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High-Resolution Radar via Compressed Sensing
Matthew A. Herman and Thomas Strohmer

Abstract—A stylized compressed sensing radar is proposed in
which the time-frequency plane is discretized into an N×N grid.
Assuming the number of targets K is small (i.e., K ¿ N2), then
we can transmit a sufficiently “incoherent” pulse and employ
the techniques of compressed sensing to reconstruct the target
scene. A theoretical upper bound on the sparsity K is presented.
Numerical simulations verify that even better performance can
be achieved in practice. This novel compressed sensing approach
offers great potential for better resolution over classical radar.

Index Terms—Compressed sensing, radar, sparse recovery,
matrix identification, Gabor analysis, Alltop sequence.

I. INTRODUCTION

RADAR, sonar and similar imaging systems are in high
demand in many civilian, military, and biomedical appli-

cations. The resolution of these systems is limited by classical
time-frequency uncertainty principles. Using the concepts of
compressed sensing, we propose a radically new approach to
radar, which under certain conditions provides better time-
frequency resolution. In this simplified version of a monostatic,
single-pulse, far-field radar system we assume that the targets
are radially aligned with the transmitter and receiver. As such,
we will only be concerned with the range and velocity of the
targets. Future studies will include cross-range information.

There are three key points to be aware of with this approach:
(1) The transmitted signal must be sufficiently “incoherent.”
Although our results rely on the use of a deterministic signal
(the Alltop sequence), transmitting white noise would yield a
similar outcome. (2) This approach does not use a matched
filter. (3) The target scene is recovered by exploiting the
imposed sparsity constraints.

This report is a first step in formalizing the theory of
compressed sensing radar and contains many assumptions.
In particular, analog to digital (A/D) conversion and related
implementation details are ignored. Some of these issues
are discussed in [1] where the potential to design simplified
hardware is highlighted.

The rest of this section establishes notation and tools from
time-frequency analysis, while Section II reviews the concepts
of sparse representations and compressed sensing. Our main
contribution can be found in Sections III and IV. Other
applications are addressed in Section V.
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A. Notation and Tools from Time-Frequency Analysis

In this paper boldface variables represent vectors and ma-
trices, while non-boldface variables represent functions with
a continuous domain. Throughout this discussion we only
consider functions with finite energy, i.e., f ∈ L2(R). For
two functions f, g ∈ L2(R), their cross-ambiguity function of
τ, ω ∈ R is defined as [2]

Afg(τ, ω) =
∫

R
f(t + τ/2)g(t− τ/2)e−2πiωtdt, (1)

where · denotes complex conjugation, and the upright Roman
letter i =

√−1. The short-time Fourier transform (STFT) of f
with respect to g is Vgf(τ, ω) =

∫
R f(t) g(t− τ) e−2πiωtdt.

A simple change of variable reveals that, within a complex
factor, the cross-ambiguity function is equivalent to the STFT

Afg(τ, ω) = eπiωτ Vgf(τ, ω). (2)

When f = g we have the (self) ambiguity function Af (τ, ω).
The shape of the ambiguity surface |Af (τ, ω)| of f is bounded
above the time-frequency plane (τ, ω) by |Af (τ, ω)| ≤
Af (0, 0) = ‖f‖22.

The radar uncertainty principle [3] states that if
∫∫

U

|Afg(τ, ω)|2dτdω ≥ (1− ε) ‖f‖22‖g‖22 (3)

for some support U ⊆ R2 and ε ≥ 0, then the area

|U | ≥ (1− ε). (4)

Informally, this can be interpreted as saying that the size of an
ambiguity function’s “footprint” on the time-frequency plane
can only be made so small.

In classical radar, the ambiguity function of f is the main
factor in determining the resolution between targets [4]. There-
fore, the ability to identify two targets in the time-frequency
plane is limited by the essential support ofAf (τ, ω) as dictated
by the radar uncertainty principle. The primary result of this
paper is that, under certain conditions, compressed sensing
radar achieves better target resolution than classical radar.

II. COMPRESSED SENSING

Recently, the signal processing/mathematics community has
seen a paradigmatic shift in the way information is repre-
sented, stored, transmitted and recovered [5]–[7]. This area is
often referred to as Sparse Representations and Compressed
Sensing. Consider a discrete signal s of length M . We say
that it is K-sparse if at most K ¿ M of its coefficients are
nonzero (perhaps under some appropriate change of basis).
With this point of view the true information content of s lives
in at most K dimensions rather than M . In terms of signal
acquisition it makes sense then that we should only have to



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING 2

measure a signal N ∼ K times instead of M . We do this
by making N non-adaptive, linear observations in the form
of y = Φs where Φ is a dictionary of size N × M . If Φ
is sufficiently “incoherent,” then the information of s will be
embedded in y such that it can be perfectly recovered with
high probability. Current reconstruction methods include using
greedy algorithms such as orthogonal matching pursuit (OMP)
[7], and solving the convex problem:

min ‖s′‖1 s.t. Φs′ = y. (5)

The latter program is often referred to as Basis Pur-
suit1 (BP) [5], [6]. A new algorithm, regularized orthogonal
matching pursuit (ROMP) [8] has recently been proposed
which combines the advantages of OMP with those of BP.

