Homework 3, due to February 17, 2006

All exercise numbers refer to the book 'Numerical Linear Algebra" of Trefethen and Bau.

Problem 1: Solve exercise 7.1

Problem 2: Solve exercise 7.4

Problem 3: Solve exercise 9.1

Problem 4: Solve exercise 9.2

Problem 3: Solve exercise 10.1

Problem 5: Solve exercise 10.2

Problem 6: Solve exercise 10.3

Problem 7: Solve exercise 11.3

Problem 8: Write a Matlab function [Q, R] = clgs(A) that computes a reduced QR factorization $A = \hat{Q}\hat{R}$ of a real-valued $m \times n$ matrix A with $m \ge n$ using the classical Gram Schmidt algorithm (whence clgs). The output variables are a matrix $\hat{Q} \in \mathbb{R}^{m \times n}$ with orthonormal columns and an upper triangular matrix $\hat{R} \in \mathbb{R}^{n \times n}$. Test your algorithm by applying it to a random matrix (generated via randn) and to the Hilbert matrix (generated via hilb) of size $10 \times 10, 50 \times 50$, and 100×100 . Check the accuracy by computing $||A - \hat{Q}\hat{R}||_F$ and $||\hat{Q}^*\hat{Q} - I||_F$ (the latter tests orthogonality of \hat{Q}).