Sparse Matrices

Introduction .
Sparse Matrix Storage
Creating Sparse Matrices

Importing Sparse Matrices from Outs1de MATLAB .

Viewing Sparse Matrices

General Storage Information .
Information About Nonzero Elements
Viewing Sparse Matrices Graphically
The find Function and Sparse Matrices

Example: Adjacency Matrices and Graphs
Graphing Using Adjacency Matrices .

The Bucky Ball e

An Airflow Model

Sparse Matrix Operations .
Computational Considerations
Standard Mathematical Operations .
Permutation and Reordering .
Factorization

Simultaneous Linear Equatlons
Eigenvalues and Singular Values .

9-5
9-5
9-6

.9-10

.9-11
.9-11
.9-11
.9-13
.9-14

.9-15
.9-15
. 9-16
.9-21

. 9-23
. 9-23
. 9-23
.9-24
. 9-27
.9-33
. 9-36

9 Sparse Matrices

MATILAB supports sparse matrices, matrices that contain a small proportion of
nonzero elements. This characteristic provides advantages in both matrix
storage space and computation time.

This chapter explains how to create sparse matrices in MATLAB, and how to
use them in both specialized and general mathematical operations.

The sparse matrix functions are located in the sparfun directory in the
MATLAB toolbox directory.

Category Function Description
Elementary sparse speye Sparse identity matrix.
matrices
sprand Sparse uniformly distributed random matrix.
sprandn Sparse normally distributed random matrix.
sprandsym Sparse random symmetric matrix.
spdiags Sparse matrix formed from diagonals.
Full to sparse sparse Create sparse matrix.
conversion
full Convert sparse matrix to full matrix.
find Find indices of nonzero elements.
spconvert Import from sparse matrix external format.
Working with nnz Number of nonzero matrix elements.
sparse matrices
nonzeros Nonzero matrix elements.
nzmax Amount of storage allocated for nonzero matrix elements.
spones Replace nonzero sparse matrix elements with ones.
spalloc Allocate space for sparse matrix.
issparse True for sparse matrix.

Category Function Description
spfun Apply function to nonzero matrix elements.
spy Visualize sparsity pattern.
gplot Plot graph, as in “graph theory.”
Reordering colmmd Column minimum degree permutation.
algorithms
symmmd Symmetric minimum degree permutation.
symrcm Symmetric reverse Cuthill-McKee permutation.
colperm Column permutation.
randperm Random permutation.
dmperm Dulmage-Mendelsohn permutation.
Linear algebra eigs A few eigenvalues.
svds A few singular values.
luinc Incomplete LU factorization.
cholinc Incomplete Cholesky factorization.
normest Estimate the matrix 2-norm.
condest 1-norm condition number estimate.
sprank Structural rank.
Linear equations pcg Preconditioned Conjugate Gradients Method.
(iterative methods)
bicg BiConjugate Gradients Method.
bicgstab BiConjugate Gradients Stabilized Method.
cgs Conjugate Gradients Squared Method.
gmres Generalized Minimum Residual Method.

9 Sparse Matrices

9-4

Category Function Description
qmr Quasi-Minimal Residual Method.
Miscellaneous symbfact Symbolic factorization analysis.
spparms Set parameters for sparse matrix routines.
spaugment Form least squares augmented system.

Introduction

Introduction

Sparse matrices are a special class of matrices that contain a significant
number of zero-valued elements. This property allows MATLAB to:

¢ Store only the nonzero elements of the matrix, together with their indices.

¢ Reduce computation time by eliminating operations on zero elements.

Sparse Matrix Storage

For full matrices, MATLAB stores internally every matrix element.
Zero-valued elements require the same amount of storage space as any other
matrix element. For sparse matrices, however, MATLAB stores only the
nonzero elements and their indices. For large matrices with a high percentage
of zero-valued elements, this scheme significantly reduces the amount of
memory required for data storage.

MATLAB uses three arrays internally to store sparse matrices with real
elements. Consider an m-by-n sparse matrix with nnz nonzero entries:

¢ The first array contains all the nonzero elements of the array in
floating-point format. The length of this array is equal to nnz.

¢ The second array contains the corresponding integer row indices for the
nonzero elements. This array also has length equal to nnz.

e The third array contains integer pointers to the start of each column. This
array has length equal to n.

This matrix requires storage for nnz floating-point numbers and nnz+n
integers. At 8 bytes per floating-point number and 4 bytes per integer, the total
number of bytes required to store a sparse matrix is

8*nnz + 4* (nnz+n)

Sparse matrices with complex elements are also possible. In this case,
MATLAB uses a fourth array with nnz elements to store the imaginary parts
of the nonzero elements. An element is considered nonzero if either its real or
imaginary part is nonzero.

9 Sparse Matrices

Creating Sparse Matrices
MATLAB never creates sparse matrices automatically. Instead, you must

determine if a matrix contains a large enough percentage of zeros to benefit
from sparse techniques.

The density of a matrix is the number of non-zero elements divided by the total
number of matrix elements. Matrices with very low density are often good
candidates for use of the sparse format.