III. MATRIX IDENTIFICATION VIA COMPRESSED SENSING

A. Problem Formulation

Consider an unknown matrix H ∈ CN×N ′
and an or-

thonormal basis (ONB) (Hi)NN ′−1
i=0 for CN×N ′

. Note that
there are necessarily NN ′ elements in this basis, and their
ortho-normality is with respect to the inner product derived
from the Frobenius norm (i.e., 〈A, B〉F = trace(A∗B) for
any A, B ∈ CN×N ′

). Then there exist coefficients (si)NN ′−1
i=0

such that

H =
NN ′−1∑

i=0

siHi. (6)

Our goal is to identify/discover the coefficients (si)NN ′−1
i=0 .

Since the basis elements are fixed, identifying these coeffi-
cients is tantamount to discovering H . We will do this by
designing a test function f = (f0, . . . , fN ′−1)T ∈ CN ′

and
observing Hf ∈ CN . Here, ( · )T denotes the transpose of
a vector or a matrix. Figure 1 depicts this from a systems
point of view where H is an unknown “block box.” Systems
like this are ubiquitous in engineering and the sciences. For
instance, H may represent an unknown communication chan-
nel which needs to be identified for equalization purposes. In
general, any linear time-varying (LTV) system can be modeled
by the basis of time-frequency shifts (described in the next
section).

f −→ H −→ y = Hf
Black Box

Fig. 1. Unknown system H with input probe f and output observation y.

For simplicity, from now on assume that N ′ = N . The
observation vector can be reformulated as

y =
N2−1∑

i=0

siHif =
N2−1∑

i=0

siϕi = Φs, (7)

1When in the presence of additive noise e the measurements are of the
form y = Φs+e. If each element of the noise obeys |en| ≤ ε, then BP can
be reformulated as

min ‖s′‖1 s.t. |(Φs′ − y)n| ≤ ε, n = 0, . . . , N − 1.

where
ϕi = Hif ∈ CN (8)

is the ith atom, Φ = (ϕ0 | · · · |ϕN2−1) ∈ CN×N2
is the

concatenation of the atoms, and s = (s0, · · ·, sN2−1)T ∈ CN2

is the coefficient vector. The system of equations in (7) is
clearly highly underdetermined. If s is sufficiently sparse, then
there is hope of recovering s from y. To use the reconstruction
methods of compressed sensing we need to design f so that
the dictionary Φ is sufficiently incoherent.

B. The Coherence of a Dictionary

We are interested in how the atoms of a general dictionary
Φ = (ϕi)i ∈ CN×M (with N ≤ M ) are “spread out” in CN .
This can be quantified by examining the magnitude of the inner
product between its atoms. The coherence µ(Φ) is defined
as the maximum of all of the distinct pairwise comparisons
µ(Φ) = maxi 6=i′ |〈ϕi, ϕi′〉|. Assuming that each ‖ϕi‖2 = 1
the coherence is bounded [9], [10] by

√
M −N

N(M − 1)
≤ µ(Φ) ≤ 1. (9)

When µ(Φ) = 1 we have two atoms which are aligned. This
is the worst-case scenario: maximal coherence. In the other
extreme, when µ(Φ) =

√
(M −N)/N(M − 1) we have the

best-case scenario: maximal incoherence. Here the atoms can
be thought of as being “spread out” in CN . When a dictionary
can be expressed as the union of 2 or more ONBs, this lower
bound becomes 1/

√
N [11].

C. The Basis of Time-Frequency Shifts

It is well-known from pseudo-differential operator theory
[12] that any matrix can be represented by a basis of time-
frequency shifts. Let the N ×N matrices

T =




0 1
1 0

. . . . . .
0 1 0


 , M =




ω0
N 0

ω1
N

. . .
0 ωN−1

N




respectively denote the unit-shift and modulation operators
where ωN = e2πi/N is the N th root of unity. The ith time-
frequency basis element is defined as

Hi = M i mod N · T bi/Nc, (10)

where b·c is the floor function. A simple calculation shows
that the family (Hi)N2−1

i=0 forms an ONB with respect to the
Frobenius inner product. Further, under this basis it is known
that some practical systems H with meaningful applications
have a sparse representation s [13]–[15]. This fact comple-
ments the theorems developed in the subsequent sections.

A finite collection of length-N vectors which are time-
frequency shifts of a generating vector, and which spans
the space CN is called a (discrete) Gabor frame [12].
Since (Hi)N2−1

i=0 is an ONB, it follows that our dictionary Φ is
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a Gabor frame. Without loss of generality, assume ‖f‖2 = 1.
Because each Hi is a unitary matrix we have from (8) that
‖ϕi‖2 = 1 for i = 0, . . . , N2 − 1. We can also express Φ as
the concatenation of N blocks

Φ =
(
Φ(0) |Φ(1) | · · · |Φ(N−1)

)
, (11)

where the kth block Φ(k) = Dk · WN , with Dk =
diag{fk, . . . , fN−1, f0, . . . , fk−1}, and WN = (ωpq

N )N−1
p,q=0.

Here, Φ(k), Dk, and WN are all matrices of size N × N .
Essentially, the first column of Φ(k) consists of the vector f
shifted by k units in time (with no modulation). The remaining
N−1 columns of Φ(k) consist of the N −1 other possible
modulations of this first column. Since there are N different
modulates for each of the N time shifts, we have N2 combi-
nations of time-frequency shifts, and these form the atoms of
our dictionary.

