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Simulation of general relativistic shock wave
interactions by a locally inertial Godunov
method featuring dynamical time dilation

BY ZEKE VOGLER AND BLAKE TEMPLE*

Department of Mathematics, University of California, Davis, CA 95616, USA

We introduce the locally inertial Godunov method with dynamical time dilation, and use
it to give a definitive numerical simulation of a point of shock wave interaction in general
relativity starting from a new initial dataset. Prior work of Groah and Temple justifies
meeting the Einstein constraint equations for the initial data only at the weak level of
Lipshitz continuity in the metric. The forward time simulations, presented here, resolve
the secondary wave in the Smoller–Temple shock wave model for an explosion into
a static, singular, isothermal sphere. The backward time solutions indicate black hole
formation from a smooth solution via collapse associated with an incoming rarefaction
wave. A new feature is that space–time is approximated as locally flat in each grid cell so
that Riemann problems and the Godunov method can be implemented. Clocks are then
dynamically dilated to simulate effects of space–time curvature. Such points of shock
wave interaction are more singular than points on single shock surfaces because the
coordinate systems that make space–time locally flat on single shock surfaces (Gaussian
normal coordinates), break down at points of shock wave interaction.

Keywords: locally inertial, Godunov method, general relativity, dynamic time dilation

1. Introduction

We summarize the results in the thesis (Vogler 2010) in which Vogler introduces
what we term the locally inertial Godunov method with dynamic time dilation,
a fractional step method for simulating spherically symmetric shock wave
solutions of the Einstein–Euler equations of general relativity (GR) in Standard
Schwarzschild Coordinates (SSCs) (Groah & Temple 2004). The underlying issue
is that the gravitational metric appears to be singular at shock waves in SSC
coordinates—the coordinates in which the Einstein equations take the simplest
form (Groah & Temple 2004). The simulations here give a definitive numerical
demonstration that the locally inertial Godunov method is nevertheless a viable
first-order numerical method for simulating shock waves in SSC. Numerical
convergence of the method is demonstrated for a one parameter family of initial
data obtained by matching a critically expanding Friedmann–Robertson–Walker
(FRW) space–time Lipschitz continuously to the inside of a static Tolmann–
Oppenheimer–Volkoff (TOV) solution, creating a point of shock wave interaction
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2 Z. Vogler and B. Temple

at the interface. (Shock surfaces generically intersect on a two-dimensional
surface in space–time, but radial shocks with spherical symmetry intersect on
a three-dimensional surface, and cross at a single point in the (t, r) plane.) The
subsequent evolution provides a simple model for a GR explosion containing both
an imploding and exploding shock wave. The most interesting new feature of the
numerical method is that curved space–time is approximated by Minkowski flat
space–time in each grid cell making approximation by Riemann problems (RPs)
and the Godunov method viable, and this is compensated for by dilating the
clocks in each grid cell to account for space–time curvature. In this paper, we
record the elements of the numerical method at a level sufficient for replication,
present a definitive case for convergence of the method, and establish the Lipschitz
structure of the gravitational metric at points of shock wave interaction in
the forward time simulation of a GR explosion. (See Vogler (2010) for black
hole formation in the time-reversed problem.) Points of shock wave interaction
are more singular than points on single shock surfaces because Gaussian normal
coordinates, the coordinate systems that make space–time locally flat on single
shock surfaces, break down at points of shock wave interaction (Israel 1966).
In the follow-up paper, Reintjes & Temple (submitted) present Reintjes’ new
proof that, in contrast to Israel’s theorem for single shock surfaces (Israel 1966),
the gravitational metric is essentially only C 0,1 (Lipschitz continuous) at points
of shock wave interaction, and cannot be smoothed to C 1,1 within the C 1,1
coordinate atlas. As a consequence, points of shock wave interaction are a new
kind of regularity singularity where space–time is not locally flat in the sense
that unbounded second derivatives of the metric exist in every coordinate system
(Reintjes 2011). (Such singularities are distinct from surface layer singularities
by the absence of delta function sources in the curvature tensor (Israel 1966;
Gaspar & Racz 2011; Reintjes & Temple submitted).)
The point of departure for this work is the existence theory (Groah & Temple

2004), in which Groah and Temple obtain existence of weak shock wave solutions
of the Einstein equations in SSC for gravitational metrics that are only C 0,1
at shock waves (Glimm 1965). Weak solutions are proven to exist for finite
time starting from an initial C 0,1 metric and initial density and velocity profiles
of bounded total variation. The locally inertial formulation is amenable to
approximation locally by flat Minkowski space–time, so exact RP solutions for
the relativistic compressible Euler equations can be used in each grid cell, thereby
making the analysis of a fractional step Glimm scheme feasible (Lax 1957; Glimm
1965; Smoller 1983). The conclusion is that Lipschitz continuous gravitational
metrics make physical sense in SSC as weak solutions of the Einstein equations in
the presence of arbitrary numbers of interacting shock waves of arbitrary strength.
But this is a general theorem, and there is no known analysis that rigorously
details the local structure of solutions at points where shock waves interact. In
his thesis, Vogler (2010) developed these ideas into a viable numerical method,
and used it to carefully simulate a point of GR shock wave interaction in forward
time (and black hole formation in backward time, c.f. Neilsen & Choptuik (1999)).
This is interesting from several standpoints.
First, the numerics and supporting analysis here establishes and clarifies the