Converting Full to Sparse
You can convert a full matrix to sparse storage using the sparse function with
a single argument.

S = sparse(A)

For example

A=10
0
1
0

O wn o
= O O O
O OO !,

S

sparse (A)

produces

S =

(3.1)
(2.2)
(3.2)
(4.3)
(1.4)

QL WD =

The printed output lists the nonzero elements of S, together with their row and
column indices. The elements are sorted by columns, reflecting the internal
data structure.

You can convert a sparse matrix to full storage using the full function,
provided the matrix order is not too large. For example A = full (S) reverses
the example conversion.

Introduction

Converting a full matrix to sparse storage is not the most frequent way of
generating sparse matrices. If the order of a matrix is small enough that full
storage is possible, then conversion to sparse storage rarely offers significant
savings.

Creating Sparse Matrices Directly

You can create a sparse matrix from a list of nonzero elements using the sparse
function with five arguments.

S = sparse(i,j,s,m,n)
i and j are vectors of row and column indices, respectively, for the nonzero
elements of the matrix. s is a vector of nonzero values whose indices are

specified by the corresponding (i, j) pairs. mis the row dimension for the
resulting matrix, and n is the column dimension.

The matrix S of the previous example can be generated directly with

S = sparse([3 2 3 4 1],[1 2 2 3 4],[1 2 3 4 5],4,4)

S =

(3.1)
(2.2)
(3.2)
(4.3)
(1.4)

AL W DN =

The sparse command has a number of alternate forms. The example above
uses a form that sets the maximum number of nonzero elements in the matrix
to length(s). If desired, you can append a sixth argument that specifies a
larger maximum, allowing you to add nonzero elements later without changing
storage requirements.

Example: The Second Difference Operator

The matrix representation of the second difference operator is a good example
of a sparse matrix. It is a tridiagonal matrix with —2s on the diagonal and 1s

9 Sparse Matrices

on the super- and subdiagonal. There are many ways to generate it — here’s one

possibility.
D = sparse(l:n,1:n,-20bnes(1l,n),n,n);
E = sparse(2:n,1:n-1,ones(1,n-1) ,n,n);
S = E+D+E'

For n = 5, MATLAB responds with

S =
(1,1) -2
(2,1) 1
(1,2) 1
(2,2) -2
(3,2) 1
(2,3) 1
(3,3) -2
(4,3) 1
(3,4) 1
(4,4) -2
(5,4) 1
(4,5) 1
(5,5) -2

Now F = full(S) displays the corresponding full matrix.

F = full(S)
F =
2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

Creating Sparse Matrices from Their Diagonal Elements

Creating sparse matrices based on their diagonal elements is a common
operation, so the function spdiags handles this task. Its syntax is

S = spdiags(B,d,m,n)

Introduction

To create an output matrix S of size m-by-n with elements on p diagonals:

® B is a matrix of size min (m ,n)-by-p. The columns of B are the values to
populate the diagonals of S.

e dis a vector of length p whose integer elements specify which diagonals of S

to populate.

That is, the elements in column j of B fill the diagonal specified by element j of
d. As an example, consider the matrix B and the vector d.

B =

41
52
63
74

-3
0
2

Use these matrices to create a 7-by-4 sparse matrix A.

A = spdiags(B,d,7,4)

A =

(1,
(4
(2,
(5,
(1,
3,
(6,
(2,
(4,
(7.

1)

1)

2)
2)
3)
3)
3)
4)
4)
4)

11
22
33
44

11
41
22
52
13
33
63
24
44
74

9 Sparse Matrices

9-10

In its full form, A looks like this.

full (A)
ans =
11 0 13 0
0 22 0 24
0 0 33 0
41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74

spdiags can also extract diagonal elements from a sparse matrix, or replace
matrix diagonal elements with new values. Type help spdiags for details.

Importing Sparse Matrices from Outside MATLAB

You can import sparse matrices from computations outside MATLAB. Use the
spconvert function in conjunction with the 1oad command to import text files
containing lists of indices and nonzero elements. For example, consider a
three-column text file T.dat whose first column is a list of row indices, second
column is a list of column indices, and third column is a list of nonzero values.
These statements load T.dat into MATLAB and convert it into a sparse
matrix S:

load T.dat
S = spconvert (T)

The save and 1oad commands can also process sparse matrices stored as binary
data in MAT-files. Finally, a Fortran utility routine hbo2mat is available to
convert a file containing a sparse matrix in the Harwell-Boeing format into a
MAT-file that 1oad can process. The Harwell-Boeing data is available through
anonymous ftp or the World Wide Web from ftp.mathworks.com in the
directory pub/mathworks/toolbox/matlab/sparfun.

Viewing Sparse Matrices

Viewing Sparse Matrices

MATLAB provides a number of functions that let you get quantitative or
graphical information about sparse matrices.

