Solutions 21A Sample Final Exam

Note: The solutions presented here may not always show all necessary steps to obtain the final result.

- 1. Problem: Find the limits.
- (a) $\lim_{x\to 0} \frac{3^x-1}{2^x-1}$ using L'Hopital

$$= \lim_{x \to 0} \frac{3^x \ln 3}{2^x \ln 2} = \lim_{x \to 0} \left(\frac{3}{2}\right)^x \frac{\ln 3}{\ln 2} = \frac{\ln 3}{\ln 2}$$

- (b) $\lim_{x \to 0} \frac{1 \cos x}{2x}$
- 0 (for example via H'ospital's rule)
- (c) $\lim_{x \to \infty} \frac{2x^4 + x \cos x^3}{x^4 + x^2}$
- 2 (compare the degrees of the leading coefficients of the polynomials)
- 2. Problem:
- (a) Determine a so that f(x) is continuous at every point:

$$f(x) = \begin{cases} x^3 + a - 2 & \text{if } x \le 2, \\ ax^2 & \text{if } 2 < x. \end{cases}$$

$$a = 2$$

(b) Let $f(x) = \frac{x}{x^2 - 16}$. Verify that $\lim_{x \to \infty} f(x) = 0$. Then find an integer M which guarantees that f(x) < 0.001 if $x \ge M$.

 $\lim_{x\to\infty} f(x) = 0$ since degree of poly in numerator is smaller than degree of poly in denominator.

 $f(x) = \frac{1}{x - 16/x}$, when x is large $16/x \approx 0$. If x > 16 then x/16 < 1, hence x - 1 < x - 16/x and therefore $f(x) > \frac{1}{x-1}$. Thus it is sufficient to find an integer M such that

$$\frac{1}{x-1} < \frac{1}{1000}$$

This holds if x > 1001. Take M = 1002 (M = 1001 would also work).

- 3. Problem: $f(x) = x^3 3x^2 1$.
- (a) Determine all local maxima and minima of f.
- (b) On which intervals is f concave upward/downward?
- (c) Determine the inflection points of f.
- (d) Sketch the graph of the function.
- (a) find critical points: $f'(x) = 3x^2 6x = 3x(x-2) = 0$, hence $x_1 = 0, x_2 = 2$.

$$f(0) = -1, f(2) = -5.$$

f''(x) = 6x - 6. f''(0) = -6 < 0, hence f has a local max. at (0, -1).

$$f''(2) = 12 - 6 = 6 > 0$$
, hence f has a local min. at $(2, -5)$.

(b) Find points of inflection first:

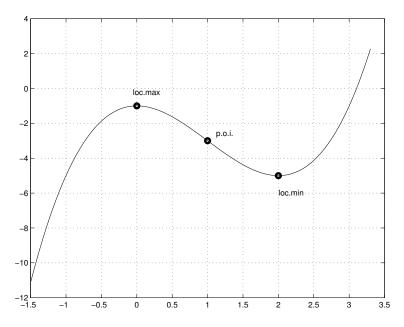
$$f''(x) = 6x - 6 = 0$$
, hence $x = 1$.

We get the intervals $(-\infty, 1)$ and $(1, \infty)$.

check concavity of f on those intervals:

- $(-\infty, 1)$: Let x = 0, f''(0) = -6, hence f is concave down on that interval $(1, \infty)$: Let x = 3, f''(3) = 12, hence f is concave up on that interval
- (c) Since f changes concavity when crossing the point x=1, f has an inflection point at (1,-3).

Graph of the function:



4. Problem:

(a) Suppose that the equation $-7x^2 + 48xy + 7y^2 = 28$ holds. Find $\frac{dy}{dx}$ at the point (0, -2).

Take derivatives on both sides:

$$-14x + 48y + 48x \frac{dy}{dx} + 14y \frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = \frac{14x - 48y}{48x + 14y}$$

hence $\frac{dy}{dx}$ at (0, -2) is $-\frac{96}{28}$.

(b) Find the horizontal and vertical asymptotes of the graph of

$$f(x) = \frac{x^2 - 3}{2x - 4}$$

no horizontal asymptotest, vertical asympote at x=2.