C 0,1 structure of the gravitational metric at points of shock wave interaction, and
thereby numerically verifies the starting assumptions in Reintes proof (Reintjes
2011). Also, we assume p= sr, s = c2/3 (the equation of state for both pure
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The locally inertial Godunov method 3

radiation and the extreme relativistic limit of free particles, cf. Weinberg 1972),
and in this case the relativistic Euler equations form a Nishida system (Nishida
1968; Smoller & Temple 1993). Vogler’s exact global Riemann solver takes
advantage of the Nishida property of shock curves, namely, that shock curves
are globally translationally invariant in the plane of Riemann invariants. This
greatly simplifies the RP step of the locally inertial Godunov method (Groah &
Temple 2004).
The initial dataset is also interesting in its own right. First, it agrees with

exact solutions on either side of the FRW–TOV intersection, so finite speed
of propagation implies that exact boundary conditions can be imposed and
convergence can be tested on either side of a bounded region of interaction. In
particular, the method entails starting with boundary data on the FRW side
of the simulation, and integrating through the region of interaction to recover
(up to transformation of the SSC time variable) the TOV metric on the other
side. Thus, we have a GR framework tailored for a definitive test of convergence
of numerical methods at shock waves. The initial data also provide a natural
starting point for a rigorous proof of GR shock wave or black hole formation
from smooth solutions. Keep in mind that the admissibility of metrics at the
lower regularity C 0,1 in SSC makes it feasible to create viable initial data by
matching exact solutions continuously. Matching metrics at the stronger level of
C 1,1 would be problematic, c.f. Hawking & Ellis (1973). Finally, the simulation can
be interpreted as resolving the secondary wave neglected in the Smoller Temple
shock wave model (Smoller & Temple 1995)
The numerical demonstrations are backed up by theorem 6.1 below, which

states that if a sequence of approximate solutions generated by the locally inertial
Godunov method converge pointwise almost everywhere and the total variation of
the fluid variables remains uniformly bounded in time, then the limit solution is an
exact weak solution to the Einstein equations. By this general theorem, it suffices
only to demonstrate numerical convergence to a limit, with bounded oscillations,
in order to conclude the simulated solutions accurately represent exact (weak)
solutions of the Einstein equations. (See Vogler 2010; Vogler & Temple 2011 for
details of the proof.)
In §2, we introduce the Einstein–Euler equations, and the FRW and TOV exact

solutions. In §3, we give the elements of the locally inertial Godunov method. In
§4, we discuss the RP step of the method. In §5, we put in the time dilation.
In §6, we state theorem 6.1 on convergence. In §7, we give the one parameter
family of matched FRW–TOV initial data. In §8, we present the forward time
simulations and give a definitive numerical demonstration of the convergence of
the locally inertial Godunov method in the presence of shock waves. We conclude
by putting in dimensions to give an indication of the physical regimes to which
the simulations apply.

2. Preliminaries

The Einstein–Euler equations G = kT of GR are equations for the gravitational
metric tensor g, coupled to the relativistic compressible Euler equations

DivT = 0, (2.1)
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4 Z. Vogler and B. Temple

through the Bianchi identities DivG = 0 (Weinberg 1972). Here, G is the Einstein
curvature tensor, T is the stress energy tensor for a perfect fluid, k = 8pG/c4
is the coupling constant, G is Newton’s gravitational constant, and we use
the convention that c = 1 and G = 1 whenever convenient (Weinberg 1972). In
component form,

Tij = (r + p)wiwj + pgij , (2.2)

where w= (w0, . . . ,w3) is the unit 4-velocity, r the energy density, p the pressure,
and we use the Einstein summation convention whereby indices i, j = 0, . . . , 3 are
raised and lowered with the metric ds2 = gij dxi dxj , and summation is assumed
on repeated up-down indices.
We restrict to spherically symmetric gravitational metrics in SSC coordinates

ds2 = −B(t, r) dt2 + 1
A(t, r)

dr2 + r2 dU2, (2.3)

where (t, r) are temporal and radial coordinates, dU2 = dq2 + sin2 q df2 is the
line element of the unit 2-sphere, and x ≡ (x0, . . . , x3)≡ (t, r , q,f) is the space–
time coordinate system. It is well known that a general spherically symmetric
gravitational metric of form ds2 = −B(t, r) dt2 +A(t, r)−1 dr2 + 2D(t, r) dt dr +
C (t, r) dU2 can, under generic conditions, be transformed over to SSC
(Weinberg 1972).
Putting the SSC metric ansatz (2.3) into MAPLE, the Einstein equations G =

kT reduce to the four PDEs (1.2)–(1.5) of Groah & Temple (2004) referred to
here as (E1)–(E4), respectively. (Beware that in Groah & Temple (2004), A and
B stand for the dt2 and dr2 coefficients, respectively, cf. (2.3).)
In the presence of shock waves, the stress–energy tensor T is discontinuous, and

thus A and B in (E1)–(E4) are Lipschitz continuous at best, and (E4) is satisfied
only in the weak sense. In Groah & Temple (2004), it is shown that when the
metric is Lipschitz and the stress–energy tensor is bounded in sup-norm, system
(E1)–(E4) is weakly equivalent to the system obtained by replacing (E2) and (E4)
with ViT i0 = 0 and ViT i1 = 0, respectively, (cf. (2.1)), and these can be written
in the locally inertial form

