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THE RIEMANN PROBLEM NEAR A HYPERBOLIC
SINGULARITY: THE CLASSIFICATION OF SOLUTIONS

OF QUADRATIC RIEMANN PROBLEMS I*

E. ISAACSON, D. MARCHESIN$, B. PLOHR, AND B. TEMPLE

Abstract. The purpose of this paper is to classify the solutions of Riemann problems near a hyperbolic
singularity in a nonlinear system of conservation laws. Hyperbolic singularities play the role in the theory
of Riemann problems that rest points play in the theory of ordinary differential equations: Indeed, generically,
only a finite number of structures can appear in a neighborhood of such a singularity. In this, the first of
three papers, the program of classification is discussed in general and the simplest structure that occurs is
characterized.
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Introduction. We study the Riemann problem for nonlinear 2 x 2 systems of con-
servation laws:

(A) U, +f( U),, 0,

x-<0,
() U(x, o) Uo(x) u,, x > o.

Our purpose is to classify the structure of the wave curves and the solution of the
Riemann problem in a neighborhood of an isolated point Uo in state space where the
wave speeds A1 and A2 coincide. Here A1, 2 are the eigenvalues of the matrix Vf We
refer to such a point Uo as an isolated hyperbolic singularity, or an umbilic point.

Such singularities play a role in the wave structure of solutions of the Riemann
problem similar to the role of rest points in the theory of ordinary differential equations.
Indeed, the topological structure of the wave curves for (A), (B) are drastically altered
in a neighborhood of a hyperbolic singularity in a fashion similar to the alteration of
solution curves of ordinary differential equations in a neighborhood of a rest point.
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As with the case of rest points, there are generically only a finite number of structures
that can appear near an isolated hyperbolic singularity, and it is our purpose to classify
them.

Our method is to use a classification of integral curves proposed in [8] and carried
out in 17]. This established four types of singularities, labeled I-IV, classified according
to four distinct structures of the rarefaction curves near the singularity. In this paper
we describe our general program for classifying the structure of the wave curves for
solution of the Riemann problem near hyperbolic singularities, and we construct these
solutions for the type of singularity that exhibits the simplest structure, namely the
symmetric cases oftype IV. Our analysis uses a numerical determination ofthe Hugoniot
locus. Similar constructions for singularities of types II and III will follow. A particular
solution of type I was presented in [18].

Our method is to approximate the flux functionf near the singularity by a quadratic
flux function. The structure of the singularity is then determined by the coefficients in
the quadratic approximations. We discuss this in detail in the next section, and we
present the structure of the wave curves and the solution of the Riemann problem (A),
(B) for the values of these parameters corresponding to the symmetric systems with a
singularity of type IV.

Remarkable features arise in singularities of type IV: the integral curves do not
form a coordinate system in a neighborhood of the singularity; the Hugoniot loci
generally form loops; the classical shocks lie on disconnected portions of the Hugoniot
locus; waves curves end; and the qualitative structure of the wave curves changes
drastically as the base point UL crosses certain critical lines. Even so, the Riemann
problem is solved everywhere within the class of classical shocks and rarefaction waves,
and solutions depend continuously on UL and UR. Additional features appear for
singularities of types II and III.

1. Preliminaries. We consider the general 2 2 system of conservation laws with
quadratic flux functions

//2u,+1/2{al +2bluv+elv2}x=O,
(1)

v, +1/2{a2u + 2b2uv + c2vZ}x O.

In particular, we solve the Riemann problem globally for a specific range of the
coefficients ai, bi,

System (1) is of interest because solutions of (1) approximate solutions of an
arbitrary 2 2 system of conservation laws

(2) u, +f(U)x O,

where u (u, v), f (f, g), in a neighborhood of an isolated hyperbolic singularity.
Such a singularity is an isolated point in a neighborhood of which (2) is hyperbolic
and at which the Jacobian

0 kg g

has equal eigenvalues and is diagonalizable. In fact, system (1) is obtained from system
(2) as follows. Let ,1()--< ,() denote the eigenvalues of A(), and let o denote the
isolated point at which I (o) 1(Uo)-- ,o. First, replace by -o and translate the
reference frame (x, t) to (X-lot, t) so that the resulting system has an isolated
singularity at (0, 0) with corresponding double eigenvalue , 0. Then system (1)
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is obtained by expanding the flux functions of this transformed system in Taylor series
about (0, 0) and neglecting higher-order terms.