D. The Probing Test Function f

We now introduce a candidate probe function f which
results in remarkable incoherence properties for the dictio-
nary Φ. Consider the Alltop sequence fA = (fn)N−1

n=0 for some
prime N ≥ 5, where [16]

fn =
1√
N

e2πin3/N . (12)

This function has been proposed for use in telecommunications
(CDMA, etc.), for constructing the mutually unbiased bases
(MUBs) used in quantum physics and quantum cryptogra-
phy [17], and was made popular in the frames community
in [18].

Let ΦA denote the Gabor frame generated by the Alltop
sequence (12). Since its atoms are already grouped into N×N
blocks in (11), we will maintain this structure by denoting the
jth atom of the kth block as ϕ

(k)
j . Note that ‖fA‖2 = 1, so we

have 0 ≤ |〈ϕ(k)
j , ϕ

(k′)
j′ 〉| ≤ 1 for any j, j′, k, k′ = 0, . . . , N−1.

Within the same block (i.e., k = k′) we have

Property 1: |〈ϕ(k)
j , ϕ

(k)
j′ 〉| =

{
0, if j 6= j′

1, if j = j′.

Thus, each Φ(k) is an ONB for CN . Moreover, for different
blocks (i.e., k 6= k′) we have

Property 2: |〈ϕ(k)
j , ϕ

(k′)
j′ 〉| =

1√
N

for all j, j′ = 0, . . . , N − 1. This means that there is a
mutual incoherence between the atoms of different blocks
(equivalently, the N blocks make up a set of MUBs). Trivially,
it follows that µ(ΦA) = 1/

√
N . Furthermore, with M = N2

in (9) we see that the lower bound of 1/
√

N + 1 is practically
attained. These amazing properties are due to the cubic phase
factor in the Alltop sequence (12), and the fact that N is prime.
More details and proofs can be found in [16].

Remark. Actually, in theory the Alltop sequence yields a
set of N +1 MUBs. This can be achieved by adjoining the N
canonical unit vectors to the N2 time-frequency shifted Alltop
sequences. This results in a total of N2+N vectors (grouped in
N +1 MUBs) that still maintain Properties 1 and 2. However,

this last MUB is simply the identity matrix. Since it possesses
no intrinsic time-frequency structure, we do not see how to
use this fact to our advantage in the context of radar.

Remark. By inspection of (9) we observe that the smallest
possible incoherence for M = N2 vectors is 1/

√
N + 1 which

is slightly smaller than the incoherence of the Gabor frame
resulting from the Alltop sequence. If a set of vectors obtains
this optimal bound, it is automatically an equiangular tight
frame, see [18]. It is conjectured that for any N there exists
an (equiangular tight) Gabor frame with N2 elements which
achieves the bound 1/

√
N + 1. However, explicit construc-

tions are known only for a very few cases, cf. [19]. Therefore,
and because the difference between 1/

√
N and 1/

√
N + 1

is negligible for large N , we will continue our investigation
using Alltop sequences.

E. Identifying Matrices via Compressed Sensing: Theory

Having established the incoherence properties of the dic-
tionary ΦA we can now move on to apply the concepts and
techniques of compressed sensing. It is worth pointing out
that most compressed sensing scenarios deal with a K-sparse
signal s (for some fixed K), and one is tasked with determining
how many observations are necessary to recover the signal.
Our situation is markedly different. Due to the fact that ΦA is
constrained to be N × N2, we know y = ΦAs will contain
exactly N observations. With N fixed, our compressed sensing
dilemma is to determine how sparse s should be such that it
can be recovered from y.

Therefore, with N measurements, we can only consider
recovering signals which are less than N -sparse. Indeed, we
hope to recover any K-sparse signal s with K ≤ C ·N/ log N
for some C > 0. The following theorems summarize the
recovery of N × N matrices via compressed sensing when
identified with the Alltop sequence. Their proofs appear in
Appendix A. Assume throughout that prime N ≥ 5.

Theorem 1. Suppose H =
∑

i siHi ∈ CN×N has a K-
sparse representation under the time-frequency ONB, with
K < 1

2 (
√

N + 1), and that we have observed y = HfA.
Then we are guaranteed to recover s either via BP or OMP.

The sparsity condition in Theorem 1 is rather strict. Instead
of the requirement of guaranteed perfect recovery, we can ask
to achieve it with only high probability. This more modest
expectation provides us with a sparsity condition which is
more generous.

Unless specified otherwise, a random signal in this paper
refers to a vector whose nonzero (complex) coefficients are
independent with a Gaussian distribution of zero mean and unit
variance.2 Further, these nonzero coefficients are uniformly
distributed along the length of the vector.

2For complex signals, each nonzero entry has real and imaginary parts
which are independent, Gaussian random variables with zero mean and a
variance of 1/2; thus the unit variance of each nonzero coefficient is the
result of the sum of the variances of its real and imaginary parts. From the
rotational invariance of the Gaussian distribution it can be shown that the
phase of each random coefficient is circularly symmetric, i.e., its phase is
uniformly distributed on the interval [0, 2π). See Appendix A of [20].
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Theorem 2. Suppose random s ∈ CN2
is a K-sparse vector

with K ≤ N/(16 log (N/ε)) for some sufficiently small ε.
Suppose further that H =

∑
i siHi ∈ CN×N and that

we have observed y = HfA. Then BP will recover s with
probability greater than 1 − 2ε2 −K−ϑ for some ϑ ≥ 1 s.t.√

ϑ log N/ log (N/ε) ≤ c where c is an absolute constant.