{T 00M },0 + {
√
ABT 01M },1 = −2

r

√
ABT 01M (2.4)

and

{T 01M },0 + {
√
ABT 11M },1 = −1

2

√
AB

{
4
r
T 11M + ((1/A)− 1)

r
(T 00M − T 11M )

+ 2kr
A
(T 00M T

11
M − (T 01M )2)− 4rT 22

}
, (2.5)

where TijM, are the Minkowski stresses, related to T
ij by

T 00M =BT 00; T 01M =
√
B
A
T 01; T 11M = 1

A
T 11 and T 22 = sr

r2
. (2.6)
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The locally inertial Godunov method 5

Here, {},0 and {},1 denote derivatives with respect to t and r , respectively. The
remaining two equations (E1) and (E3) can then be rearranged as

A′

A
= ((1/A)− 1)

r
− kr
A
T 00M and

B ′

B
= ((1/A)− 1)

r
+ kr
A
T 11M . (2.7)

Using A(t, r)= 1− 2GM (t, r)/r in (E1) gives the formula for the mass functionM
(Weinberg 1972),

M (t, r)=M (t, r0)+
k

2

∫ r

r0
T 00M (t, r)r

2 dr . (2.8)

When p= sr, s = const., the components of TM are given by

T 00M = c
4 + s2v2

c2 − v2
r; T 01M = c

2 + s2

c2 − v2
cvr and T 11M = v2 + s2

c2 − v2
c2r, (2.9)

where

v = 1√
AB
w1

w0

is the velocity, cf. Groah & Temple (2004). The main point is that TM is
independent of the metric, and unlike T , the equations (2.6) and (2.7) close
when T 0jM are taken as the conserved quantities.
Using x in place of r , the equations (2.4), (2.5) and (E1), (E3) take the form

of a system of conservation laws with sources,

ut + f (A, u)x = g(A, u, x), A′ = h(A, u, x), (2.10)

where u = (T 00M ,T 01M )≡ (u0, u1) are the Minkowski energy and momentum
densities, A= (A,B) are the metric components,

f (A, u)=
√
AB(T 01M ,T

11
M ) (2.11)

is the flux, g(A, u, x)= (g0(A, u, x), g1(A, u, x)), with

g0(A, u, x)= −2
x

√
ABT 01M (2.12)

and

g1(A, u, x)= −1
2

√
AB

{
4
x
T 11M + (1/A− 1)

x
(T 00M − T 11M )

+2kx
A
(T 00M T

11
M − (T 01M )2)− 4xT 22

}
, (2.13)

gives the source term of the balance law, and h(A, u, x)= (h0(A, u, x),
h1(A, u, x)), with

h0(A, u, x)= (1−A)
x

− kxT 00M and h1(A, u, x)= B
A

{
(1−A)
x

+ kxT 11M

}
.

Our purpose is to introduce an effective first-order method, the locally inertial
Godunov method, and use it to compute a family of weak solutions of system

Proc. R. Soc. A

 on May 17, 2012rspa.royalsocietypublishing.orgDownloaded from 



6 Z. Vogler and B. Temple

(2.10). We next describe the method, then introduce an initial dataset, and end
by simulating solutions starting from the initial data.

3. Locally inertial Godunov method

In this section, we define the algorithm for the locally inertial Godunov method
starting from initial data with two boundary conditions. In §7, we define the
initial data by matching an FRW to a TOV space–time at fixed time in SSC
coordinates, and the boundary values will be determined by formulas for the
FRW and TOV solutions on the left and right boundaries, respectively.
To start, fix a minimum radius rmin, a maximum radius rmax, the number of

spatial gridpoints n and a start time t0. In our simulations, the number of spatial
grid points n is chosen to be a power of two (i.e. n = 2k for some k). From these
parameters, the mesh width Dx is determined to be

Dx = rmax − rmin
n − 1 , (3.1)

and is fixed throughout the scheme. Let (xi , tj) represent a mesh point in an
unstaggered grid defined on the domain

D = {rmin ≤ xi ≤ rmax, tj ≥ t0}. (3.2)

The spatial points are defined as

xi ≡ rmin + (i − 1)Dx for i = 1, . . . ,n. (3.3)

Unlike the mesh width, the time step or the mesh height, Dt, changes from one
time step to the next because there is no way to determine beforehand the smallest
Dt satisfying the CFL condition for every time step. So for every time tj , a new
time step is computed by

Dtj =min
{

Dx
2
√
AijBij

}

, (3.4)

where the minimum is taken over all the spatial gridpoints at time tj of the metric
Aij = (Aij ,Bij), to be defined shortly. Starting at t0, the temporal mesh points are
defined by

tj ≡ t0 +
j∑

k=1
Dtk for j = 1, . . . ,∞. (3.5)