System (1) can be reduced further by a nonsingular linear change of dependent
variables. Two systems related by such a transformation S are isomorphic in the sense
that Su(x, t) is a weak solution of the transformed system if and only if u(x, t) is a
weak solution of the original system. Since the nonsingular transformation S contains
four free parameters and since system (1) contains six parameters, we expect to find
a two-parameter family of isomorphism classes for system (1). Thus, we look for
representatives of the isomorphism classes in a normal form containing two free
parameters [8]. In [17] it was shown that when system (1) is hyperbolic, there is a
nonsingular linear change of dependent variables that transforms system (1) into

u, +1/2{au + 2buy + vz}x 0,
(3)

V q-1/2{bu --]- 2uv}x O.

System (3) depends on two free parameters a and b and can be taken as a normal
form for the hyperbolic quadratic systems (1). It is also shown in [3], [17] that the
integral curves of (3) fall into four nonisomorphic classes depending on the parameters
a and b. These classes define four regions in the a, b-plane referred to as Regions I-IV.

The regions are determined by the number of lines that form the Hugoniot locus
of the origin, as well as the direction of increase of the appropriate eigenvalue on
these lines. In Regions I-III, the Hugoniot locus consists of three distinct lines, while
in Region IV it consists of one line. Specifically, the boundary between Regions I and
II is given by a =-]b2; the boundary between Regions II and III is given by a + b2;
and the boundary between Regions III and IV is given by 4{462-3(a-2)}3=
{ 16b q- 9( 1 2a)b}2 (cf. 17]). The structure of solutions in each region is simplest when
b=0 since then solutions have both up-down symmetry ((u,-v) satisfies (3) if and
only if (u, v) does) and left-right symmetry ((u(x, t), v(x, t)) satisfies (3) if and only
if (-u(-x, t), v(-x, t)) does). We call the systems with b 0 symmetric. (An additional
simplifying feature of the symmetric systems is that the lines on which genuine
nonlinearity fails coincide with the Hugoniot locus of the origin.)

The present paper is the first of a series in which we give the solution of the
Riemann problem:

u (u, v), x < 0,
(4) U(X, O)

u (u, v), x _-> 0

for the symmetric systems in Regions II-IV of [17]. There are new features in these
regions that do not occur in Region I (cf. [18]). First, a type of shock we call compressive
appears in solutions of the Riemann problem, and the existence of such shocks is
necessary to ensure (in the x, t-plane) the continuous dependence of solutions on u/
and uR (cf. [6], [7], [9], [21]). In [25] it is noted that the compressive shocks perturb
to a one-shock followed by a two-shock. This fact is manifested in the triple shocks
that appear in the solutions.

A second feature that occurs in Regions II-IV that does not occur in Region I is
the following: in Regions II-IV there are lines on which h 0, whereas in Region I,
h 0 if and only if u 0. These lines play a central role both in the classification as
well as in the structure of Riemann problem solutions. In fact, the lines h 0 give a
geometric interpretation for the boundaries between the Regions I-III located in [17].
(See the Appendix and Fig. 8.) Also, in Regions II-IV the structure of the shock types
on the Hugoniot locus of a point u changes as u crosses a line A--0; this entails a
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corresponding change in the structure of the solutions of the Riemann problem. The
reason for the change in shock type is that the state u on the line & 0 can be joined
to the state -u by a two-sided contact discontinuity.

Our construction of the solutions of the Riemann problem is based on a numerical
construction of the Hugoniot loci together with the structure of the integral curves
obtained from [17]. Some analysis is presented to justify the salient features of the
solutions obtained. In particular, our analysis uses an explicit parameterization of the
Hugoniot locus (see the Appendix). The fact that the Hugoniot locus is star-like with
respect to the left state was pointed out in [24].

In the present paper we give the solution of the Riemann problem for system (3)
in the parameter range

(5) a>2, b=0.

This condition specifies the symmetric systems in Region IV. We present the solution
in 3 by means of a series of diagrams (Fig. 7(a)-(f)). Because of up-down symmetry,
we give the solutions only for uL in the lower half-plane. The solution diagrams are
qualitatively the same for all u L in the sector

M {u: 0, < 0 < 0},

and are qualitatively the same for all u in the sector

(see Fig. 2); here

{u: -r < 0 < 0,}

0 arctan 0, arctan (-v -d).

This separation angle 0, depends on a, and the ray 0 0, is the ray (in the lower
half-plane) on which , 0. The solution consists of a one-composite wave followed by
a two-composite wave in analogy with the local solutions for strictly hyperbolic systems
(cf. [11], [14]). Here, however, the wave curves have a different structure: as in [6],
[7], [9], [21], intermediate solution states do not depend continuously on the data due
to the appearance of compressive shocks. However, as in [6], [7], [9], [21], continuous
dependence on u and UR is ensured in x, t-space because of the coincidence of shock
speeds in the compressive shocks. In this paper we construct explicitly for each state
u the one-wave curve 7(u) and the two-wave curve 7#2(u) such that the following
theorem holds.