With Additive Noise. Theorems 1 and 2 can be extended
to include the case of noisy observed signals. This will of
course have an effect on the sparsity of the signal of interest.
For instance, the value of K in Theorem 1 is reduced from
1
2 (
√

N + 1) to 1
2 (
√

N + 1)/(1 + 2εN/T ) as seen in the
following theorem.

Theorem 3. Suppose H =
∑

i siHi ∈ CN×N has a K-
sparse representation under the time-frequency ONB, with
K < 1

2 (
√

N + 1)/(1 + 2εN/T ). Suppose further that we
have observed y = HfA + e, where each element of the
noise |en| ≤ ε. Then the solution sF to BP exhibits stability
‖s− sF‖1 ≤ T .

In a similar way, Theorem 2 can be rephrased to account
for observed signals which have been perturbed.

F. Identifying Matrices via Compressed Sensing: Simulation

Numerical simulations were performed and indicate that
the theories above are actually somewhat pessimistic. The
simulations were conducted as follows. The values of prime N
ranged from 5 to 127, and the sparsity K ranged from 1 to N .
For each ordered pair (N, K) a complex-valued, K-sparse
vector s of length N2 was randomly generated. With this ran-
dom signal the observation y = ΦAs was generated. Then, y
and ΦA were input to convex optimization software [21], [22]
to implement BP (5). Denote sF as the solution to the BP
program. The recovered vector was deemed successful if the
error ‖s − sF‖2 ≤ 10−4. This procedure was repeated 100
times for each (N,K)-pair; the total number of successes was
recorded and then averaged.

Figure 2 shows how the numerical simulations compare to
Theorems 1 and 2. The fraction of successful BP recoveries
as a function of (N, K) is shown as solid, gray-black contour
lines. Although the values of N used in the simulations
were relatively small, we see from these numerical results
what appears to be a trend. The dashed, red line represents
K = N/(2 log N), and the zone of “perfect reconstruction”
lies below this line. In this region a random N × N matrix
(i.e., H as defined in Theorem 2) with 1 ≤ K ≤ N/(2 log N)
can be perfectly recovered with high probability by observing
y = HfA. This is empirical evidence that the denominator
in the upper bound of K in Theorem 2 can be relaxed from
log (N/ε) to just log N , and that the proportionality constant
C = 1/2. However, it is still an open mathematical problem
to prove this for the Alltop sequence. Furthermore, the overly
strict constraint of Theorem 1 can be seen by the lower dash-
dotted, blue line representing K = 1

2 (
√

N + 1).
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Fig. 2. Numerical results from 100 independent Matlab simulations im-
plementing BP for different (N, K)-pairs. The solid, gray-black lines are
contours whose values represent the fraction of successful recoveries vs.
the N -K domain. The dashed, red line shows that Theorem 2 is overly
pessimistic. The region below this is the zone of “perfect reconstruction.”
The lower dash-dotted, blue line illustrates that Theorem 1 is too strict.

IV. RADAR

A. Classical Radar Primer

Consider the following simple (narrowband) 1-dimensional,
monostatic, single-pulse, far-field radar model. Monostatic
refers to the setup where the transmitter (Tx) and receiver
(Rx) are collocated. The far-field assumption permits us to
model the targets as point sources. Suppose a target located
at range x is traveling with constant velocity v and has
reflection coefficient sxv . Figure 3 shows such a radar with one
target. After transmitting signal f(t), the receiver observes the
reflected signal

r(t) = sxvf(t− τx)e2πiωvt, (13)

where τx = 2x/c is the round trip time of flight, c is the
speed of light, ωv ≈ −2ω0v/c is the Doppler shift, and ω0 is
the carrier frequency. The basic idea is that the range-velocity
information (x, v) of the target can be inferred from the
observed time delay-Doppler shift (τx, ωv) of f in (13). Hence,
a time-frequency shift operator basis is a natural representation
for radar systems [23].

|=
( f

-- ⊕
r

mm

Tx/Rx Target

Fig. 3. Simplified radar model. Tx transmits signal f , and Rx receives the
reflected (or echoed) signal r according to (13).

Using a matched filter at the receiver, the reflected signal r
is correlated with a time-frequency shifted version of the



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING 5

transmitted signal f via the cross-ambiguity function (1)

|Arf (τ, ω)| =
∣∣∣
∫

R
r(t)f(t− τ)e−2πiωtdt

∣∣∣
= |sxvVff(τ − τx, ω − ωv)|
= |sxvAf (τ − τx, ω − ωv)|. (14)

From this we see that the time-frequency plane consists of
the ambiguity surface of f centered at the target’s “loca-
tion” (τx, ωv) and scaled by its reflection coefficient |sxv|.
Extending (14) to include multiple targets is straightforward.
Figure 4 illustrates an example of the time-frequency plane
with five targets; two of these have overlapping uncertainty
regions. The uncertainty region is a rough indication of the
essential support of Af in (3). Targets which are too close
will have overlapping ambiguity functions. This may blur the
exact location of a target, or make uncertain how many targets
are located in a given region in the time-frequency plane. Thus,
the range-velocity resolution between targets of classical radar
is limited by the radar uncertainty principle.

