Homework 3, due to February 17, 2006

All exercise numbers refer to the book 'Numerical Linear Algebra" of Trefethen and Bau.

Problem 1: Solve exercise 7.1
Problem 2: Solve exercise 7.4
Problem 3: Solve exercise 9.1
Problem 4: Solve exercise 9.2
Problem 3: Solve exercise 10.1
Problem 5: Solve exercise 10.2
Problem 6: Solve exercise 10.3
Problem 7: Solve exercise 11.3
Problem 8: Write a Matlab function $[\mathrm{Q}, \mathrm{R}]=\operatorname{clgs}(\mathrm{A})$ that computes a reduced QR factorization $A=\hat{Q} \hat{R}$ of a real-valued $m \times n$ matrix A with $m \geq n$ using the classical Gram Schmidt algorithm (whence clgs). The output variables are a matrix $\hat{Q} \in \mathbb{R}^{m \times n}$ with orthonormal columns and an upper triangular matrix $\hat{R} \in \mathbb{R}^{n \times n}$. Test your algorithm by applying it to a random matrix (generated via randn) and to the Hilbert matrix (generated via hilb) of size $10 \times 10,50 \times 50$, and 100×100. Check the accuracy by computing $\|A-\hat{Q} \hat{R}\|_{F}$ and $\left\|\hat{Q}^{*} \hat{Q}-I\right\|_{F}$ (the latter tests orthogonality of \hat{Q}).