THEOREM. For each pair of states u and UR, there exists an intermediate state

u4 /g’(uL) such that UR c/’2(UM) and the solution of the Riemann problem (3), (4)
consists ofthe one-wavefrom u to utfollowed by the two-wavefrom u4 to UR. Moreover,
the solution is unique in x, t-space and depends continuously on uL and UR.

In Fig. 7(a)-(f), pictorial solutions of the Riemann problem are presented in
which the state u is fixed, and an arbitrary point in the diagram represents UR. The
waves in the solution of the Riemann problem are determined by the path from u to
uR, which consists of (portions of) wave curves and is indicated by arrows.

In 2 we discuss the wave curves /1 and o/2. In 3 we describe the diagrams
in Fig. 7(a)-(e) individually, and in 4 we verify the salient features of these diagrams.
General properties of system (1) are stated in the Appendix and are referred to
throughout. The Appendix also contains the interpretation of Regions I-IIl in terms
of the lines A =0. These are depicted in Fig. 8(a)-(d).
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2. Elementary waves. The integral curves of the eigenvector fields of the Jacobian
A(u) determine the rarefaction waves of system (2). The Hugoniot loci (UL) for states

uL determine the shock waves of system (2), and are given by [20]

(uL)--- {u: s(u-u) =f(u)-f(uL) for some s R}.

The general solution of the Riemann problem we construct is obtained by composing
rarefaction waves and shock waves. Because the flux functions in (1) are homogeneous
quadratics, the integral curves and Hugoniot loci for system (1) have the following
scaling property: if F is an integral curve or Hugoniot locus through u/, then cF is
the corresponding integral curve or Hugoniot locus through eUL, C 0. The eigenvalues
and shock speeds scale similarly. Thus the integral curves and Hugoniot locus through
uL determine the corresponding integral curves and Hugoniot locus for each state u
satisfying 0 0L where

For the Hugoniot loci, the up-down and left-right symmetries imply that if UR (UL)
then fir (fi/) and fiR (fiL) where fi= (u, -v) and fi= (-u, v). Thus, the reflection
of a Hugoniot curve about either the u- or v-axis is also a Hugoniot curve. In terms
of wave speeds and shock speeds, the symmetries of (3) when b =0 yield the following
relationships:

(2.1)

(2.2)

Ap(u) Ap(fi) -A(fi), p 1, 2,

(u, u.) (, fi) (fi, fi)

where/3 denotes the other family, and r denotes shock speed.
In Table 1 we label nine types of shocks according to the inequalities that hold

between the characteristic speeds of UL, UR and the shock speed cr(uL, UR). (Obvious
inequalities are omitted.) Since the two wave speeds A1 and A2 assigned to each state
are ordered, Table 1 gives the totality of shock types that can occur in any 2 2 system
(2). In the case of the symmetric systems (3), the formulas (2.1) and (2.2) imply the
following symmetries for shock types: if UR Yg(UL), then the shock type of (ilL, R>
will be the same as the shock type of (uL, UR); and the shock type of (ilL, fiR) will be
what we call the inverse of the shock type of (ut, UR). Here, the inverse shock type is
obtained by reversing the inequalities that hold between the shock speed and each
wave speed to the right and left of the shock and also by interchanging the families
one and two. Therefore (cf. Table 1), one-shock and two-expansive are inverses;
two-shock and one-expansive are inverses; compressive and expansive are inverses;
right transport and left transport are inverses; and crossing is its own inverse. Thus in
the symmetric cases, all Hugoniot curves and shock types are determined by the
Hugoniot curves and shock types for states in a single quadrant of the u, v-plane.
Among the above shock types, some occur in the solutions of system (3) that do not
occur for strictly hyperbolic systems. For the symmetric systems of classes II-IV, there
are three types of shocks that appear in solutions: one-shocks, two-shocks, and
compressive shocks defined by (cf. Table 1)

I(UR) A2(UR) O’(UL, UR) I(UL) 2(UL

We refer to any of the three types of shocks described above as admissible. We refer
to shocks of other types as inadmissible. (We note that the transport shocks are the
only types that do not appear in Hugoniot loci of the symmetric systems in classes
II-IV.) Our scheme for labeling shock types in Figs. 3-7 is described in Table 2.
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TABLE
In the diagrams below, the centerline denotes a shock in x, t-space. The lines to the left and right of the

shock are characteristic lines, and indicate the relationship between the shock speed and the wave speeds on the

left and right.