0 N−1τ →

N−1

ω
↑ •

••

•
•

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

½¼

¾»

Fig. 4. The time-frequency plane discretized into an N×N grid. Shown are
five targets with their associated uncertainty regions. Classical radar detection
techniques may fail to resolve the two targets whose regions are intersecting.
In contrast, compressed sensing radar will be able to distinguish them as long
as the total number of targets is much less then N2.

B. Compressed Sensing Radar
We now propose our stylized compressed sensing radar

which under appropriate conditions can “beat” the classical
radar uncertainty principle! Consider K targets with un-
known range-velocities and corresponding reflection coeffi-
cients. Next, discretize the time-frequency plane into an N×N
grid as depicted in Figure 4. Recognizing that each point on
the grid represents a unique time-frequency shift Hi (10) (with
a corresponding reflection coefficient si), it is easy to see
that every possible target scene can be represented by some
matrix H (6). If the number of targets K ¿ N2, then the time-
frequency grid will be sparsely populated. By “vectorizing” the
grid, we can represent it as an N2× 1 sparse vector s.

Assume that the Alltop sequence fA is sent by the trans-
mitter3. The received signal now is of the form in (7). If the

3The transmitter in Fig. 3 sends analog signals. We assume here that there
exists a continuous signal which when discretized is the Alltop sequence (12).

number of targets obey the sparsity constraints in Theorems 1-
3 then we will be able to reconstruct the original target
scene using compressed sensing techniques. Moreover, the
resolution of the recovered target scene is limited by how
the time-frequency plane is discretized as dictated by the N2

unique time-frequency shifts. That is, multiple targets located
at adjacent grid points can be resolved due to the nature of
compressed sensing reconstruction. The effect of discretization
on the resolution is discussed in more detail in the next section.

In reality, we are not actually “beating” the classical un-
certainty principle as claimed above. Rather, we are just
transferring to a different mathematical perspective. The new
compressed sensing uncertainty principle is dictated by the
sparsity constraints of Theorems 1-3.

It is interesting to note that Alltop specifically mentions
the applicability of his sequence to spread-spectrum radar.
The cubic phase in (12) is known in classical radar as a
discrete quadratic chirp, which is similar to what bats use
to “image” their environment (although bats use a continuous
sonar chirp). The use of a chirp is an effective way to transmit
a wide-bandwidth signal over a relatively short time duration.
However, here in compressed sensing radar we make use of
the incoherence property of the Alltop sequence, which is due
to specific properties of prime numbers. Recall the three key
points of this novel approach: (1) the transmitted signal must
be incoherent, (2) there is no matched filter, (3) instead,
compressed sensing techniques are used to recover the sparse
target scene.

C. Comparison of Resolution Limits

In this section we analyze the resolution limit for com-
pressed sensing radar and compare it to the resolution limit
dictated by the radar uncertainty principle.

Assume that the transmitted signal is bandlimited to
[− 1

2B1,
1
2B1]. Actually, the received signal will have a some-

what larger bandwidth B > B1 due to the Doppler effect.
However, in practice this increase in bandwidth is small, so
we can assume B ≈ B1. We observe the signal over a
duration4 T and for simplicity sample it at the Nyquist rate B.
That means we gather N = BT many samples during the
observation interval. It is well-known that observing a signal
over a duration period T gives rise to a maximum frequency
resolution of 1/T . The time resolution is equal to the Nyquist
sampling rate, i.e., 1/B. The step-size for the discretization of
the time-frequency plane is therefore limited to 1/T and 1/B,
respectively.

If N ≥ 5 is prime then we can use the Alltop sequence
as described in the previous section and recover multiple
targets with a resolution of 1/N . Otherwise, there exist other
“incoherent” sequences which can provide similar results to
Theorems 1-3; and therefore, can also achieve a resolution
of 1/N . Thus for fixed T and fixed B, the smallest rectan-
gle in the time-frequency plane which can be resolved with

4We assume a periodic model here which can be relaxed using standard
zero-padding procedures.



TO APPEAR IN IEEE TRANSACTIONS ON SIGNAL PROCESSING 6

compressed sensing radar has size 1/T × 1/B = 1/N .5

Now consider the Heisenberg uncertainty box associated
with the radar uncertainty principle. When ε = 0 in (4) this
box must have an area of at least unity. This lower bound
determines the resolution limit of classical radar. Juxtapose this
with the resolution limit of compressed sensing: we can easily
make this box smaller by increasing the observation period T
and/or the bandwidth B.6 Therefore, in theory, compressed
sensing radar can achieve better resolution than conventional
radar.

Can we achieve an even better resolution than 1/N for fixed
duration T and fixed bandwidth B with compressed sensing
radar? Not with the existing theory and the existing algorithms.
To achieve better resolution one might be tempted to increase
the sampling rate. However, oversampling introduces corre-
lations between the samples, therefore it would not improve
the incoherence of the columns of Φ (in practice though we
always oversample signals, but for different reasons).

The lower limit of 1/(TB) appears in other areas of
classical radar as well, usually in the context of “thumbtack”
functions. A function is “thumbtack-like” if all of its values
are close to zero except for a unique large spike. These
waveforms are also sometimes referred to as “low-correlation”
sequences. Due to Properties 1 and 2 of the Alltop sequence
in Section III-D we see that its ambiguity surface actually has
this thumbtack feature too. Other thumbtack-like ambiguity
surfaces include those associated with the waveforms which
generate the equiangular line sets found in [24]. The crucial
difference here is that, in general, the lower resolution limit
of 1/(TB) can only be achieved in classical radar if there
is just one target. As soon as several targets are clustered
together then interference from the non-zero portions of the
ambiguity function causes false positives. This dictates the
resolution limit, i.e., how close targets can be and still be able
to reliably distinguish them. The next section shows computer
simulations which demonstrate this.