General Storage Information

The whos command provides high-level information about matrix storage,
including size and storage class. For example, this whos listing shows
information about sparse and full versions of the same matrix.

whos
Name Size Bytes C(Class
M_full 1100x1100 9680000 double array
M_sparse 1100x1100 4404 sparse array

Grand total is 1210000 elements using 9684404 bytes

Notice that the number of bytes used is much less in the sparse case, because
zero-valued elements are not stored. In this case, the density of the sparse
matrix is 4404/9680000, or approximately .00045%.

Information About Nonzero Elements

There are several commands that provide high-level information about the
nonzero elements of a sparse matrix:

¢ nnz returns the number of nonzero elements in a sparse matrix.

¢ nonzeros returns a column vector containing all the nonzero elements of a
sparse matrix.

¢ nzmax returns the amount of storage space allocated for the nonzero entries
of a sparse matrix.

9-11

9 Sparse Matrices

To try some of these, load the supplied sparse matrix west0479, one of the
Harwell-Boeing collection.

load west0479

whos
Name Size Bytes Class
west0479 479x479 24576 sparse array

This matrix models an eight-stage chemical distillation column.
Try these commands.

nnz (west0479)
ans =
1887

format short e

west0479

west0479 =
(25,1) 1.0000e+00
(31,1) -3.7648e-02
(87,1) -3.4424e-01
(26,2) 1.0000e+00
(31,2) -2.4523e-02
(88,2) -3.7371e-01
(27,3) 1.0000e+00
(31,3) -3.6613e-02
(89,3) -8.3694e-01
(28,4) 1.3000e+02

nonzeros (west0479) ;

9-12

Viewing Sparse Matrices

1.0000e+00
-3.7648e-02
-3.4424e-01
1.0000e+00
—2.4523e-02
-3.7371e-01
1.0000e+00
-3.6613e-02
-8.3694e-01
1.3000e+02

Note Use Ctrl-C to stop the nonzeros listing at any time.

Note that initially nnz has the same value as nzmax by default. That is, the
number of nonzero elements is equivalent to the number of storage locations
allocated for nonzeros. However, MATLAB does not dynamically release
memory if you zero out additional array elements. Changing the value of some
matrix elements to zero changes the value of nnz, but not that of nzmax.

You can add as many nonzero elements to the matrix as desired, however; you
are not constrained by the original value of nzmax.

Viewing Sparse Matrices Graphically

It is often useful to use a graphical format to view the distribution of the
nonzero elements within a sparse matrix. MATLAB’s spy function produces a
template view of the sparsity structure, where each point on the graph
represents the location of a nonzero array element.

9-13

9 Sparse Matrices

9-14

For example,

spy (west0479)
0
B
sol> \1
NI .
100F o~ N X
~ , . \\
N N

150+ "o =
.. N \
200, : L4 \'1-\ \

2501 -
. .
— X
300} — X 5
_ s
— R 3
350} — mERT d
v e
B3 . i
400} r N 1
h x B
450+ L LN
I =
b ‘ ‘ N
0 100 200 300 400
nz = 1887

The find Function and Sparse Matrices

For any matrix, full or sparse, the find function returns the indices and values
of nonzero elements. Its syntax is:

[i.j.s] = find(S)

find returns the row indices of nonzero values in vector i, the column indices
in vector j, and the nonzero values themselves in the vector s. The example
below uses find to locate the indices and values of the nonzeros in a sparse
matrix. The sparse function uses the find output, together with the size of the
matrix, to recreate the matrix.

[i,j,s] = find(S)
[m,n] = size(S)
S = sparse(i,j,s,m,n)

Example: Adjacency Matrices and Graphs

Example: Adjacency Matrices and Graphs

The formal mathematical definition of a graph is a set of points, or nodes, with
specified connections between them. An economic model, for example, is a
graph with different industries as the nodes and direct economic ties as the
connections. The computer software industry is connected to the computer
hardware industry, which, in turn, is connected to the semiconductor industry,
and so on.

This definition of a graph lends itself to matrix representation. The adjacency
matrix of an undirected graph is a matrix whose (i, j)-thand (j, i)-th entries
are 1 ifnode i is connected to node j, and 0 otherwise. For example, the
adjacency matrix for a diamond-shaped graph looks like

1

>
I

o
S = O
HOHO
OO H
)
N

3

Since most graphs have relatively few connections per node, most adjacency
matrices are sparse. The actual locations of the nonzero elements depend on
how the nodes are numbered. A change in the numbering leads to permutation
of the rows and columns of the adjacency matrix, which can have a significant
effect on both the time and storage requirements for sparse matrix
computations.

