Selected solutions to 2. Homework

Problem 2: We compute

$$||A - Q||_F^2 = ||A||_F^2 - 2 \operatorname{Re} \operatorname{tr}(AQ^*) + ||Q||_F^2$$

Since $||Q||_F^2 = n$ and $||A||_F^2$ is fixed, we must find a matrix Q that maximizes Re tr(AQ^*). Let $A = U\Sigma V^*$ denote the singular value decomposition of Awith singular values $\sigma_k, k = 1, \ldots, n$. Then there holds

$$\operatorname{Re}(\operatorname{tr} AQ^*) = \operatorname{Re}(\operatorname{tr} U\Sigma V^*Q^*) = \operatorname{Re}(\operatorname{tr} \Sigma V^*Q^*U) = \sum_{i=1}^m \sigma_i t_{ii},$$

where $T = [t_{ij}] = V^*Q^*U$ is unitary matrix. The sum is maximized when $t_{ii} = 1$ for all *i*, that is when $Q = UV^*$.

Problem 6:

$$(I - 2P)^*(I - 2P) = (I - 2P)^2 - I - 4P + 4P^2 = I.$$

I-2P is a reflection, a kind of generalization of the Householder reflection.

Problem 7: Let $A = \hat{U}\hat{\Sigma}V^*$ be the reduced SVD of A. Then $A^*A = V\hat{\Sigma}V^*$. Hence the square roots of eigenvalues of A^*A are singular values of A. The rest follows from the usual properties of rank and eigenvalues.