One-shock: s < A(ut)
/ (llR) < S </2(IIR)

One-expansive: Al(ut) < </2(IIL) t
< a,(U,)

Two-shock: A,(uL) < < A2(uL)
a2(uR)<s

Two-expansive: /2(UL) < S

I ll R < < t II R

Compressive" /2(UR) < </ (ilL)

Expansive: /2(IIL)

Crossing: /1 (ILL) < </2(IIL)
/ (IIR) < " /2(IIR)

Right transport: s < A(u)
s<a(uR)

Left transport: /2(IIL) <
/2(llR) <
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2.1. Integral curves. For system (3) with parameter values (5),

A(u)=Iau’v uV]’
and the integral curves are depicted in Fig. 1 [3], [17]. We call the integral curves
associated with the eigenvalues A l(u) -<- A2(u) the one-, two-integral curves. For example,
when a 3 the integral curves are the one-parameter family of parabolas

/gO D 2,
4Uo

where Uo is the value at which the parabola crosses the u-axis. The u-axis is itself an
integral curve for the symmetric systems b 0. For general a > 2, the integral curves
are parabola-like and the one-integral curves open to the left, the two-integral curves
open to the right. The arrows in Fig. 1 indicate the direction in which the corresponding

FIG. 1. Integral curves for the symmetric systems in Region IV; i.e., system (3) with b 0, a > 2. (Family
one is denoted by the thicker lines.)

eigenvalues increase. We define the /-rarefaction curve i(uL), i--1, 2, to be the set
of states UR such that the solution of the Riemann problem (3), (4) is a pure/-rarefaction
wave (see [14]); i(uL) is thus the connected portion of the /-integral curve through
u consisting of those states u for which Ai increases along the curve from u/ to u.

2.2. The Hugoniot locus. For system (3) with parameter values (5), the qualitative
shape of the Hugoniot locus (ut.) is as follows: for u/ =0, Yg(uL) is the u-axis; for
uL on the u-axis, W(u) consists of an ellipse together with the u-axis; and for u/ of[

the u-axis, ((u/) perturbs to a closed loop surrounding the origin with two tails that
are asymptotic at infinity to opposite ends of the horizontal line

D--DL"
a--2
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Sector

u
Sector s

N. 0=0,
A=0

FIG. 2. The Sectors sg, 2 determined by the ray 0 0, (A1 =0).

These properties follow from the explicit parameterization of the Hugoniot locus given
in the Appendix and are depicted in Fig. 3(a)-(f). The shock type is also indicated
according to the notation in Table 2. We let 9p(uL) denote that portion of Y((uL)
consisting of one-shock for p 1, two-shocks for p 2, and compressive shocks for p e.

The subset 5.(u) is nonempty for u in the sector s, and 5.(u) is empty for
uc in the sector 42. Moreover, 9(uL) has two disconnected components for uc s
but only one for uc 2. This explains why the ray 0 0, is the boundary across
which the qualitative structure of the solution diagrams changes.

We note in Fig. 3(b) that Be, Dc are the points at which

O’(UL, B)= ,,(u;) cr(u, D);

in Fig. 3(a)-(d) that C is the point at which

/2(CL) O’(UL, CL);
and in Fig. 3(c) that

/l(llL) O’([IL, CL) =/2(CL)(=0).

FIG. 3(a). Hugoniot loci and shock types for uz in representative positions.
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FIG. 3(b). Hugoniot loci and shock types for Ul in representative positions.

0

0 O,

FIG. 3(C). Hugoniot loci and shock types for uL in representative positions.

CL

UL

FIG. 3(d). Hugoniot loci and shock types for uL in representative positions.
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FIG. 3(e). Hugoniot loci and shock types for uL in representative positions.

FIG. 3(f). Hugoniot loci and shock types for u in representative positions.

TABLE 2
Legend for Figs. 3-7.

One-rarefaction

One-expansive shock

One-shock.. ,,- Two-rarefaction

Two-expansive shock

: :k Two-shock (with or without arrows)

One-composite (rarefaction followed by shock at characteristic speed)

Compressive shock

Expansive shock

Two-boundary, triple shock curves

Hugoniot locus of u/ and u-axis

Note 1. Arrows on rarefaction curves indicate the direction of increasing eigenvalue. Arrows on shock
curves indicate the direction of decreasing shock speed.

Note 2. One- and two-shocks in the Hugoniot locus of u are indicated by dashed lines supported by
the solid line for the Hugoniot locus.

2.3. Composite waves. The solutions of the Riemann problem are compositions
of pure rarefaction waves and pure shock waves. We refer to a Riemann problem
solution consisting entirely of waves of one family as a composite wave of that family.
The composite waves in the solutions of Riemann problems for system (3) in parameter
range (5) are of two types: a one-rarefaction wave followed by a one-shock wave and
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a two-shock wave followed by a two-rarefaction wave. In each case, the speed of the
shock equals the speed of the adjacent rarefaction wave. We call these one-RS- and
two-SR-composite waves, respectively. (See Fig. 4. The letters in Fig. 4 refer to states
appearing in Fig. 5 where the composite waves may be viewed in state space.)