We assume at our current time tj for j ≥ 0 there exists a solution u(tj , x) and
A(tj , x) for (tj , x) ∈D. This solution is either provided as the starting solution at
t0 or from the last iteration of the locally inertial Godunov scheme constructed
inductively. To implement the method, this solution is discretized into piecewise
constant states. Discretizing the conserved quantities u(tj , x), let uDx be given by
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The locally inertial Godunov method 7

u0, j

A1,j Aij Ai+1, j An+1, j
tj+1

ghost ghost
tj

u1, j
uij un+1,junj

ui+1, jui–1, j

Figure 1. Staggering of the metric A and the solution u.

piecewise constant states uij at time t = t+j as follows:
uDx(t, x)= uij ≡ u(tj , xi) for xi− ≤ x < xi+, t = t+j . (3.6)

For notational convenience, we denote xi+ ≡ xi+1/2 and xi− ≡ xi−1/2 throughout
this paper. Define the grid rectangle Rij so the mesh point (xi−, tj) is in the
bottom centre,

Rij ≡ {xi−1 ≤ x < xi , tj ≤ t < tj+1}, 1≤ i ≤ n + 1, j ≥ 0 (3.7)

(cf. figure 1). Each grid rectangle is a Riemann cell, containing a solution to
a distinct RP. We are limited to solving RPs within Riemann cells having a
constant speed of light, so the metric source A= (A,B) must be approximated
by a constant value, denoted Aij , in each cell Rij throughout the simulation. These
constant values are established by setting

ADx(t, x)=Aij ≡A(tj , xi−) for (t, x) ∈Rij . (3.8)

This approximation makes ADx discontinuous along each line x = xi , i = 1, . . . ,n,
at each time step t = tj .
Because the Godunov step is a three-point method, we need boundary data

u0,j , A0,j for a left ghost cell and un+1,j , An+1,j for a right ghost cell (cf. figure 1).
In our simulation in §7, we use boundary data from the exact FRW and TOV
solutions, this being valid until the interaction region reaches the boundary.
Figure 1 displays the location of these ghost cells.
The metric discontinuities are staggered relative to the fluid variables as

illustrated in figure 1. Thus, the metric constants ADx establish a locally inertial
coordinate frame in each grid cell Rij , and the discontinuity in uDx at the bottom
centre of Rij thus poses a classical RP for the compressible Euler equations in
Minkowski space–time,

ut + f (Aij , u)x = 0

and u0(x)=
{
uL = ui−1,j x < xi−
uR = ui,j x > xi−.

(3.9)

Let uRPij (t, x) denote the solution of (3.9) within the Riemann cell Rij , and
define the concatenation uRPDx (t, x)≡ uRPij (t, x) for (t, x) ∈Rij as the RP step of the
fractional step scheme. Given this, the Godunov method computes the average of
uRPDx across the intervals [xi−, xi+] at the next time step tj+1. Since the metric A
is different on both sides of xi , separate averages must be taken over the left and
right half cells and combined to obtain the true average. We let ūLij and ū

R
ij denote
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8 Z. Vogler and B. Temple

the averages on the left and right half cells, respectively, and uL∗ = uRPij (t−j+1, xi−)
and uR∗ = uRPij (t−j+1, xi+) the zero speed states of the left and right, respectively, as
shown in figure 1. To perform the Godunov step on the left half cell, we compute

ūLij = uij −
2Dt
Dx

{f (Aij , uij)− f (Aij , uL∗ )}, (3.10)

and do the same for the right half cell

ūRij = uij −
2Dt
Dx

{f (Aij , uR∗ )− f (Aij , uij)}, (3.11)

where the 2 accounts for the half cell calculations. Taking the average of these
results leads to

ūij = 1
2{ūLij + ūRij }, (3.12)

defining our Godunov step of the method.
To define the ODE step of our fractional step method, let û(t, u0) denote the

solution to

ût =G(Aij , û, x)= g(Aij , û, x)−A′ · VAf (Aij , û, x), (3.13)

starting from initial data û(0)= u0, where G(A, û, x)= (G0,G1) takes the form

G0 = −1
2

√
AB

(
c2 + s2

c2 − v2

)
cv

r

x

{
2

(
1
A

+ 1
)

− k

A
(c2 − s2)rx2

}
(3.14)

and

G1 = −1
2

√
AB

(
c2 + s2

c2 − v2

)
r

x

{
4v2 +

(
1
A

− 1
)
(c2 + v2)+ k

A
(s2 − v2)c2rx2

}
.

(3.15)

We define the approximate solution uDx(t, x) and ADx(t, x) analytically to
derive the piecewise formulae used to update the numerical scheme and to be
used in the convergence proof of §6. The conserved quantities are defined by
the formula

uDx(t, x)= uRPDx (t, x)+
∫ t

tj
{G(Aij , û(x − tj , uRPDx (t, x), x)}dx. (3.16)

Therefore, uDx(t, x) is equal to uRPDx (t, x), the solution to the RPs, plus a correction
term from the ODE step of the method. The metric is derived from the definition
of the mass

MDx(x , t)=Mrmin + k

2

∫ x

rmin
u0Dx(r , t)r

2 dr . (3.17)

In terms of these equations, define the metric as

ADx(x , t)= 1− 2MDx(x , t)
x

(3.18)

and

BDx(x , t)=Br0 exp
∫ x

rmin

{{ADx(r , t)}−1 − 1
r

+ kr
ADx(r , t)

T 11M (uDx(r , t))
}
dr . (3.19)
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The locally inertial Godunov method 9