D. Compressed Sensing and Classical Radar Simulations

Figures 5 and 6 show the result of Matlab radar simulations.
For purposes of normalization the grid spacing in these figures
is 1/

√
N . Hence, the numbers shown on the axes represent

multiples of 1/
√

N . A random time-frequency scene with
K = 8 targets and N = 47 is presented in Figure 5(a). The
compressed sensing radar simulation used the Alltop sequence
to identify the targets. In the noise-free case of Figure 5(b) it is
clear that compressed sensing was able to perfectly reconstruct
the target scene (‖s− sF‖2 ∼ 10−8). Moreover, it is obvious
that targets located at adjacent grid points can be resolved,
confirming the discussion of the last section.

Figure 5(c) shows how compressed sensing starts to suffer
in the presence of additive white Gaussian noise (AWGN).

5Note that a precise analysis on the resolution limits of compressed
sensing radar must also take into account approximating the continuous-time,
continuous-frequency, infinite-dimensional radar model by a discrete, finite-
dimensional model. We will report on this topic in a forthcoming paper.

6There are, of course, practical considerations that prevent implementing
an extremely large observation period and/or bandwidth, which we ignore for
the purpose of this paper.

Here the signal-to-noise ratio (SNR) is 15 dB. Some faint
false positives have appeared, yet the target scene has still
been identified. The performance with 5 dB SNR is shown
in Figure 5(d). One target was lost, many false positives
have appeared, and the magnitudes of the targets have been
significantly reduced. Clearly, these are all undesirable effects.
It remains an open problem in the compressed sensing com-
munity how to deal with such noisy situations.
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Fig. 5. Radar simulation with K = 8 targets on a 47× 47 time-frequency
grid. (a) Original target scene. Compressed sensing reconstruction of original
target scene with SNR: (b) ∞ dB, (c) 15 dB, (d) 5 dB. Notice in (b) that
compressed sensing perfectly recovers (a) in the case of no noise.

As a comparison to compressed sensing Figure 6 presents
classical radar reconstruction (which uses a matched filter
as described in Section IV-A) with two different transmitted
pulses. The ambiguity surfaces associated with these two
waveforms demonstrate, in some sense, two extremes of
traditional radar performance. In the first case, the ambiguity
surface is a relatively wide Gaussian pulse, whereas in the
second case the ambiguity surface is a highly concentrated
“thumbtack” function. We stress that these are not necessarily
the final results of traditional target reconstruction, and are in-
cluded only for rough comparison. In practice, radar engineers
use extremely advanced techniques to determine target range
and velocity.

Figures 6(a), 6(c), and 6(e) show the original target scene
of Figure 5(a) reconstructed using a Gaussian pulse. The
(self) ambiguity function associated with a Gaussian pulse
is a two-dimensional (2D) Gaussian pulse as a result of the
STFT in (2). Therefore, according to (14) we see that the
radar scenes in these figures consist of a 2D Gaussian pulse
centered at each target in the time-frequency plane. In each
of these it is clear that the targets in the center are contained
within the Heisenberg boxes of its neighbors. Depending on
the sophistication of subsequent algorithms some of the targets
may be unresolvable. It is also apparent that Figures 6(c)
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and 6(e) suffer from added noise, and this compounds the
problem of accurate resolution [4].

As a consequence of the grid spacing, the Heisenberg
box associated with the Gaussian pulse’s ambiguity surface
has been normalized to a square of unit area. This roughly
corresponds to the support size of U in (4), and is empirically
verified in Figure 6(a) where we see that the diameter of
the uncertainty region around the isolated target at (τ, ω) =
(10, 29) spans approximately seven grid points. Since the grid
spacing is 1/

√
N we confirm that the base and height of the

Heisenberg box are each approximately 7/
√

47 ≈ 1.
Returning to the discussion of the previous section, it is

clear that the noise-free cases shown in Figures 5(b) and
6(a) experimentally confirm that compressed sensing radar can
achieve much higher resolution than traditional techniques.7

To make the comparison fair, we are using the same number
of observations in the recovery for both compressed sensing
and classical radar. In this sense, it becomes apparent that
we are leveraging the power of compressed sensing theory
in a different way than explained in Section II. The typical
compressed sensing application makes far fewer observations
than necessary and still obtains perfect reconstruction of the
data. However, in this model of compressed sensing radar
we implicitly assume Nyquist sampling of the baseband
signal. Therefore, with this setup, the benefit of employing
compressed sensing recovery manifests itself as a dramatic
increase in resolution.

In contrast with a Gaussian pulse we now examine a
waveform whose associated ambiguity surface is thumbtack-
like. Figures 6(b), 6(d), and 6(f) depict the original target
scene traditionally reconstructed using the Alltop sequence.
Take note of the distinction with compressed sensing radar
presented in Section IV-B which also uses this function. Here,
the classical approach transmits the Alltop sequence, and then
uses a matched filter to correlate the received signal with
a time-frequency shifted Alltop sequence as in (14). The
radar scene will now consist of a thumbtack function centered
at each target. In theory, this radar would provide target
resolution similar to our compressed sensing version (i.e., the
target is represented as a point source in time-frequency plane
rather than a “spread out” uncertainty region).