For each u we define the one-composite curve l(U). In Fig. 5 a one-RS-composite
wave with left state u is a wave consisting of a one-rarefaction wave from u to F
followed by a one-shock from F to De (F) such that o-(F, D)= A(F). Such a shock
exists if and only if F lies on that portion of (u) in Sector Sl. We define the

FIG. 4(a). One-RS-composite wave in x, t-space.

C

FIG. 4(b). Two-SR-composite wave in x, t-space.

one-composite curve (u) to be the set of all such states D. Thus, the one-composite
curve (u,) is maximal for u, on the boundary ray 0 0. in the sense that

(’l(U,)-" (I(U) for U: l(U),

(I(U,) (I(U) for U

for example, in Fig. 5,

l(U) l(U,) [EDC,] and (F) lED] (u,).
(Here, letters enclosed by brackets denote the curves that connect the corresponding
points in the figures.) In fact, as F moves from E to u, along l(U,), D moves from
E to , along l(u,). Moreover,

C: --U,

and

O’(U>N C,)-- A2(CN<)--- ,l(U,)
For each curve F we define the two-boundary curve based on F. In Fig. 5, a

two-SR-composite wave with left state u is a wave consisting of a two-shock wave
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0 E

,(u)

FIG. 5. Typical curves" Rarefaction Y (u [uFE ]); One-composite % F) ED]) Two-boundary
([ooCC,])" Triple shock ([ABC,]).

from u to C oW2(u) followed by a two-rarefaction wave from C to any G 2(C)
such that r(u, C) A2(C). Such a shock exists if and only if u lies on that portion of
F in sector d2. We define the two boundary curve to be the set of all such states C.
For example, in Fig. 5, C.C] is the two-boundary curve based on [u.u]. Thus, for
left states u on F= [u.u], the states C on the two-boundary curve [C.C] are
transition states between two-shock waves and two-composite waves.

2.4. Wave curves. We define the wave curve /(ur), 1, 2, to be the set of states
UR for which the solution of the Riemann problem (2), (4) is a pure composite wave
of the appropriate family. Thus (see Fig. 6(a), (b)),

and

cI(UL) ,-I(UL) L.fl I(UL) L..J uzI(UL)

c2(UL) 2(UL) L.J o,92(UL) L_J 2(C),

where C is the endpoint of ,_(j02(UL) at which o-(uL, C)=/2(C). The geometry of these
curves is indicated in Fig. 6 for uL in Sectors s1 and d2.

3. Solution of the Riemann problem. For each uL we describe the solution of
the Riemann problem for arbitrary uR by means of a diagram. In Fig. 7(b), (d) we
present a diagram of the solution of the Riemann problem for representative values
of u in Sectors dl and d2 in each of which the solution diagrams are qualitatively
the same. For completeness and in order to see clearly the continuous dependence of
solutions on u, we also give, in Fig. 7(a), (c), (e), the solution diagrams for typical
values of uL on the boundaries of Sectors dl and d2, i.e., for u on the rays 0 =0,
0 0., and 0 =-Tr. In Fig. 7(a)-(d), the representative values uL are chosen to lie
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Part of 9(u)

DL

Part of

FIG. 6(a). The wave curves for u .,.

FIG. 6(b). The wave curves for u 2"

on the one-integral curve through the fixed state E on the positive u-axis. In Fig. 7(f)
we present the solution for uL 0.

The solution of the Riemann problem consists of a one-wave with left state uL
and right state u followed by a two-wave with left state uM and right state uR. We
find the intermediate state in the figures as follows: given uR, follow the two-wave
curve backward from ue (opposite the direction of the arrows) until you reach a point
uM in the one-wave curve 7/Ul(uL). The state ut so constructed satisfies ue
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and defines the waves in the solution. This procedure is not well defined when
{uL, uM, UR} form a triple shock:

(3.1) u (u), u, (u), u (u),

and

(3.2)

FIG. 7(a). Riemann problem solution for OL =0.

KL

FIG. 7(b). Riemann problem solution for uL 1.

GL
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Triple shocks occur when UR 5e,(UL) or when UR is in the triple shock curve (which
will be defined in each figure). When the procedure is not well defined, there are two
such intermediate states ua4; however, the two solutions obtained are identical in
x, t-space because then all shock speeds in the problem are equal. This ensures
continuous dependence of the solution on the initial data uL and UR.

We now discuss the solution figure 7(a)-(e) individually.

FIG. 7(c). Riemann problem solution for OL 0,.

C

HL

FIG. 7(d). Riemann problem solution Jbr
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FIG. 7(e). Riemann problem solution for OL =-Tr.