Graphing Using Adjacency Matrices
MATLAB’s gplot function creates a graph based on an adjacency matrix and a

related array of coordinates. To try gplot, create the adjacency matrix shown
above by entering

A=[0101; 1010;0101; 101 0];

9-15

9 Sparse Matrices

The columns of gplot’s coordinate array contain the Cartesian coordinates for
the corresponding node. For the diamond example, create the array by entering

xy = [13;21; 33; 25];

This places the first node at location (1, 3), the second at location (2,1), the
third at location (3,3), and the fourth at location (2,5). To view the resulting
graph, enter

gplot (A, xy)

The Bucky Ball

One interesting construction for graph analysis is the Bucky ball. This is
composed of 60 points distributed on the surface of a sphere in such a way that
the distance from any point to its nearest neighbors is the same for all the
points. Each point has exactly three neighbors. The Bucky ball models four
different physical objects:

¢ The geodesic dome popularized by Buckminster Fuller

e The Cgy molecule, a form of pure carbon with 60 atoms in a nearly spherical
configuration

¢ In geometry, the truncated icosahedron

¢ In sports, the seams in a soccer ball

The Bucky ball adjacency matrix is a 60-by-60 symmetric matrix B. B has three
nonzero elements in each row and column, for a total of 180 nonzero values.
This matrix has important applications related to the physical objects listed
earlier. For example, the eigenvalues of B are involved in studying the chemical
properties of Cgy.

To obtain the Bucky ball adjacency matrix, enter
B = bucky;

At order 60, and with a density of 5%, this matrix does not require sparse
techniques, but it does provide an interesting example.

You can also obtain the coordinates of the Bucky ball graph using

[B,v] = bucky;

9-16

Example: Adjacency Matrices and Graphs

This statement generates v, a list of xyz-coordinates of the 60 points in 3-space
equidistributed on the unit sphere. The function gplot uses these points to plot
the Bucky ball graph.

gplot (B,v)
axis equal

0.8

0.6

It is not obvious how to number the nodes in the Bucky ball so that the
resulting adjacency matrix reflects the spherical and combinatorial
symmetries of the graph. The numbering used by bucky .m is based on the
pentagons inherent in the ball’s structure.

The vertices of one pentagon are numbered 1 through 5, the vertices of an
adjacent pentagon are numbered 6 through 10, and so on. The picture on the
following page shows the numbering of half of the nodes (one hemisphere); the
numbering of the other hemisphere is obtained by a reflection about the

9-17

9 Sparse Matrices

equator. Use gplot to produce a graph showing halfthe nodes. You can add the
node numbers using a for loop.

k = 1:30;

gplot (B(k,k),v);

axis square

for j = 1:30, text(v(j,1),v(j,2), int2str(j)); end

0.6

0.2

9-18

Example: Adjacency Matrices and Graphs

To view a template of the nonzero locations in the Bucky ball’s adjacency

matrix, use the spy function:

spy (B)
0% e i
L30)
D) .
30 .
o o .
. o o
D) .
.
1070 AR
oo o
L3
D) .
o o o
. o o
o0 o
L) .
D)
200 C* 3 .
oo o
D)
30
o o o
. 0o’ ®
D)
30
30+ o
. L30)
. D)
L3
o o
.
.
.
40
.
.
.
.
50
.
.
.
.
60 \ \ \
0 10 20 30
nz = 180

The node numbering that this model uses generates a spy plot with twelve
groups of five elements, corresponding to the twelve pentagons in the
structure. Each node is connected to two other nodes within its pentagon and
one node in some other pentagon. Since the nodes within each pentagon have
consecutive numbers, most of the elements in the first super- and
sub-diagonals of B are nonzero. In addition, the symmetry of the numbering
about the equator is apparent in the symmetry of the spy plot about the

antidiagonal.

9-19

9 Sparse Matrices

Graphs and Characteristics of Sparse Matrices

Spy plots of the matrix powers of B illustrate two important concepts related to
sparse matrix operations, fill-in and distance. spy plots help illustrate these
concepts.

spy (B*2)
spy (B*3)
spy (B*4)
spy (B"8)

nz =420 nz =780

0 20 40 60 0 20 40 60
nz = 1380 nz = 3540

Fill-in is generated by operations like matrix multiplication. The product of
two or more matrices usually has more nonzero entries than the individual
terms, and so requires more storage. As p increases, B”p fills in and spy (B”p)
gets more dense.

9-20

Example: Adjacency Matrices and Graphs

The distance between two nodes in a graph is the number of steps on the graph
necessary to get from one node to the other. The spy plot of the p-th power of B
shows the nodes that are a distance p apart. As p increases, it is possible to get
to more and more nodes in p steps. For the Bucky ball, BA8 is almost completely
full. Only the antidiagonal is zero, indicating that it is possible to get from any
node to any other node, except the one directly opposite it on the sphere, in
eight steps.

An Airflow Model

A calculation performed at NASA’s Research Institute for Applications of
Computer Science involves modeling the flow over an airplane wing with two
trailing flaps.

AVAVav
IAVAVAVISTAYs
R
PPACAVAVAVASL Pt

AN
ORK
Ay
AV
/N

?%:
\
p

&
AN

‘ pVivaY
‘%v
%

<H

i A RIS
S IAA N SRR
SR
SREATK
AVAN = AV

5

In a two-dimensional model, a triangular grid surrounds a cross section of the
wing and flaps. The partial differential equations are nonlinear and involve
several unknowns, including hydrodynamic pressure and two components of
velocity. Each step of the nonlinear iteration requires the solution of a sparse
linear system of equations. Since both the connectivity and the geometric
location of the grid points are known, the gplot function can produce the graph
shown above.

