes place if « belongs to the d(s, ,)-neighbourhood of the point «;,,.

Case c) takes place if |o—a,,,| is comparable with s, ,.

Case b) takes place if « doesn’t belong to any neighbourhood of a,,,,, whose length

is comparable with s,,. From one side, the next resonant interval has to be a

neighbourhood of «,,, a minimal point of 4, . But on the other hand, we would like

the points from the next resonant intervakto satisfy the condition a) of Lemma 4.1.

Differentiating (4.2), we get:
/1'+=S’22'—S11 As +5'14

S33— Ay
+ 4.6
S11 82— 24, (4.6)

'311+522_21+
Therefore, (s;, — A)/(s5, — A)(ote)= —511/5%2+ ..., and, correspondingly,
(511 —522)(0e) =2 (1 —p)* (1 + ) —=(1 = )?) - 512+ (5, 5)
with p=—(s,/55)la=a.,-
We shall introduce the notion of the reduced resonant zone in order to make

the ratio s, /s5, sufficiently close to — 1. Consider the first resonance. The resonant
zone 1s, according to the definition

R, = {a: 4500 — A3+ (o) <e "1}

We define the reduced resonant zone as

- 1
R,= {ai loe—ag < 5 (F7(o); Ui+ "kw))} ,
1
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4 Y(a)=0 and
do

(F5; U3 (o +mw)) play the same role as s, , above. Further, we shall take into
account only resonances, appearing in R,. Consider the second resonant step s,.
Then, in the neighbourhood of the intersection of the graphs A3(x) and
AP0+ n,w), Iny <2s(ln(e™ 1)), we define

R, = {a: [43(a) — AP (a+nym) <e 2}

where o, is uniquely determined by the condition

and
- 1
R,= {ai loc—aZ | < ;(Fii(oc); Uy (o+ nzw))}

[recall that A%*(«) is obtained from A%*! with the help of the unresonant
perturbation formulas (2.5) during $y <s< s,]. Then R,, R,, k> 2 are defined in the
same way. Under the construction R,CR,, (R, , ;)CR,, Vk>0. We have two new
AEF’s in ¢%* Y(a), provided aeR;:

S = Ay () () + By (o) U™Fi(a+mw) + ..
if, besides that, we have aeR,, then |A, .|,|B, .| are close to 1 /]/i:

Lemma 4.2. Let xeR,. Then the ratio of derivatives of 25" () in symmetric points
o and 20 —a is close to — 1 in the following sense:

const

d d
a('{‘:’f-*1)Ia/£(’1?+1)|21’é,va+1 <

Sk

dz
The lemma follows from the estimates on d—z(ﬂ‘“) which one can obtain,
differentiating (4.6):

M= (s1.—4) 4 (s22—4) $32° (511 —522)(511—4)
z (S11+52,—24) H (11 +522—2%) (511‘*'522“2/1)2
Sy (852 —511) (52— 4) _ 555 (511 — A1 —532) (511 522)
(5114"522_2/1)2 (511‘|‘522*2}*)3

o S117 (522 = A) (811 —852) (811 —522)
(5114522 —24)°

+ ...
The main terms are the third and the forth ones. Using the lemma one has:

1
Akﬂ(a)iﬁ < * [/l
with aeR,. Thanks to the superexponential increasing of s, all limits in (4.4)
successfully exist. Thanks to the Diophantine condition on w, all unresonant
perturbations of A%*1 on the steps s, <s<s,,; are negligibly small. [J

const const

B, (0%

>

Sk

5. Proof of Corollary 3

The construction of the corresponding solution is quite similar to one presented
in Sect. 4. It is based on the same method of reduced resonant zones. We can
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ition -i(/lié“)(ozcr)z() and
da

e. Further, we shall take into
- the second resonant step s,.
of the graphs A%(x) and

<e %2}

Pla+ nzw))}

the help of the unresonant
R,, R, k>2 are defined in the

R,, Vk>0. We have two new

e+ mw)t+ ...
ire close to 1/1/§:

of A" Y(«) in symmetric points

1*=*1) which one can obtain,

§h - (811 —522)(S11 —4)
(S11 +522—2/1)2
)(syy —52) (S11—522)
L 4S5y, —24)3

Using the lemma one has:

1 const

£ — <
/A
easing of s,, all limits in (4.4)

mdition on w, all unresonant
re negligibly small. [J

; quite similar to one presented
duced resonant zones. We can
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define
R, = {o: lo—od | <(s)* - (F(), U™ g7 + o))},

where d is a positive sufficiently large constant, depending on coefficient § in
Diophantine condition (1.3). Lemma 4.1b) ensures A (x), B(a) taking values

const const . .
+ (12222 22 with y(d, f)>0. Let us conside
( (s > £ g it 1P Heet

wk=U_(\’§‘"2>(¢sr*‘<“‘ ( i né)'“’))’
where

L if |AA2)| is a small term and [B/(«)| 1s near 1,
700 if |Af0)] is near 1 and |B,(«)] is a small term.

k;
If we choose a subsequence k;— -+ 00 s0 that {(( Y n’,) - (u> mod 1} convergetoa

=1
limiting point, one can find the polynomially decreasing solutions as

k
p= lim y,,; A= lim lﬂ';“(zx—(i n})w). g
=1

ki~ + o ki + o
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