
Selected solutions to 1. Homework

Problem 1.4: This is a problem of interpolation of 8 data points by a
linear combination of 8 prescribed basis functions. The set-up is just as in
Example 1.1 in the book, except that instead of the monomials 1, x, x2, . . .
we now have arbitrary functions f1, f2, . . . , f8.

Consider the mapping from coefficients c1, . . . , c − 8 to data d1, . . . , d8.
This mapping is linear, and thus can be represented by an 8 × 8 matrix.
Let’s call it B, with entries

Bi,j = fj(i),

a kind of generalized Vandermonde matrix. By assumption, the mapping is
onto: for every data {di} there is a set of coefficients {ci}. In other words B
has full rank.

By Theorem 1.2, since B has full rank, the mapping it defines is one-to-
one. This completes part (a).

by Theorem 1.3, since B has full rank, it is nonsingular. In fact, the
inverse is just B−1 = A as defined in the statement of the problem. Thus
A−1 = B, and so the i, j-th entry of A−1 is Fj(i). This completes part (b).

2.3: (a) Take Ax = λx with ‖x‖ = 1 and consider the scalar x∗Ax. Since
Ax = λx, it is equal to λ. On the other hand since x∗A = x∗A∗ = (Ax)∗ =
(λx)∗ = λx∗, it must also be equal to λ. This implies λ = λ, that is, λ is
real.

(b) Suppose Ax = λx and Ay = νy with λ 6= ν and x, y 6= 0, and consider
the scalar y∗Ax. Since Ax = λx, it is equal to λy∗x. On the other hand since
y∗A = y∗A∗ = (Ay)∗ = (νy)∗ = νy∗ (using our knowledge that ν is real),
it must also be equal to νy∗x. Thus (λ − ν)y∗x = 0, and since λ 6= ν this
implies y∗x = 0.

Problem 2.5: (a) If S is skew-hermitian, then i is hermitian, so by Prob-
lem 2, i has real eigenvalues, therefore iS has imaginary eigenvalues. (Or
prove it directly as in Problem 2).

(b) If S has imaginary eigenvalues, then I−S has eigenvalues on the line
Re z = 1 in the complex plane. In particular, none of the eigenvalues of I−S
are zero, so by Theorem 1.3 I − S is non-singular.

(c) Let Q = (I − S)−1(I − S). We check if

(I − S)−1(I − S)((I − S)−1(I − S))∗ = I.
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Multiplying on the left by (I − S) and on the right by (I − S)∗ converts this
to

(I + S)(I + S)∗ = (I − S)(I − S)∗,

that is
I + S + S∗ + SS∗ = I − S − S∗ + SS∗.

Since S = −S∗, this equality certainly holds, and we are done.

Problem 3.2 Pick a vector x 6= 0 and a scalar λ such that |λ| = ρ(A) and
Ax = λx. Then ‖Ax‖ = |λ|‖x‖, or in other word, ‖Ax‖/‖x‖ = ρ(A). Since
‖A‖ is the supremum of all quotients ‖Ax‖/‖x‖, this implies ‖A‖ ≥ ρ(A).

Problem 3.3: Proof of 3.3(d), (3.3(c) is similar):
Let A ∈ Cn×n. We prove that

(1) ‖A‖2 ≤
√

n‖A‖∞

We first show that
(2) ‖A‖2 ≤ ‖A‖F

and
(3) ‖A‖F ≤

√
n‖A‖∞

Proof of (2):

‖A‖2
2 = ρ(A∗A) ≤

n∑
k=1

λi(A
∗A) = trace(A∗A) = ‖A‖2

F ,

where ρ(A∗A) denotes the spectral radius of A∗A and λi(A
∗A) are the eigen-

values of A.
Proof of (3)

‖A‖2
F =

n∑
i=1

n∑
j=1

|ai,j|2 ≤
n∑

i=1

( n∑
j=1

|ai,j|2
)
≤ n

(
max

i

n∑
j=1

|ai,j|2
)

= n‖A‖2
∞.

Combining (2) and (3) proves (1)

Problem 4.4: No. Here is a counterexample: Let

A =

[
1 0
0 1

]
, B =

[
1 0
0 −1

]
,

then A and B have the same singular values, but are not unitarily equivalent,
since QAQ∗ = I 6= B for any unitary matrix Q.
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