9-21

9 Sparse Matrices

In this example, there are 4253 grid points, each of which is connected to
between 3 and 9 others, for a total of 28831 nonzeros in the matrix, and a
density equal to 0.0016. This spy plot shows that the node numbering yields a
definite band structure.

The Laplacian of the mesh.
0 M I . T T

500

1000'E
1500
2000
2500
3000

3500

4000

0 1000 2000 3000 4000
nz = 28831

9-22

Sparse Matrix Operations

Sparse Matrix Operations

Most of MATLAB’s standard mathematical functions work on sparse matrices
just as they do on full matrices. In addition, MATLAB provides a number of
functions that perform operations specific to sparse matrices. This section
discusses:

e Computational Considerations

e Standard Mathematical Operations
¢ Permutation and Reordering

e Factorization

¢ Simultaneous Linear Equations

¢ Eigenvalues and Singular Values

Computational Considerations

The computational complexity of sparse operations is proportional to nnz, the
number of nonzero elements in the matrix. Computational complexity also
depends linearly on the row size m and column size n of the matrix, but is
independent of the product m*n, the total number of zero and nonzero elements.

The complexity of fairly complicated operations, such as the solution of sparse
linear equations, involves factors like ordering and fill-in, which are discussed
in the previous section. In general, however, the computer time required for a
sparse matrix operation is proportional to the number of arithmetic operations
on nonzero quantities. This is the “time is proportional to flops” rule.

Standard Mathematical Operations

Sparse matrices propagate through computations according to these rules:

¢ Functions that accept a matrix and return a scalar or vector always produce
output in full storage format. For example, the size function always returns
a full vector, whether its input is full or sparse.

¢ Functions that accept scalars or vectors and return matrices, such as zeros,
ones, rand, and eye, always return full results. This is necessary to avoid
introducing sparsity unexpectedly. The sparse analog of zeros (m,n) is
simply sparse (m,n). The sparse analogs of rand and eye are sprand and
speye, respectively. There is no sparse analog for the function ones.

9-23

9 Sparse Matrices

9-24

e Unary functions that accept a matrix and return a matrix or vector preserve

the storage class of the operand. If S is a sparse matrix, then chol (S) is also
a sparse matrix, and diag (S) is a sparse vector. Columnwise functions such
as max and sum also return sparse vectors, even though these vectors may be
entirely nonzero. Important exceptions to this rule are the sparse and full
functions.

Binary operators yield sparse results if both operands are sparse, and full
results if both are full. For mixed operands, the result is full unless the
operation preserves sparsity. If S is sparse and F is full, then S+F, S*F, and
F\S are full, while S. *F and S&F are sparse. In some cases, the result might
be sparse even though the matrix has few zero elements.

Matrix concatenation using either the cat function or square brackets
produces sparse results for mixed operands.

Submatrix indexing on the right side of an assignment preserves the storage
format of the operand. T = S(i,j) produces a sparse result if S is sparse
whether i and j are scalars or vectors. Submatrix indexing on the left, as in
T(i,j) = S, does not change the storage format of the matrix on the left.

Permutation and Reordering

A permutation of the rows and columns of a sparse matrix S can be represented
in two ways:

e A permutation matrix P acts on the rows of S as P*S or on the columns as

S*P’.

e A permutation vector p, which is a full vector containing a permutation of

1:n, acts on the rows of S as S(p, :), or on the columns as S(:,p).

For example, the statements

p=113425]

I = eye(5,5);

P =1(p,:);

e = ones(4,1);

S = diag(11:11:55) + diag(e,1) + diag(e,-1)

Sparse Matrix Operations

produce

p =
1 3 4 2 5

P =
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1

S =
11 1 0 0
1 22 1 0 0
0 1 33 1 0
0 0 1 44 1
0 0 1 55

You can now try some permutations using the permutation vector p and the
permutation matrix P. For example, the statements S(p, :) and P*S produce

ans =

11 1 0 0
0 1 33 1 0
0 0 1 44 1
1 22 1 0
0 0 0 1 55
Similarly, S(:,p) and S*P’ produce
ans =
11 0 0 1 0
1 1 0 22 0
0 33 1 1 0
0 1 44 0 1
0 0 1 0 55

9-25

9 Sparse Matrices

9-26

If P is a sparse matrix, then both representations use storage proportional to n
and you can apply either to S in time proportional to nnz(S). The vector
representation is slightly more compact and efficient, so the various sparse
matrix permutation routines all return full row vectors with the exception of
the pivoting permutation in LU (triangular) factorization, which returns a
matrix compatible with earlier versions of MATLAB.

To convert between the two representations, let I = speye(n) be an identity
matrix of the appropriate size. Then,

P=1I(p.:)
PP =1(:,p).
p = (1:n)*P’

p= (P*(l:n)")’
The inverse of P is simply R = P’. You can compute the inverse of p with
r(p) = l:n.

r(p) = 1:5

Reordering for Sparsity

Reordering the columns of a matrix can often make its Cholesky, LU, or QR
factors sparser. The simplest such reordering is to sort the columns by nonzero
count. This is sometimes a good reordering for matrices with very irregular
structures, especially if there is great variation in the nonzero counts of rows
or columns.