FIG. 7(f). Riemann problem solution for UL =0.

3.1. Solution for 0L =0. In Fig. 7(a), uL E lies on the u-axis to the right of the
origin. In this case the Hugoniot locus Yg(uL) consists of the u-axis together with the
ellipse depicted. The vertices of on the major axis are uL and CL -(a/(a 2))u.
Point A is given by

a-2
(3.3) A=-u.

a

Point A is the limit of intersections of 6e(u) with the u-axis as u tends to u through
states with v 0. The solution of the Riemann problem consists of a one-shock with
left state uL and right state uM oW(uL) followed by a two-rarefaction wave if UR lies
outside , and followed by a two-shock if UR lies inside . The u-axis between CL and
A is ow,,(ui) where triple shocks occur in pairs. In fact, for each v , v u, there
exists a unique u 5ec(u) such that both {uL, v, u} and {u, , u} are triple shocks of
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the same speed. (Here rv is the reflection of v in the u-axis.) Thus for UR C ,.c(UL), the
solution of the Riemann problem is unambiguous in the x, t-plane.

3.2. Solution for 0, < 0L < 0. In Fig. 7(b), u/ lies in the sector sG. The Hugoniot
locus (Ur) is depicted by the thin solid curve through ut.. Here

oC7’01(UL) [OOKLUL] U [DICL], l(ur) [urE], %91(uL) [ED],

and the union of these three curves is the one-wave curve 7d#l(U/). Moreover,

c(Uc) CB/],

and the triple shock curve is [BIA].
For UR on either of these latter two curves, triple shocks occur: for R c 5Q(u/)

there is a pair of triple shocks {u/, P, R} and {u/, Q, R} with all shock speeds being
equal; for R [BrA], a single triple shock occurs. Hence, continuous dependence is
ensured.

The curve [CrC’oo] is the two-boundary curve based on [Ku’oo], and two-SR-
composite waves occur precisely when UR lies "above" CLC’oe] so that u4 [K/u’ee].

The states B and D/ satisfy

O’(UL, BL)= o-(u/., D) r(D, Br)=/I(UL).

The state Cr is the point where (ur) is tangent to a two-integral curve. (See the
Tangency Rule in the Appendix.) This implies that r(ur, Cr)= A(Cr) and that CL is
in, and marks the end of, the two-boundary curve [CC’c]. This ensures continuous
dependence near the point

For UL in Sector , the states Br, D separate the states ur, Cr on the portion
of (ur) consisting of the closed loop. As 0r decreases to 0, B and Dr become
coincident with Cr, and so both c(ur) and the disconnected portion [DLCr] of o(u)
disappear. The fact that there exists a point at which (u) intersects the one-composite
curve [EDr] characterizes the states in .

3.3. Solution for 0L 0. In Fig. 7(c), ur u lies on the line 0 0. The Hugoniot
locus (u) is depicted by the thin solid curve through ur. Here

01(UL) [00UtUL], I(nL) [urE], (I(UL) [EDIt].

The union of these three curves is r(u/). In this case

and the curve [C,A] is the triple shock curve.
The curve [C,C’oe] is the two-boundary curve based on [uru’oe], and two-SR-

composite waves occur precisely when UR lies "above" C, C’oe] so that u4
Note that C, =-u/ is the point where (uc) is tangent to a two-rarefaction curve,
and also that

O’(UL, C<)--/.I(UL) ---/2(C:).

Thus 0 0, is the ray where Br, Cr, and D are coincident.

3.4. Solution for -t< 0< 0,. In Fig. 7(d), u/ lies in sector 2. The Hugoniot
locus Yg(u) is depicted by the thin solid curve through u/. Here

9,(u/) [oou’ut], ,(ut_) [u/FE], ,(u/) [EDC.].
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The union of these three curves is I(UL). In this case

(3.4) 5,(uL) ,
and [ABC,] is the triple shock curve. Condition (3.4) characterizes the states in 2.

For uM [u,EC,], the solution consists of a one-rarefaction wave taking u/ to

u, followed by the solution of the Riemann problem (u,, uR) given in 3.3. The curve
[C,C] is the two-boundary curve with base curve [u/u,], and again two-SR-
composite waves occur precisely when uR lies "above" the curve [C,C] so that
u, [uu,].

Note that C, is the end of the one-composite curve in the sense that there do not
exist one-shocks with left states u [uu,] that have speed A l(U).

3.5. Solution for 0L -. In Fig. 7(e) uL lies on the negative u-axis. The Hugoniot
locus consists of the u-axis together with the ellipse depicted. The vertices of on
the major axis are u and G -(a/ (a 2))u, and

G(u) [u], l(U) [u0].