Finally, in order to update the metric and conserved quantities, we use the
RP averages ūij to replace the RP solution uRPDx (t, x) and perform numerical
integration on the analytical equations (3.16)–(3.19). This process leads us
to define

ui,j+1 = ūij + {G(12(Aij +Ai+1,j), û(x − tj , ūij , x))}Dtj . (3.20)

The mass is

Mi,j+1 =Mrmin +
∑

k<i

k

2
(u0Dx(xk−, tj+1)x

2
k−Dx), (3.21)

with

u0Dx(xk−, tj+1)= 1
2{u0k−1,j+1 + u0k,j+1}, (3.22)

and the metric becomes

Ai,j+1 = 1− 2Mi,j+1
xi−

(3.23)

and

Bi,j+1 =Brmin et, (3.24)

where

t =
{

∑

k<i

{Ak,j+1}−1 − 1
xk−

+ kxk−
Ak,j+1

T 11M (uDx(xk−, tj+1))Dx

}

, (3.25)

with

uDx(xk−, tj+1)= 1
2{uk−1,j+1 + uk,j+1}. (3.26)

Note that since the metric is staggered relative to the conserved quantities, we
use the in-between values, like xk− and uDx(xk−, tj+1) in the update step. Let
Ai,j+1 = (Ai,j+1,Bi,j+1) denote the constant value for ADx on Ri,j+1. This concludes
the update step and completes the definition of the approximate solution uDx and
ADx by induction.
To summarize the method, the locally inertial Godunov method constructs

the solution inductively with four major steps: a RP step, a Godunov averaging
step (with time dilation), an ODE step for sources and a final step to update
the metric. The RP step (3.9) generates the approximation uRPDx (t, x). Formulae
(3.10)–(3.12) denote the Godunov step. The ODE step is detailed in (3.13)–(3.16);
and equations (3.20)–(3.26) update the metric.

4. The Riemann problem step

In this section, we discuss the RP step of the locally inertial method. When√
AB = const., p= sr and we neglect the source terms on the right-hand side,
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equations (2.4) and (2.5) reduce to

ut +
√
ABF(u)x = 0, (4.1)

where

u ≡ (u0, u1)=
(

r

[(
s + c2
c2

)
v2

c2 − v2
+ 1

]
, r(s + c2) v

c2 − v2

)
(4.2)

and

F(u)≡ (F 0,F 1)=
(

r(s + c2) v

c2 − v2
, r

[
(s + c2) v2

c2 − v2
+ s

])
. (4.3)

The RP is the initial value problem when the initial data u0(x) consist of two
constant states separated by a jump discontinuity at x = 0,

u0(x)=
{
uL x < 0
uR x > 0.

(4.4)

System (4.1) with (4.4) define the RP step of the locally inertial method. Except
for the factor

√
AB, equations (4.1) agree with the special relativistic compressible

Euler equations,
ut + F(u)x = 0, (4.5)

and we will account for the factor
√
AB by time-dilation. When

√
AB = 1, p= sr,

the RP for the compressible Euler equations was given in closed form in Smoller &
Temple (1993). We summarize the results in the following theorem:

Theorem 4.1. There exists a solution of the RP for system (4.5) with an equation
of state p= sr, 0<

√
s < c, as long as uL and uR satisfy rL, rR > 0 and −c <

vL, vR < c. The solution is given by a 1-wave followed by a 2-wave, satisfies r > 0,
and all speeds are bounded by c. This solution is unique in the class of rarefaction
waves and admissible shock waves.

We now record the exact formulae required in the construction of the RP
solutions (cf. Smoller & Temple (1993)). (These formulae correct typos in
Smoller & Temple (1993), specifically in (2.5.73), (2.5.74), (4.2.12) and (4.2.13),
cf. Groah & Temple (2004).)
To start, the mapping between the conserved variables (u0, u1) and the fluid

variables (r, v) is given by

v(u0, u1)= c2

2su1
{(s + c2)u0 −

√
(s + c2)2(u0)2 − 4s(u1)2} (4.6)

and

r(u0, u1)= (c
2 − v2)u1

(s + c2)v , (4.7)

which is 1− 1 and non-singular in r > 0, |v| < c. The eigenvalues (wave speeds)
l1,2 = l−,+ of DF in (4.3) are given by

li =
v ± √

s

1± √
sv/c2

,
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The locally inertial Godunov method 11

and the Riemann invariants r and s are

r(r, v)= 1
2
ln

(
c + v

c − v

)
−

√
K
2
ln(r) (4.8)

and

s(r, v)= 1
2
ln

(
c + v

c − v

)
+

√
K
2
ln(r), (4.9)

where

K = 2sc2

(s + c2)2 . (4.10)

so that (r, v) are given by

r(r , s)= exp
{
s − r√
2K

}
and v(r , s)= −c(1− es+r)

1+ es+r . (4.11)

The following formulae are also useful:

v(l1)=
l1 + √

s

1+ √
sl1/c2

, v(l2)=
l2 − √

s

1− √
sl2/c2

,

r(r , v)= exp
{

−
√
2
K

(
r − 1
2
ln

{
c + v

c − v

})}

and r(s, v)= exp
{√
2
K

(
s − 1
2
ln

{
c + v

c − v

})}

.