The function p = colperm(S) computes this column-count permutation. The
colperm M-file has only a single line.

[ignore,p] = sort(full (sum(spones(S))));
This line performs these steps:

1 The inner call to spones creates a sparse matrix with ones at the location of
every nonzero element in S.

2 The sum function sums down the columns of the matrix, producing a vector
that contains the count of nonzeros in each column.

Sparse Matrix Operations

3 full converts this vector to full storage format.

4 sort sorts the values in ascending order. The second output argument from
sort is the permutation that sorts this vector.

Reordering to Reduce Bandwidth

The reverse Cuthill-McKee ordering is intended to reduce the profile or
bandwidth of the matrix. It is not guaranteed to find the smallest possible
bandwidth, but it usually does. The function symrcm(A) actually operates on
the nonzero structure of the symmetric matrix A + A’, but the result is also
useful for asymmetric matrices. This ordering is useful for matrices that come
from one-dimensional problems or problems that are in some sense “long and
thin.”

Minimum Degree Ordering

The degree of a node in a graph is the number of connections to that node,
which is the same as the number of nonzero elements in the corresponding row
of the adjacency matrix. The minimum degree algorithm generates an ordering
based on how these degrees are altered during Gaussian elimination. It is a
complicated and powerful algorithm that usually leads to sparser factors than
most other orderings, including column count and reverse Cuthill-McKee.
MATLAB has two versions, symmd for symmetric matrices and colmmd for
nonsymmetric matrices. You can change various parameters associated with
details of the algorithm using the spparms function.

For more details on the algorithm and MATLAB’s version of it, see Gilbert,
John R., Cleve Moler, and Robert Schreiber, “Sparse Matrices in MATLAB:
Design and Implementation,” SIAM J. Matrix Anal. Appl., Vol. 13, No. 1.
January 1992: pp. 333-356.

Factorization

This section discusses four important factorization techniques for sparse
matrices:

e LU, or triangular, factorization

¢ Cholesky factorization

¢ QR, or orthogonal factorization

e Incomplete factorizations

9-27

9 Sparse Matrices

LU Factorization

If S is a sparse matrix, the statement below returns three sparse matrices L, U,
and P such that P*S = L*U.

[L,U,P] = 1u(S)

lu obtains the factors by Gaussian elimination with partial pivoting. The
permutation matrix P has only n nonzero elements. As with dense matrices, the
statement [L,U] = lu(S) returns a permuted unit lower triangular matrix and
an upper triangular matrix whose product is S. By itself, 1u(S) returns L and
U in a single matrix without the pivot information.

The sparse LU factorization does not pivot for sparsity, but it does pivot for
numerical stability. In fact, both the sparse factorization (line 1) and the full
factorization (line 2) below produce the same L and U, even though the time and
storage requirements might differ greatly:

[L,U] = 1u(S) % sparse factorization

[L,U] = sparse(lu(full(S))) % full factorization

MATLAB automatically allocates the memory necessary to hold the sparse L
and U factors during the factorization. MATLAB does not use any symbolic LU
prefactorization to determine the memory requirements and set up the data
structures in advance.

Reordering and factorization. If you obtain a good column permutation p that
reduces fill-in, perhaps from symrcm or colmmd, then computing 1u(S(:,p))
will take less time and storage than computing 1u(S). Two permutations are
the symmetric reverse Cuthill-McKee ordering and the symmetric minimum
degree ordering.

r

symrcm (B) ;
symmmd (B) ;

The three spy plots produced by the lines below show the three adjacency
matrices of the Bucky Ball graph with these three different numberings. The
local, pentagon-based structure of the original numbering is not evident in the
other three.

spy (B)
spy(B(r,r))
spy (B(m,m))

9-28

Sparse Matrix Operations

20f

40

50

60

Original Reverse Cuthill-McKee Minimum Degree

. : o,
20 RO ., 20
. B .

... .0
40 s, . 40
2. .

. . o,
50 ., o 5 50
S | .

e o %
60 oo 60

10

20

o % . o
30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
nz =180 nz =180 nz =180

The reverse Cuthill-McGee ordering, r, reduces the bandwidth and

concentrates all the nonzero elements near the diagonal. The minimum degree
ordering, m, produces a fractal-like structure with large blocks of zeros.

To see the fill-in generated in the LU factorization of the Bucky ball, use
speye (n,n), the sparse identity matrix, to insert -3s on the diagonal of B.

B = B - 3*speye(n,n)

Since each row sum is now zero, this new B is actually singular, but it is still
instructive to compute its LU factorization. When called with only one output
argument, lu returns the two triangular factors, L and U, in a single sparse
matrix. The number of nonzeros in that matrix is a measure of the time and
storage required to solve linear systems involving B. Here are the nonzero
counts for the three permutations being considered.