The union of these two curves is 7ffl(uL). Here

(u) 5(u) ,
and the solution of the Riemann problem consists of a one-wave followed by a
two-rarefaction wave. The solution for uL =0 is similar and given in Fig. 7(f).

4. Justification. The solution of the Riemann problem presented in 3 is based
on the assumptions that the integral curves and Hugoniot loci have the qualitative
features discussed in 2. The reievant features of the integral curves required for our
analysis are verified in [3], 17]. The features of Yg(u) (including shapes and locations
of shock types) have been verified numerically, using an explicit parameterization of
Y((u/) (see the Appendix). We here present analytical evidence that supports the results
ofthese numerical computations. Note that foru off the u-axis, system (3) in parameter
range (5) is strictly hyperbolic and genuinely nonlinear in a neighborhood of uL, and
so the local theory of Lax [11] applies in some neighborhood of u. We now discuss
the global features of the Hugoniot loci depicted in Fig. 3(a)-(c).

Figure 3(a). In this case u is on the positive u-axis. The Hugoniot locus
consists of the u-axis together with the ellipse given by

(a --2)U2q 2uu + v2= au2,

with center-(1/(a-2))uc. For u=(u, 0), we have (see the Appendix)

(u, u) 1/2a( + ),

{,,(u), &z(U)} {au, u} and {&(u), ,2(u)}= {auL, uL},

which verifies the shock types on the axis, and verifies that the shock type changes at

a a-2
u,C= --u and A= u.

a-2 a

Figure 3(b). In this case u . The points B, CL, and D are points where a
transition in shock type occurs. The existence of the point C where (u) is tangent
to a two-integral curve follows from the geometry of the integral curves. This tangency
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at CL implies (see the Tangency Rule in the Appendix)

/2(CL) O’(UL, CL)"

Note also that fiL and -u both lie on (u), and

(u, )= u, (u,-u) 0.

This is obtained from the Midpoint Rule or directly from the Rankine-Hugoniot
condition (see the Appendix). Also the speed AI(UL) satisfies

a+l
0<l(U)= , 1

UL --- /(a 1)2U nt- 4V < UL Cr(Ut, L),

where the left-hand inequality is equivalent to u s1. Thus, the shock speed cr(u, ilL)
is larger than AI(UL), but o-(u/,-u/) is smaller than Al(u/); hence, there exists a point
DL W(UL) between iL and -u/ at which O’(UL, D) AI(UL). Similarly,

(1 )Uo= -{u-4(a- 1)2Uq av}, 0

is the intersection of Yg(u) with the negative u-axis, and satisfies (see Appendix)

(u, Uo): u.

Therefore, there is a point B above the u-axis between -u and Uo at which r(uL, B)
A l(u). Consequently, {uL, B, D} is a triple shock.

Figure 3(c). In this case u =u. is on the ray 0 0.. As 0 decreases to 0. in
Fig. 3(b), bc(U) and the portion [DtC]c__ bl(uL) vanish. In fact,

1 l(ll:) O’(U, --!!,) /2(--U,) 0,

indicating that the points B and D do indeed become coincident with -u, as 0L
decreases to 0,. We also note that A2(-u,)= a-(u,,-u,) implies, by the Tangency
Rule, that (u,) is tangent to a two-integral curve at -u,, and thus C =-u,.

Appendix. Here we list for reference several properties of the quadratic conserva-
tion laws (1) that are helpful in the study of the Riemann problem.

MIDPOINT RULE. For system (1), UR (UL) ifand only if the line segmentjoining
u to UR is tangent to a p-integral curve at the midpoint of the segment. Moreover, in this
case

(A1) r(u, ut) Ap
2

Proof Use the linearity of Of/Ou together with the general formula

S(UR--U) f(UR)--f(UL)
0U

(UL + ’(UR --UL)) d" (u --UL).

TRIPLE SHOCK RULE. For system (2), suppose the states ul, ue, and u3 satisfy

(A2) u, ff(U2) U (U3) U (Ul).

Then either ul, u2, and u3 are collinear or else

(A3) or(u2, u)= o’(u3, u2)= o’(u,, u3).
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Proof Let sij tr(ui, u). Then

s2, (u2 u,) f(u2) f(u,),

s3e(u3 u) f(u3) f(u2),

s3(ul u3) f(u) f(u3).

Adding gives

(521 513)(U2 Ul) + (532 S13)(U U2) 0,

and the result follows.
TANGENCY RULE. For system (3), assume that u/ (0). Then the following

statements are equivalent regarding u (u/), u # uL:
(i) (u/) is tangent to a p-integral curve at the point u.
(ii) g 0 at u. The dot denotes differentiation with respect to arclength along Y((u/).)
(iii) Ap(u) o-(u, u).
Proof. Differentiate

along )(u/) to obtain

or

(A4)

s(u-u) f(u) f(uL)

g(u-u) + sti A(u)ti,

[A(u)- sI]fi= g(U-Ul).

