Selected solutions to 1. Homework

Problem 1.4: This is a problem of interpolation of 8 data points by a linear combination of 8 prescribed basis functions. The set-up is just as in Example 1.1 in the book, except that instead of the monomials $1, x, x^{2}, \ldots$ we now have arbitrary functions $f_{1}, f_{2}, \ldots, f_{8}$.

Consider the mapping from coefficients $c_{1}, \ldots, c-8$ to data d_{1}, \ldots, d_{8}. This mapping is linear, and thus can be represented by an 8×8 matrix. Let's call it B, with entries

$$
B_{i, j}=f_{j}(i)
$$

a kind of generalized Vandermonde matrix. By assumption, the mapping is onto: for every data $\left\{d_{i}\right\}$ there is a set of coefficients $\left\{c_{i}\right\}$. In other words B has full rank.

By Theorem 1.2, since B has full rank, the mapping it defines is one-toone. This completes part (a).
by Theorem 1.3, since B has full rank, it is nonsingular. In fact, the inverse is just $B^{-1}=A$ as defined in the statement of the problem. Thus $A^{-1}=B$, and so the i, j-th entry of A^{-1} is $F_{j}(i)$. This completes part (b).
2.3: (a) Take $A x=\lambda x$ with $\|x\|=1$ and consider the scalar $x^{*} A x$. Since $A x=\lambda x$, it is equal to λ. On the other hand since $x^{*} A=x^{*} A^{*}=(A x)^{*}=$ $(\lambda x)^{*}=\bar{\lambda} x^{*}$, it must also be equal to $\bar{\lambda}$. This implies $\lambda=\bar{\lambda}$, that is, λ is real.
(b) Suppose $A x=\lambda x$ and $A y=\nu y$ with $\lambda \neq \nu$ and $x, y \neq 0$, and consider the scalar $y^{*} A x$. Since $A x=\lambda x$, it is equal to $\lambda y^{*} x$. On the other hand since $y^{*} A=y^{*} A^{*}=(A y)^{*}=(\nu y)^{*}=\nu y^{*}$ (using our knowledge that ν is real), it must also be equal to $\nu y^{*} x$. Thus $(\lambda-\nu) y^{*} x=0$, and since $\lambda \neq \nu$ this implies $y^{*} x=0$.

Problem 2.5: (a) If S is skew-hermitian, then i is hermitian, so by Problem 2, i has real eigenvalues, therefore $i S$ has imaginary eigenvalues. (Or prove it directly as in Problem 2).
(b) If S has imaginary eigenvalues, then $I-S$ has eigenvalues on the line $\operatorname{Re} z=1$ in the complex plane. In particular, none of the eigenvalues of $I-S$ are zero, so by Theorem $1.3 I-S$ is non-singular.
(c) Let $Q=(I-S)^{-1}(I-S)$. We check if

$$
(I-S)^{-1}(I-S)\left((I-S)^{-1}(I-S)\right)^{*}=I
$$

Multiplying on the left by $(I-S)$ and on the right by $(I-S)^{*}$ converts this to

$$
(I+S)(I+S)^{*}=(I-S)(I-S)^{*}
$$

that is

$$
I+S+S^{*}+S S^{*}=I-S-S^{*}+S S^{*}
$$

Since $S=-S^{*}$, this equality certainly holds, and we are done.
Problem 3.2 Pick a vector $x \neq 0$ and a scalar λ such that $|\lambda|=\rho(A)$ and $A x=\lambda x$. Then $\|A x\|=|\lambda|\|x\|$, or in other word, $\|A x\| /\|x\|=\rho(A)$. Since $\|A\|$ is the supremum of all quotients $\|A x\| /\|x\|$, this implies $\|A\| \geq \rho(A)$.
Problem 3.3: Proof of 3.3(d), (3.3(c) is similar):
Let $A \in \mathbb{C}^{n \times n}$. We prove that

$$
\text { (1) } \quad\|A\|_{2} \leq \sqrt{n}\|A\|_{\infty}
$$

We first show that
(2) $\quad\|A\|_{2} \leq\|A\|_{F}$
and

$$
\text { (3) } \quad\|A\|_{F} \leq \sqrt{n}\|A\|_{\infty}
$$

Proof of (2):

$$
\|A\|_{2}^{2}=\rho\left(A^{*} A\right) \leq \sum_{k=1}^{n} \lambda_{i}\left(A^{*} A\right)=\operatorname{trace}\left(A^{*} A\right)=\|A\|_{F}^{2}
$$

where $\rho\left(A^{*} A\right)$ denotes the spectral radius of $A^{*} A$ and $\lambda_{i}\left(A^{*} A\right)$ are the eigenvalues of A.
Proof of (3)

$$
\|A\|_{F}^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i, j}\right|^{2} \leq \sum_{i=1}^{n}\left(\sum_{j=1}^{n}\left|a_{i, j}\right|^{2}\right) \leq n\left(\max _{i} \sum_{j=1}^{n}\left|a_{i, j}\right|^{2}\right)=n\|A\|_{\infty}^{2}
$$

Combining (2) and (3) proves (1)
Problem 4.4: No. Here is a counterexample: Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

then A and B have the same singular values, but are not unitarily equivalent, since $Q A Q^{*}=I \neq B$ for any unitary matrix Q.