Original 1u(B) 1022
Reverse Cuthill-McKee lu(B(r,r)) 968
Minimum degree lu(B(m,m)) 660

Even though this is a small example, the results are typical. The original
numbering scheme leads to the most fill-in. The fill-in for the reverse
Cuthill-McKee ordering is concentrated within the band, but it is almost as
extensive as the first two orderings. For the minimum degree ordering, the
relatively large blocks of zeros are preserved during the elimination and the

9-29

9 Sparse Matrices

9-30

Original

amount of fill-in is significantly less than that generated by the other
orderings. The spy plots below reflect the characteristics of each reordering.

Reverse Cuthill-McKee Minimum Degree

20

30

40

Ty
60k o oe®ef

H]
30 40 50 60 0 10 20 30 40 50 60

nz = 1022 nz = 968 nz = 660

Cholesky Factorization

If S is a symmetric (or Hermitian), positive definite, sparse matrix, the
statement below returns a sparse, upper triangular matrix R so that R’ *R = S.

R = chol (S)

chol does not automatically pivot for sparsity, but you can compute minimum
degree and profile limiting permutations for use with chol (S(p,p)).

Since the Cholesky algorithm does not use pivoting for sparsity and does not
require pivoting for numerical stability, it is possible to do a quick calculation
of the amount of memory required and allocate all the memory at the start of
the factorization.

QR Factorization
MATLAB will compute the complete QR factorization of a sparse matrix S with

[Q.R] = qr(S)

but this is usually impractical. The orthogonal matrix Q often fails to have a
high proportion of zero elements. A more practical alternative, sometimes
known as “the Q-less QR factorization,” is available.

Sparse Matrix Operations

With one sparse input argument and one output argument

R = qr(S)

returns just the upper triangular portion of the QR factorization. The matrix R
provides a Cholesky factorization for the matrix associated with the normal
equations,

R’*R = S’ *S
However, the loss of numerical information inherent in the computation of

S’ *S is avoided.

With two input arguments having the same number of rows, and two output
arguments, the statement

[C,R] = qr(S,B)

applies the orthogonal transformations to B, producing C = Q' *B without
computing Q.

The Q-less QR factorization allows the solution of sparse least squares
problems

minimize|Ax —b|
with two steps

[c.R] = qr(A,b)
x = R\c

If A is sparse, but not square, MATLAB uses these steps for the linear equation
solving backslash operator

x = A\b
Or, you can do the factorization yourself and examine R for rank deficiency.

It is also possible to solve a sequence of least squares linear systems with
different right-hand sides, b, that are not necessarily known when R = qr(A)
is computed. The approach solves the “semi-normal equations”

R'*R*x = A'*b
with
x = RV(R'\ (A’ *b))

9-31

9 Sparse Matrices

and then employs one step of iterative refinement to reduce roundoff error

r = b — A*x
e = R\(R'"\(A"*r))
X=X+ e

Incomplete Factorizations

The luinc and chol inc functions provide approximate, incomplete
factorizations, which are useful as preconditioners for sparse iterative
methods.

The luinc function produces two different kinds of incomplete LU
factorizations, one involving a drop tolerance and one involving fill-in level. If
A is a sparse matrix, and tol is a small tolerance, then

[L,U] = luinc(A, tol)

computes an approximate LU factorization where all elements less than tol
times the norm of the relevant column are set to zero. Alternatively,

[L,U] = luinc(A,'0")

computes an approximate LU factorization where the sparsity pattern of L+U is
a permutation of the sparsity pattern of A.

For example,

load west0479

A = west0479;
nnz(A)

nnz (lu(A))
nnz(luinc (A, le-6))
nnz(luinc(A, '0'"))

shows that A has 1887 nonzeros, its complete LU factorization has 16777
nonzeros, its incomplete LU factorization with a drop tolerance of 1e—6 has
10311 nonzeros, and its 1u(’0’) factorization has 1886 nonzeros.

The luinc function has a few other options. See the online help for details.

The cholinc function provides drop tolerance and level 0 fill-in Cholesky
factorizations of symmetric, positive definite sparse matrices. See the online
help for more information.

9-32

Sparse Matrix Operations

Simultaneous Linear Equations

Systems of simultaneous linear equations can be solved by two different classes
of methods:

¢ Direct methods. These are usually variants of Gaussian elimination and are
often expressed as matrix factorizations such as LU or Cholesky
factorization. The algorithms involve access to the individual matrix
elements.

e Tterative methods. Only an approximate solution is produced after a finite
number of steps. The coefficient matrix is involved only indirectly, through a
matrix-vector product or as the result of an abstract linear operator.

Direct Methods

Direct methods are usually faster and more generally applicable, if there is
enough storage available to carry them out. Iterative methods are usually
applicable to restricted cases of equations and depend upon properties like
diagonal dominance or the existence of an underlying differential operator.
Direct methods are implemented in the core of MATLAB and are made as
efficient as possible for general classes of matrices. Iterative methods are
usually implemented in MATLAB M-files and may make use of the direct
solution of subproblems or preconditioners.

The usual way to access direct methods in MATLAB is not through the 1u or
chol functions, but rather with the matrix division operators / and \. If A is
square, the result of X = A\B is the solution to the linear system A*X = B. IfA
is not square, then a least squares solution is computed.