The 1,2-rarefaction curves R1, R2 are the straight lines s = const., r = const.
in the plane of Riemann invariants, respectively, and the 1,2-shock curves S1, S2
are given by the following parametrization with respect to b, 0≤ b < ∞:

Dr = r − rL = −1
2
ln{f+(2Kb)} −

√
K
2
ln{f+(b)} ≡ Sr1 (b),

Ds = s − sL = −1
2
ln{f+(2Kb)} +

√
K
2
ln{f+(b)} ≡ Ss1 (b)

(4.12)

and

Dr = r − rL = −1
2
ln{f+(2Kb)} −

√
K
2
ln{f−(b)} ≡ Sr2 (b),

Ds = s − sL = −1
2
ln{f+(2Kb)} +

√
K
2
ln{f−(b)} ≡ Ss2 (b),

(4.13)

where

f∓(b)≡ 1+ b

{

1∓
√

1+ 2
b

}

(4.14)

and

b ≡ b(v, vL)=
(s + c2)2
2s2

(v − vL)2

(c2 − v2)(c2 − v2L)
, (4.15)
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Figure 2. Effects of time dilation.

with shock speeds

s1 = c
√
f+(b)+ s/c2

f+(b)+ c2/s
and s2 = c

√
f−(b)+ s/c2

f−(b)+ c2/s
. (4.16)

The formulae (4.12) and (4.13) display the so-called Nishida property of this
system, that i-shock curves based at different points are rigid translations of
one another, and 1-shock curves are reflections of 2-shock curves (cf. Smoller &
Temple (1993)). Constructing the Godunov averages requires computing the zero
speed middle state of the RP, which is greatly simplified in plane of Riemann
invariants by the Nishida property. Vogler’s RP algorithm solves for the middle
state u∗ ≡ u(t, x)= (r∗, v∗) by first converting uL and uR to Riemann invariants
via (4.8) and (4.9), numerically computing UM in the rs-plane, then converting
UM back to fluid variables using (4.11).

5. Time dilation between space–time cells

When
√
AB += 1, the factor can be accounted for in the solution of the RP for

(4.1) in a grid cell by solving the RP for
√
AB = 1, and then rescaling the time in

that grid cell, by a factor of
√
AB. The factor

√
AB has the effect of dilating the

physical (geodesic) time in a grid cell relative to the coordinate time (cf. figure 2).
Thus, our GR Godunov method has the nice property that it allows for the use of
exact RP solutions in each grid cell, and the consequent errors due to neglecting
the local curvature are accounted for by simply rescaling the local time relative to
coordinate time. The following theorem, based on this, expresses that if the time
in a Godunov cell is shortened, the resulting average is an affine combination of
the original average and the centre state, based on the ratio of the original and
new time change.

Theorem 5.1. Let
Dt̃ = Dx

2
√
AB

(5.1)
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The locally inertial Godunov method 13

represent the maximum time in a Godunov cell before the CFL condition is
violated. If the change in time is shortened from Dt̃ to Dt < Dt̃ in a Godunov
cell containing the solution to the RP’s u(t, x), the average across that grid cell at
time Dt̃, ū(Dt̃), and at time Dt, ū(Dt), are related by

ū(Dt)= lū(Dt̃)+ (1− l)uC , (5.2)

where l = Dt/Dt̃ < 1 is the ratio between the two times and uC is the intermediate
state between adjacent RPs.

6. Convergence to a weak solution

Our main convergence theorem regarding the locally inertial Godunov method
with dynamic time dilation is the following.

Theorem 6.1. Let uDx(t, x) and ADx(t, x) be the approximate solution generated
by the locally inertial Godunov method starting from the initial data uDx(t0, x) and
ADx(t0, x) for t0 > 0. Assume these approximate solutions exist up to some time
tend > t0 and converge to a solution (uDx ,ADx)→ (u,A) as Dx→ 0 along with a
total variation bound at each time step tj

T .V .[rmin,rmax]{uDx(tj , ·)} <V , (6.1)

where T .V .[rmin,rmax]{uDx(tj , ·)} represents the total variation of the function
uDx(tj , x) on the interval [rmin, rmax]. Assume the total variation is independent
of the time step tj and the mesh length Dx. Then the solution (u,A) is a weak
solution to the Einstein equations (E1)–(E4).

The proof, adaptation of the proof in Groah & Temple (2004), involves
demonstrating that the terms in the residual of numerical approximations of the
locally inertial Godunov method that do not converge first order in Dx , come
back to cancel other terms of the same order, producing only terms first order
in Dx . The result implies that only convergence and stability need be verified
numerically in order to conclude the limit is a weak solution of the Einstein
equations. The proof is omitted. See Vogler (2010) and Vogler & Temple (2011)
for details.

7. One parameter family of shock wave initial data

We obtain a one parameter family of initial data by matching FRW metrics
Lipschitz continuously to TOV metrics in SSC. The Einstein equations for the
k = 0 FRW metric

ds2 = −dt2 + R2(t){dr2 + r2 dU2}, (7.1)

in co-moving coordinates are

H 2 = k

3
r − k and ṙ = −3(r + p)H . (7.2)
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14 Z. Vogler and B. Temple

When p= rc2/3, the solution is

r(t)= 3
4kt2
, (7.3)

where we have assumed t is time since the big bang (Temple & Smoller 2009).
To match FRW to TOV in SSC, we use the following representation of FRW

found in Temple & Smoller (2009). (We use bar to distinguish SSC coordinates
from unbarred FRW coordinates.)