Suppose (u) is tangent to a p-integral curve. Then i is a right eigenvector of A with
eigenvalue Ap SO that (A4) becomes

(AS) (Ap S)fi= g(u-u).

Since u/ (0), the line joining u to u is not tangent to (UL) at u. Thus we conclude
from (A5) that g=0 and s= Ap, so that (i)=>(ii) and (i) => (iii). Now suppose (ii).
Then (A4) gives that i is an eigenvector and s Ap for p--- 1 or 2. Thus (ii)=>(i) and
(ii)=>(iii). Finally, suppose (iii): s Ap(u). If fi is not parallel to the eigenvector rp of
A(u) and g 0, then (A4) implies that u-u/ is parallel to r,, (the other eigenvector
of A(u)). However, by the midpoint rule, u-u is also tangent to an integral curve at
1/2(uL+u). But this contradicts the fact that ifu (0), then every line through u/ is
tangent exactly once to an integral curve. Consequently, i is tangent to rp at u, and
hence ---0. Thus (iii)=>(i) and (iii)=>(ii).

Eigenvalues and shock speeds. For system (3) with b 0, the eigenvalues are

AI,z(U) 1/2{(a + 1)u +/-x/(a 1)2u2+4v2}.

In addition, if UR (U/), then the Rankine-Hugoniot condition gives

(u, u) uv uv (v, v).

Special points on (u). For system (3) with b =0,

-uL (u) with o-(u., -u) O,

and

tic (u) with tr(u, ilL) u,.
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Moreover, (UL) crosses the u-axis at the points

u-= -{u+x/(a-1) +av2} 0

and for such values of u,

o’(u, u) u

when (a-1)2u2+ av>=O.
Parameterization of(uL). For system (1), the Hugoniot locus (UL) for uL (0)

is parameterized by the angle q ofthe polar coordinate system centered at uL. Explicitly,

where

U= U(Cp) UL + R Cos qg, V=-- V(qg) VL + R Sin q9

R-= R(q) -2
OI. UL "- I.)L

cos p +/3 sin q

a -= a(q) b sin2 q + (a b2) sin q cos

J / ((4 1 sin2 0 + (b c2) sin q cos

For system (3) with b 0, these become

a (a 1) sin q cos q,

In particular

fl sin2 q -cos2
(49.

a
lirn_ ul , lim v VL,
-0 -,0- a --2

a
lim+ [u =oo, lim+ v-- --= a -2

The axes (0). For system (1), the Hugoniot locus of the origin consists of the
lines determined by the cubic equation

-a2u + (a 2bz)u2v + (2b e2)uv2 + ely O.

For system (3), the equation is

-bu + a 2)u2v + 2buy2 + v O.

For b 0, the equation is

(a--2)u2v+v3=O.

Hugoniot Locus of Origin

Region |: A =0 if and only if u=O

FIG. 8(a). Relationship between the axes and the lines h -0 for Region I.
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Hugoniot Locus of Origin

//..,,.,,, Lines A 0

FIG. 8(b). Relationship between the axes and the lines h =0 for Region II.

Hugoniot Locus

// /..
of Origin

Lines A 0

Region III

FIG. 8(c). Relationship between the axes and the lines h =0 for Region III.

,, Hugoniot Locus of Origin

Lines I 0

Region IV

FIG. 8(d). Relationship between the axes and the lines h =0 for Region IV.

The lines A 0. For system (1), the lines A 0 satisfy the quadratic equation

(al b2 bl a2) u2 + (a, c2 c, a2) uv + (b c2 c, b2) v2 0.

For system (3), the equation is

(a bZ)t/2- buy- v2= O.

For b 0, the equation is

at/Z_/)2 0.
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In particular, for a > 0 and b 0, the set of states u for which h (u)= 0 consists of the
two lines through the origin with slopes

The role of the lines h 0 in the classification of the integral curves (see Fig. 8). In
Region I, h 0 if and only if u 0. The boundary between Regions I and II is the set
of systems (3) for which the line h =0 coincides with a line in the Hugoniot locus of
the origin. Crossing into Region II, this line splits into two lines, and systems in Region
II are precisely those that satisfy the condition that the lines 0 cut through the
interiors of the four sectors closest to the u-axis that are determined by the Hugoniot
locus of the origin. The boundary between Regions II and III consists of the systems
(3) for which the lines =0 coincide with two lines other than the u-axis in the
Hugoniot locus of the origin. And finally, the systems in Region III are characterized
by the condition that the lines 0 cut through the interiors of the two middle sectors
determined by the Hugoniot locus of the origin.
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