If A is a square, full, or sparse matrix, then A\B has the same storage class as
B. Its computation involves a choice among several algorithms:

e If A is triangular, perform a triangular solve for each column of B.

e If Ais a permutation of a triangular matrix, permute it and perform a sparse
triangular solve for each column of B.

e If A is symmetric or Hermitian and has positive real diagonal elements, find
a symmetric minimum degree order p and attempt to compute the Cholesky
factorization of A (p, p) . If successful, finish with two sparse triangular solves
for each column of B.

¢ Otherwise (if A is not triangular, or is not Hermitian with positive diagonal,
or if Cholesky factorization fails), find a column minimum degree order p.

9-33

9 Sparse Matrices

Compute the LU factorization with partial pivoting of A(: ,p), and perform
two triangular solves for each column of B.

For a square matrix, MATLAB tries these possibilities in order of increasing
cost. The tests for triangularity and symmetry are relatively fast and, if
successful, allow for faster computation and more efficient memory usage than
the general purpose method.

For example, consider the sequence below.

[L,U] = lu(A);
y = L\b;
x = U\y;

In this case, MATLAB uses triangular solves for both matrix divisions, since L
is a permutation of a triangular matrix and U is triangular.

Use the function spparms to turn off the minimum degree preordering if a
better preorder is known for a particular matrix.

Iterative Methods

Six functions are available that implement iterative methods for sparse
systems of simultaneous linear systems.

Function Description

bicg Biconjugate gradient.

bicgstab Biconjugate gradient stabilized.
cgs Conjugate gradient squared.
gmres Generalized minimum residual.
pcg Preconditioned conjugate gradient.
qmr Quasiminimal residual.

All six methods are designed to solve Ax = b. The preconditioned conjugate
gradient method, pcg, is restricted to symmetric, positive definite matrix A.
The other five can handle nonsymmetric, square matrices.

9-34

Sparse Matrix Operations

All six methods can make use of left and right preconditioners. The linear
system

Ax = b

is replaced by the equivalent system
M AM,'Mox = M7'b

The preconditioners M and My are chosen to accelerate convergence of the
iterative method. In many cases, the preconditioners occur naturally in the
mathematical model. A partial differential equation with variable coefficients
may be approximated by one with constant coefficients, for example.
Incomplete matrix factorizations may be used in the absence of natural
preconditioners.

The five-point finite difference approximation to Laplace’s equation on a
square, two-dimensional domain provides an example. The following
statements use the preconditioned conjugate gradient method with an
incomplete Cholesky factorization as a preconditioner.

A = delsq(numgrid(’S’,50)) ;

b = ones(size(A,1),1);

tol = 1.e-3;

maxit = 10;

R = cholinc(A,tol);

[x,flag,err,iter,res] = pcg(A,b,tol,maxit,R',R);

Only four iterations are required to achieve the prescribed accuracy.

Background information on these iterative methods and incomplete
factorizations is available in:

Saad, Yousef. Iterative Methods for Sparse Linear Equations. PWS Publishing
Company: 1996.

Barrett, Richard et al. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. Society for Industrial and Applied Mathematics:
1994.

9-35

9 Sparse Matrices

9-36

Eigenvalues and Singular Values

Two functions are available which compute a few specified eigenvalues or
singular values.

Function Description
eigs Few eigenvalues.
svds Few singular values.

These functions are most frequently used with sparse matrices, but they can be
used with full matrices or even with linear operators defined by M-files.

The statement
[V,1lambda] = eigs(A,k,sigma)

finds the k eigenvalues and corresponding eigenvectors of the matrix A which
are nearest the “shift” signma. If sigma is omitted, the eigenvalues largest in
magnitude are found. If signa is zero, the eigenvalues smallest in magnitude
are found. A second matrix, B, may be included for the generalized eigenvalue
problem

Av = ABv

The statement
[U,S,V] = svds(A,k)

finds the k largest singular values of A and
[U,S,V] = svds(A,k,0)

finds the k smallest singular values.

For example, the statements

L = numgrid('L’,65);
A = delsq(L);

Sparse Matrix Operations

set up the five-point Laplacian difference operator on a 65-by-65 grid in an
L-shaped, two-dimensional domain. The statements

size(A)
nnz (A)

show that A is a matrix of order 2945 with 14,473 nonzero elements.
The statement

[v,d] = eigs(A,1,0);
computes the smallest eigenvalue and eigenvector. Finally,

L(L>0) = full(v(L(L>0)));
x = -1:1/32:1;

contour (x,x,L,15)

axis square

distributes the components of the eigenvector over the appropriate grid points
and produces a contour plot of the result.

1

0.8r

0.6

0.4r

0.2r

_1 i 1 I
-1 -0.5 0 0.5 1

The numerical techniques used in eigs and svds are described in a paper by D.
C. Sorensen, Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale

9-37

9 Sparse Matrices

Eigenvalue Calculations. A copy of the paper is available through the MATLAB
Help Desk.

9-38