Theorem 7.1. Assume p= 1
3r and k = 0. Then the FRW metric (7.1) under the

coordinate transformation

t̄ =
{
1+ r̄

2

4t2

}
t = t + r

2

4
, r̄ =

√
tr , (7.4)

goes over to the following metric in SSC

ds2 = − 1
1− v2

dt̄ 2 + 1
1− v2

dr̄2 + r̄2 dU2, (7.5)

where the fluid velocity v is related to r̄/t̄ by

x ≡ r̄
t̄

= 2v
1+ v2

. (7.6)

A direct consequence is the following corollary.

Corollary 7.1. The fluid variables (r, v) corresponding to (7.5) satisfy

r(x, r̄)= 3v(x)
2

kr̄2
and v(x)= 1−

√
1− x2

x
. (7.7)

The general relativistic version of TOV metrics that model static singular
isothermal spheres was described in Smoller & Temple (1993). Assuming p= sr,
these are given by

ds2 = −B(r̄) dt̄ 2 +
(

1
1− 2GM (r̄)/r̄

)
dr̄2 + r̄2 dU2, (7.8)

with

B(r̄)=Bt(t̄)B0(r̄)4s/(1+s), A(r̄)= 1− 8pGg and M (r̄)= 4pgr̄ , (7.9)

and
r(r̄)= g

r̄2
and v = 0, (7.10)

where
g = 1
2pG

(
s

1+ 6s + s2

)
, (7.11)

depends on s. The velocity is zero because the TOV metric is a time-independent
metric in SSC coordinates (cf. eqn (3.4) of Temple & Smoller (2009)). The
arbitrary function Bt(t̄) is included to account for the time scale freedom in
(7.8), a freedom required to match the simulated FRW–TOV solution at a later
time. That is, our simulation involves integrating the metric starting from FRW
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The locally inertial Godunov method 15

boundary data on the left-hand side of the simulation, and the TOV metric comes
out of the simulation to the right of a region of interaction. But the time-scaling
function Bt(t̄) comes out of the simulation, cannot be imposed ahead of time,
and as a result, the TOV metric must be re-matched by adjusting Bt(t̄) at each
time step.
To construct the initial dataset, assume an initial time t̄0 > 0 and radius r̄0 to

be determined later. We match the metric components (A,B) of the FRW and
TOV metrics (7.1) and (7.8) Lipschitz continuously at (t̄0, r̄0), thereby posing an
initial discontinuity in the fluid variables. By (7.5) and (7.9), we have

AFRW(t̄0, r̄0)= 1− v

(
r̄0
t̄0

)2
= 1− 8pGg =ATOV(t̄0, r̄0). (7.12)

Let v0 = v(r̄0/t̄0) represent the fluid velocity on the FRW side of the
discontinuity so (7.12) implies

v0 =
√
8pGg =

√
4s

1+ 6s + s2
. (7.13)

Note that v0 is independent of the free parameter r0. Using (7.6), we find the
unknown starting time t̄0 as

t̄0 =
r̄0(1+ v20)
2v0

. (7.14)

The independence of v0 from r̄0 along with (7.14) implies the initial start time
is proportional to the initial radius of the discontinuity. Finding t̄0 enables us to
build the initial profile of the FRW metric for any radial coordinate r̄ < r̄0 by
computing x = r̄/t̄0 and using equations (7.5)–(7.7).
On the TOV side, A is already determined as the constant (7.9). To find B,

use (7.5) and (7.9) to get

BTOV(t̄0, r̄0)=B0(r̄0)4s/(1+s) = 1
1− v20

=BFRW(t̄0, r̄0), (7.15)

forcing the constant B0 to take the form

B0 =
r̄−4s/(1+s)
0

1− v20
. (7.16)

Combining (7.12)–(7.16) in the case s = 1/3, and letting x = r̄/t̄0, we define the
initial data vinit(r̄), rinit(r̄), Ainit(r̄) and Binit(r̄) posed at time t̄0, depending on
the free parameter r̄0, as follows:

vinit(r̄)=






1−
√
1− x2

x
r̄ < r̄0

0 r̄ > r̄0,
rinit(r̄)=






3v2init
kr̄2

r̄ < r̄0
g

r̄2
r̄ > r̄0

(7.17)
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16 Z. Vogler and B. Temple

and

Ainit(r̄)=
{
1− v2init r̄ < r̄0
1− 8pGg r̄ > r̄0,

Binit(r̄)=






1
1− v2init

r̄ < r̄0

B0(r̄)4s/(1+s) r̄ > r̄0.
(7.18)

Finally, we give the boundary data for the ghost cells using the exact FRW
and TOV solutions at their respective boundaries. For the ghost cell on the FRW
side at the gridpoint x0, use (7.7) to express the fluid velocity and density as a
function of time t̄ j

v0,j =
1−

√
1− x2

x
and r0,j =

3v20j
kx20
. (7.19)