However, the situation is not so simple. The non-zero
portions of the ambiguity function can accumulate to create
undesirable effects. This is shown in Figure 6(b) where it is
apparent, even in the ideal case of no added noise, that there
is a great deal of interference. Moreover, this type of “noise”
is deterministic and cannot be remedied by averaging over
multiple observations. Notice that the interference seems to be
distributed over a wide range of amplitudes. In fact, referring
to the original target scene in Figure 5(a), it appears that some
of the weaker targets (i.e., the ones with the smallest reflection
coefficient in magnitude) have been buried in this noise. Even
if a reasonable threshold could be determined, perhaps only a
few of the strongest targets would be detected and many false

7There are many different ways to determine resolution in classical radar.
Moreover, in the presence of noise, the SNR must also be incorporated.
See [2], [4].
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Fig. 6. Traditional radar reconstruction of Fig. 5(a)’s original target scene.
With no noise: (a) Gaussian pulse, (b) Alltop sequence. With SNR = 15 dB:
(c) Gaussian pulse, (d) Alltop sequence. With SNR = 5 dB: (e) Gaussian
pulse, (f) Alltop sequence.

positives would remain. This is a substantial problem since
the dynamic range of the targets can be quite large.

We present these results to emphasize that naive application
of traditional radar techniques with the Alltop sequence will
fail if the radar scene contains more than just a few strong
targets. The outcome will be similar if other low-correlation
sequences are used.

Regardless of whether a transmitted waveform has an am-
biguity surface which is spread or narrow, interference from
adjacent targets will necessarily occur in classical radar, and
this will result in undesirable effects. In contrast, compressed
sensing radar does not experience this interference since it
completely dispenses with the need for a matched filter.
Therefore, there are no issues with the ambiguity function of
the transmitted signal.

V. OTHER APPLICATIONS

Narrowband radar is by no means the only application to
which the techniques presented here can be used. Wideband
radar systems admit a received signal which is of the form

|r(t)| ∼
∣∣∣f

( t− aτx

a

)∣∣∣, a = 1− 2v/c.
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This shift-scaled signal is well-represented by a wavelet basis,
and it seems feasible to replace the time-frequency dictionary
by a properly chosen time-scale dictionary. In a different direc-
tion, the methods introduced in this paper can also be extended
to multiple-input multiple-output (MIMO) radar systems.

Our approach can also be applied, with suitable modifica-
tions, to other applications that involve the identification of a
linear (time-varying) system. For instance, a challenging task
in underwater acoustic communication is the estimation of the
acoustic propagation channel. Unlike mobile radio channels,
underwater acoustic channels often exhibit large delay spreads
with substantial Doppler shifts. Of course, the location of the
scatterers and the amount of Doppler shift are a priori not
known. However, it is known that underwater communication
channels do have a sparse representation in the time-frequency
domain, e.g., see [14]. Thus, there is a good chance that
our approach via compressed sensing can lead to a channel
estimation method that provides higher resolution than conven-
tional methods. We point out that in order to turn compressed
sensing-based underwater acoustic channel estimation into a
reliable method, one needs to carefully incorporate various
other properties of underwater environments, e.g., whether we
are dealing with a deep sea environment or a shallow water
environment.

Another application where the proposed compressed sensing
approach seems useful arises in high-resolution radar imaging.
For instance, when we consider the imaging of (moving)
point targets, one would need to combine our time-frequency
based approach with the Born approximation of Helmholtz’s
equation. This approach is a topic of our current research.

Other applications arise in blind source separation [15],
sonar, as well as underwater acoustic imaging based on
matched field processing.

VI. DISCUSSION

We have provided a sketch for a high-resolution radar sys-
tem based on compressed sensing. Assuming that the number
of targets obey the sparsity constraint in Theorem 2, the Alltop
sequence can perfectly identify the radar scene with high
probability using compressed sensing techniques. Numerical
simulations confirm that this sparsity constraint is too strict
and can be relaxed to K ≤ N/(2 log N), although this has
yet to be proven mathematically.

It must be emphasized that our model presents radar in a
rather simplified manner. In reality, radar engineers employ
highly sophisticated methods to identify targets. For example,
rather than a single pulse, a signal with multiple pulses is often
used and information is averaged over several observations.
We also did not address how to discretize the analog signals
used in both compressed sensing and classical radar. A more
detailed study covering these issues is the topic of another
paper.

Related to the discretization issue is the fact that compressed
sensing radar does not use a matched filter at the receiver. This
will directly impact A/D conversion, and has the potential
to reduce the overall data rate and to simplify hardware
design. These matters are discussed in [1], although it does

not consider the case of moving targets. In our study the
major benefit of relinquishing the matched filter is to avoid
the target uncertainty and interference resulting from the
ambiguity function.

Since many of the implementation details of our compressed
sensing radar have yet to be determined, and since classical
radar can also be implemented in many ways we were only
able to make a rough comparison between their respective
resolutions. Regardless, the radar uncertainty principle lies
at the core of traditional approaches and limits their per-
formance. We contend that compressed sensing provides the
potential to achieve higher resolution between targets. The
radar simulations presented confirm this claim.

