Selected solutions to 1. Homework

Problem 1.4: This is a problem of interpolation of 8 data points by a linear combination of 8 prescribed basis functions. The set-up is just as in Example 1.1 in the book, except that instead of the monomials $1, x, x^2, \ldots$ we now have arbitrary functions f_1, f_2, \ldots, f_8 .

Consider the mapping from coefficients $c_1, \ldots, c-8$ to data d_1, \ldots, d_8 . This mapping is linear, and thus can be represented by an 8×8 matrix. Let's call it B, with entries

$$B_{i,j} = f_j(i),$$

a kind of generalized Vandermonde matrix. By assumption, the mapping is *onto*: for every data $\{d_i\}$ there is a set of coefficients $\{c_i\}$. In other words B has full rank.

By Theorem 1.2, since B has full rank, the mapping it defines is one-toone. This completes part (a).

by Theorem 1.3, since B has full rank, it is nonsingular. In fact, the inverse is just $B^{-1} = A$ as defined in the statement of the problem. Thus $A^{-1} = B$, and so the *i*, *j*-th entry of A^{-1} is $F_j(i)$. This completes part (b).

2.3: (a) Take $Ax = \lambda x$ with ||x|| = 1 and consider the scalar x^*Ax . Since $Ax = \lambda x$, it is equal to λ . On the other hand since $x^*A = x^*A^* = (Ax)^* = (\lambda x)^* = \overline{\lambda}x^*$, it must also be equal to $\overline{\lambda}$. This implies $\lambda = \overline{\lambda}$, that is, λ is real.

(b) Suppose $Ax = \lambda x$ and $Ay = \nu y$ with $\lambda \neq \nu$ and $x, y \neq 0$, and consider the scalar y^*Ax . Since $Ax = \lambda x$, it is equal to λy^*x . On the other hand since $y^*A = y^*A^* = (Ay)^* = (\nu y)^* = \nu y^*$ (using our knowledge that ν is real), it must also be equal to νy^*x . Thus $(\lambda - \nu)y^*x = 0$, and since $\lambda \neq \nu$ this implies $y^*x = 0$.

Problem 2.5: (a) If S is skew-hermitian, then i is hermitian, so by Problem 2, i has real eigenvalues, therefore iS has imaginary eigenvalues. (Or prove it directly as in Problem 2).

(b) If S has imaginary eigenvalues, then I-S has eigenvalues on the line Re z = 1 in the complex plane. In particular, none of the eigenvalues of I-S are zero, so by Theorem 1.3 I-S is non-singular.

(c) Let $Q = (I - S)^{-1}(I - S)$. We check if

$$(I-S)^{-1}(I-S)((I-S)^{-1}(I-S))^* = I.$$

Multiplying on the left by (I - S) and on the right by $(I - S)^*$ converts this to

$$(I+S)(I+S)^* = (I-S)(I-S)^*,$$

that is

$$I + S + S^* + SS^* = I - S - S^* + SS^*.$$

Since $S = -S^*$, this equality certainly holds, and we are done.

Problem 3.2 Pick a vector $x \neq 0$ and a scalar λ such that $|\lambda| = \rho(A)$ and $Ax = \lambda x$. Then $||Ax|| = |\lambda|||x||$, or in other word, $||Ax||/||x|| = \rho(A)$. Since ||A|| is the supremum of all quotients ||Ax||/||x||, this implies $||A|| \ge \rho(A)$.

Problem 3.3: Proof of 3.3(d), (3.3(c) is similar):

Let $A \in \mathbb{C}^{n \times n}$. We prove that

(1)
$$||A||_2 \le \sqrt{n} ||A||_{\infty}$$

We first show that

(2)
$$||A||_2 \le ||A||_F$$

and

$$(3) \qquad \|A\|_F \le \sqrt{n} \|A\|_{\infty}$$

Proof of (2):

$$||A||_2^2 = \rho(A^*A) \le \sum_{k=1}^n \lambda_i(A^*A) = \operatorname{trace}(A^*A) = ||A||_F^2,$$

where $\rho(A^*A)$ denotes the spectral radius of A^*A and $\lambda_i(A^*A)$ are the eigenvalues of A. Proof of (3)

$$||A||_F^2 = \sum_{i=1}^n \sum_{j=1}^n |a_{i,j}|^2 \le \sum_{i=1}^n \left(\sum_{j=1}^n |a_{i,j}|^2\right) \le n\left(\max_i \sum_{j=1}^n |a_{i,j}|^2\right) = n||A||_\infty^2.$$

Combining (2) and (3) proves (1)

Problem 4.4: No. Here is a counterexample: Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$

then A and B have the same singular values, but are not unitarily equivalent, since $QAQ^* = I \neq B$ for any unitary matrix Q.