Since the metric components are staggered relative to the fluid variables, we
need to compute the half gridpoint x1/2 = x0 + Dx/2, and use it to find the
corresponding velocity

v1/2,j =
1−

√
1− x2

x
, (7.20)

for x = x1/2/t̄ j . We use this velocity to compute the metric components,

A1,j = 1− v21/2,j and B1j =
1

1− v21/2,j
. (7.21)

The boundary condition for the TOV is static, so values of the fluid variables
and the metric component A are constant in time, but the function B changes by
the time scale factor Bt in (7.9), and must be rematched during each time step.
Using the above criteria for the TOV ghost cell, let xn be the gridpoint position
of this border. We rematch the time scale at time t̄ j by the following formula

Bt =B(t̄ j , xn)(xn)−4s/(1+s), (7.22)

where B(t̄ j , xn) is the simulated solution at the coordinate (t̄ j , xn).
In the final section to follow, we present our simulation of solutions of (2.10)

starting from initial boundary data given in (7.17)–(7.18) and (7.19)–(7.22), using
the locally inertial Godunov method developed above.

8. FRW–TOV simulation in forward time

We now present the results of the forward time simulation of solutions of the
Einstein equations (2.10) starting from the matched FRW–TOV initial data
given in (7.17)–(7.18), together with the boundary conditions (7.19)–(7.22), in
the special case s = 1/3. By selecting the initial discontinuity at r̄0 = 5, equation
(7.14) gives the initial start time of t̄0 = 5.4554. Putting s = 1/3 into the initial
density (7.17) gives r = 3r̄, so the density jumps down by one-third from the FRW
side to the TOV side of the initial discontinuity.
With these initial profiles, we run the simulation for one unit of time (i.e.

t̄end = t̄0 + 1). Figure 3a depicts the evolution of the fluid variables (r, v), giving
us a frame-by-frame view for the evolution of the fluid variables, from the left
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(a) (b)

Figure 3. Solution after one time step. (a) Evolution of the fluid variables. (b) Derivatives of the
metric. (Online version in colour.)

frame at t̄0 to the right frame at t̄end. After the initial time t̄0, two shock waves
form, the stronger shock moving out towards the TOV side and the weaker shock
moving in towards the FRW side, creating an intermediate pocket of higher
density expanding and interacting with the FRW and TOV metrics on either
side. We conclude that the incoming wave, viewed as secondary to the strong
outgoing shock wave, is another shock wave, reflected back in.
Next, we focus attention on the resulting solution at the end time, t̄end.

Figure 3b highlights where the two shock positions are relative to the cone of
sound and the cone of light. The cone of light is represented by the white region
while the cone of sound, embedded in the cone of light, is represented by the
grey region. Note that the edges of the cone of sound align with the shock waves
on either side, confirming that the interaction region between the two metrics
lies completely within the cone of sound. In particular, the edges of the cone
of sound move at the local sound speed, so if one of the edges of the cone of
sound were to get slightly ahead or behind the shock position, then that edge
would get pushed back into the shock as the characteristics impinge on the shock,
thereby explaining the alignment. Figure 3b also displays the spatial derivatives
A′ and B ′ in the metric components A and B, respectively. The derivatives
(A′,B ′), found using numerical differentiation, have discontinuities aligned with
the discontinuities associated with the fluid variables at the edges of the cone
of sound. Figure 3a shows the profiles for the metric (A,B) are no better than
Lipschitz continuous at shocks, reinforcing the fact that we have a weak solution
to the Einstein equations.
Convergence was tested by successive mesh refinements confirming a first-order

convergence rate. Convergence to FRW and TOV was confirmed on each side
of the interaction region. A range of the initial data parameters were explored
resulting in two conclusions. Solutions always exhibit a region of higher density
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between two shock waves, a strong shock on the TOV side and a weak shock on the
FRW side, and shock speeds change with parameters, resulting in quantitatively
different solutions. We conclude that the initial dataset produces a one parameter
family of distinct but quantitatively similar shock wave solutions of the Einstein
equations, each representing a point of shock wave interaction emanating from
an initial discontinuity in the fluids.
To get a physical sense, the range of values in our simulation on a solar scale

is 0.09M- <M < 1.5M-, 4.43 km< r̄∗ < 10.37 km and 2.69× 10−5 s< t̄∗ < 3.18×
10−5 s, or about 1.4 times solar mass across a distance of about 5.94 km for a time
interval of about 4.9ms. Setting one unit of mass equal to a galactic mass of about
1.8× 1011M-, the simulation corresponds to a mass of about 1.4 times galactic
mass across a distance of about 0.12 light-years in a time interval of about 10 days.

9. Conclusion

In summary, this is a successful demonstration of convergence of an effective
numerical method, at a point of GR shock wave interaction, in a coordinate
system where the gravitational metric appears singular at shocks, in a framework
tailored for a definitive test of numerical convergence. A proof by Reintjes
presented in a follow-up paper (Reintjes & Temple (submitted)) shows that points
of shock wave interaction exhibiting the structure simulated here are a new kind
of singularity in GR where the gravitational metric tensor cannot be smoothed to
C 1,1, even though there are no delta function sources in the curvature tensor G.

This work summarizes results credited to Vogler’s doctoral dissertation, Vogler (2010), which was
supervised by Blake Temple. Both authors were partially supported by the second author’s NSF
Grant, where the problem was first proposed.
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