It must be stressed again that the success of this stylized
compressed sensing radar relied on the incoherence of the
dictionary ΦA resulting from the Alltop sequence. There exist
other probing functions with similar incoherence properties.
Numerical simulations with f as a random Gaussian signal,
as well as a constant-envelope random-phase signal indicate
similar behavior to what we have reported for the Alltop
sequence. At the time of writing this paper we became aware
of a similar study [25] where the properties of these functions
are analyzed in the context of abstract system identification
using compressed sensing.

There is also the possibility of combining classical radar
techniques with `1 recovery. Initial tests show that while we
get good reconstruction, the results are not guaranteed, even
in the case of no noise. Figure 7 shows a striking example. In
this noise-free scenario, a Gaussian pulse has been transmitted
and reconstruction is done using `1 minimization. Figure 7(a)
shows an original radar scene with K = 3 targets. It is
clear from Figure 7(b) that none of the targets have been
correctly recovered. In contrast, Theorem 1 proves that we are
guaranteed to perfectly recover both of these target scenes
when transmitting the Alltop sequence. (Note, in order to
employ Theorem 1, we need to satisfy K < 1

2 (
√

N + 1).
With N = 47 we can only use K = 3 targets since
3 < 1

2 (
√

47 + 1) ≈ 3.93.)
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Fig. 7. Radar simulation with K = 3 targets on a 47 × 47 time-
frequency grid. (a) Original target scene. (b) Traditional Gaussian pulse and
reconstruction using `1 minimization (no noise). It is clear that conventional
radar with `1 minimization completely fails. However, Theorem 1 guarantees
perfect recovery in this case.
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APPENDIX A
PROOF OF THE THEOREMS

For notational simplicity denote the coherence of dictionary
Φ as µ. We need the following theorems which deal with
incoherent dictionaries such as ΦA ∈ CN×N2

. Recall for ΦA
that µ = 1/

√
N with prime N ≥ 5.

Proposition 1 ( [26], Theorem B). Let X be a random K-
column subdictionary of Φ (i.e., every K-column subset of
Φ has an equal probability of being chosen). The condition√

µ2K log K · ϑ + K
N2 ‖Φ‖2 ≤ cδ with ϑ ≥ 1 implies that

P{‖X∗X − I‖ ≥ δ} ≤ K−ϑ where c is an absolute constant.

Proposition 2 ( [26], Theorem 14). Suppose random s ∈ CN2

has support T , sparseness K = |T |, and nonzero coefficients
whose phases are uniformly distributed on the interval [0, 2π).
Set y = Φs, and let ΦT be the submatrix consisting of the
columns ϕj of Φ for j ∈ T . Suppose 8µ2K ≤ 1/ log (N2/ζ)
and that the least singular value σmin(ΦT ) ≥ 1/

√
2. Then s

is the unique solution to BP except with probability 2ζ.

Proposition 3 ( [27], Theorem 3). Suppose a noisy signal
y = Φs + e is constructed as a sparse combination of the
columns of dictionary Φ ∈ CN×N2

with coherence µ. Assume
the sparsity of s obeys K < (1 + µ)/(2µ + 4ε

√
N/T ), and

the entries of the noise are bounded |en| ≤ ε. Then the
solution sF to BP exhibits stability ‖s− sF‖1 ≤ T .

A. Theorem 1

Proof: Theorem B in [7] (which incorporates results from
[27], [28], and [29]) concludes for general dictionary Φ that
every K-sparse signal s with K < 1

2 (µ−1 + 1) is the unique
sparsest representation, and is guaranteed to be recovered by
both BP and OMP when observing y = Φs. Set Φ = ΦA and
assume the hypothesis of Theorem 1. Equation (7) provides
y = HfA = ΦAs. The result follows by substituting
µ = 1/

√
N .

B. Theorem 2

Proof: Set Φ = ΦA. Let A denote the event that
‖X∗X − I‖ < 1

2 , and let B represent the event that BP
recovers random s from the observation y = HfA = ΦAs.
Proposition 1 concerns P(A {) where A { is the complement
of set A , and Proposition 2 addresses P(B|A ). To apply
these propositions we need their conditions to be satisfied
simultaneously. Since ΦA is a unit-norm tight frame we know
that ‖ΦA‖2 = N . With µ = 1/

√
N and taking δ = 1

2 the
condition of Proposition 1 is

√
K

N
log K · ϑ +

K

N
≤ c

2
. (15)

Fix ζ = ε2 for some sufficiently small desired probability
of error in Proposition 2. The sparsity condition can now be
rewritten as K ≤ N/(16 log (N/ε)). Substituting this into (15)

the LHS is less than√
ϑ

16 log (N/ε)
log

( N

16 log (N/ε)

)
+

1
16 log (N/ε)

<

√
ϑ

16 log (N/ε)
log N +

√
1

16 log (N/ε)

<
1
2

√
ϑ log N

log (N/ε)
(since ϑ, log N ≥ 1). (16)

Choose ϑ ≥ 1 such that
√

ϑ log N/log (N/ε) ≤ c is sat-
isfied. Assume the other conditions of Proposition 2 (observe
that event A implies σmin(ΦT ) ≥ 1/

√
2), and let X = ΦT

in Proposition 1. Then

P(B) ≥ P(B|A )P(A )
≥ (1− 2ε2)(1−K−ϑ)
> 1− 2ε2 −K−ϑ (17)

as desired.

C. Theorem 3

Proof: As in the proof of Theorem 1, this follows
immediately mutatis mutandis.
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