5. Problem:

(a) Use the definition of the derivative to compute the derivative of $f(x) = 4x - 2x^2$. (Note: give yourself zero points if you compute f'(x) without using the definition of the derivative!)

$$f'(x) = \lim_{h \to 0} \frac{4(x+h) - 2(x+h)^2 - (4x - 2x^2)}{h} =$$

$$= \lim_{h \to 0} \frac{4h - 4xh - 2h^2}{h} = \lim_{h \to 0} 4 - 4x - 2h = 4 - 4x.$$

(b) Use linearization to estimate the value of $e^{0.1}$. Use a = 0 and note that $(e^x)' = e^x$ and $(e^x)' = 1$ at x = a = 0. Hence

$$e^{0.1} \approx e^0 + 1(0.1 - 0) = 1.1$$

6. Problem: Find the derivative f'(x) for the function f(x) given below: (a) $f(x) = 2^x x^2$

$$f'(x) = (\ln 2)2^x x^2 + 2x2^x$$

(b) $f(x) = (\sin \sqrt{x})^9$

$$f'(x) = 9(\sin\sqrt{x})^8 \cdot (\cos\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$$

(c) $f(x) = \sqrt{\frac{\cos x}{\ln x}}$

$$f'(x) = \frac{1}{2\sqrt{\frac{\cos x}{\ln x}}} - \frac{\sin x \ln x - \frac{1}{x}\cos x}{(\ln x)^2}$$

- 7. **Problem:** Let $f(x) = 2x^2 3x$.
- (a) Find the tangent to the graph of f(x) at the point (2, 2). f(x)' = 4x 3, hence slope at x = 2 is 5. Tangent line is y = 5x 8.
- (b) Prove that f(x) is equal to 0 somewhere in the interval [-1,1].

Since f(-1) < 0 and f(1) > 0 and f is continuous the Intermediate value theorem implies that there is a point $c \in [-1, 1]$ such that f(c) = 0.

8. Problem: What are the dimensions of the lightest open-top right circular cylindrical can that will hold a volume of $1000cm^3$?

Let h be the height of the can, and r be the radius. The volume is V and the surface without top is S. The lightest can is the one that uses the least amount of material. $V=\pi r^2h=1000,\ S=\pi r^2+2\pi rh=\pi r^2=2000/r$. Hence $S'=2\pi r-2000/r^2=0$ from which we get $r=\frac{10}{\pi^{1/3}}$ hence $h=\frac{1000}{\pi r^2}=r$. The answer is $h=r=\frac{10}{\pi^{1/3}}$ cm.

- **9. Problem:** You are standing on top of a 32 ft tall tower. Assume the acceleration of the rock is constantly $-32ft/sec^2$. (a) You throw a rock straight *down* with velocity 16 ft/sec. When does the rock hit the ground? (b) What is the speed of the rock when it hits the ground?
- (a) $f(t) = -16t^2 16t + 32 = 0$, hence t = 1 (since t = -2 < 0). The rock hits the ground after 1 second.
 - (b) t = 1: f'(1) = -32t 16 = -48 ft/sec. The speed is 48 ft/sec.
- **10. Problem:** (a) Yes. The fact that f'(x) = 0 for all x means that the tangent to the graph of f(x) has always slope 0, therefore f(x) = C for some constant. The property f(-1) = 4 implies therefore that C = 4 and thus f(x) = 4 for all x.
- (b) Assume that f(4) f(1) > 3 and show that this leads to a contradiction: Since f' exists, f must be continuous. Thus we can apply the Mean Value Theorem, which says that there should exist a $c \in (1,4)$ such that

$$f'(c) = \frac{f(4) - f(1)}{4 - 1} = \frac{f(4) - f(1)}{3}.$$

But if f(4) - f(1) > 3 then

$$\frac{f(4) - f(1)}{3} > 1 = f'(c),$$

for some $c \in (1, 4)$, which cannot be since it violates the condition $f'(x) \leq 1$ for all $x \in [1, 4]$. [Part (b) was a bit harder than the other problems]

11. Problem: Answer will be presented in class (review session) on Monday.