Selected solutions to 2. Homework

Problem 2: We compute

$$
\|A-Q\|_{F}^{2}=\|A\|_{F}^{2}-2 \operatorname{Re} \operatorname{tr}\left(A Q^{*}\right)+\|Q\|_{F}^{2} .
$$

Since $\|Q\|_{F}^{2}=n$ and $\|A\|_{F}^{2}$ is fixed, we must find a matrix Q that maximizes $\operatorname{Re} \operatorname{tr}\left(A Q^{*}\right)$. Let $A=U \Sigma V^{*}$ denote the singular value decomposition of A with singular values $\sigma_{k}, k=1, \ldots, n$. Then there holds

$$
\operatorname{Re}\left(\operatorname{tr} A Q^{*}\right)=\operatorname{Re}\left(\operatorname{tr} U \Sigma V^{*} Q^{*}\right)=\operatorname{Re}\left(\operatorname{tr} \Sigma V^{*} Q^{*} U\right)=\sum_{i=1}^{m} \sigma_{i} t_{i i},
$$

where $T=\left[t_{i j}\right]=V^{*} Q^{*} U$ is unitary matrix. The sum is maximized when $t_{i i}=1$ for all i, that is when $Q=U V^{*}$.

Problem 6:

$$
(I-2 P)^{*}(I-2 P)=(I-2 P)^{2}-I-4 P+4 P^{2}=I
$$

$I-2 P$ is a reflection, a kind of generalization of the Householder reflection.
Problem 7: Let $A=\hat{U} \hat{\Sigma} V^{*}$ be the reduced SVD of A. Then $A^{*} A=V \hat{\Sigma} V^{*}$. Hence the square roots of eigenvalues of $A^{*} A$ are singular values of A. The rest follows from the usual properties of rank and eigenvalues.

