Homework 2, due to February 3, 2006

Problem 1: Solve exercise 5.1
Problem 2: Let $A \in \mathbb{C}^{m \times n}(m \geq n)$ with reduced SVD $A=U \Sigma V^{*}$, i.e. $U \in \mathbb{C}^{m \times n}$ and $V \in \mathbb{C}^{n \times n}$. Let $\mathcal{Q}:=\left\{Q \in \mathbb{C}^{m \times n}: Q^{*} Q=I_{n}\right\}$ (i.e. the columns of Q are orthonormal). Show that the solution to the optimization problem

$$
\min _{Q \in \mathcal{Q}}\|A-Q\|_{F}
$$

is given by $Q:=U V^{*}$.
Problem 3: Image compression experiments with SVD.

- Using Matlab load the image called "mandrill.mat" and display it on the screen (using the gray scale colormap). Print that plot.
- Compute the SVD of this mandrill image and plot the distribution of its singular values. Print that plot.
- Let σ_{j}, u_{j}, v_{j} be the j-th singular value, left and right singluar vector respectively of the mandrill image. Define the rank- k approximation of an image $X \in \mathbb{R}^{m \times n}$ as

$$
X_{k}:=\sum_{j=1}^{k} \sigma_{j} u_{j} v_{j}^{*}, \quad k=1, \ldots, \min (m, n)
$$

Then, for $k=1,6,11,31$ compute X_{k} of the mandrill and display the results. Fit these four images on one plot by using the subplot function and print them out.

- For $k=1,6,11,31$ display the residuals, i.e., $X-X_{k}$. Again, print them out on one page.
- In light of the distribution of the singular values what results would you predict (without computing the images) for X_{k} for larger k (say $k=50$ or $k=100$)? Would the SVD make a good image compression method? Why? Why not?

Problem 4: This problem is from the chapter Fourier analysis of Cleve Moler's book (you can download the pdf-file from my 229A webpage). Do exercise 8.1 (the one about the telephone number).
You can download the relevant Matlab files from www.mathworks.com, click on Academia, click on Cleve Moler's textbook, and you will get the option to download the Matlab files (including those needed for this exercise) accompanying his book.

Problem 5: Write a program that plots the time it takes Matlab to compute an FFT of a (random) vector of length n, where $n=2,3, \ldots, 1023,1024$ (you can use tic and toc to measure the elapsed time in Matlab). Comment on the plot, what conclusions can you draw?

Problem 6: Solve exercise 6.1
Problem 7: Solve exercise 6.3

