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Points of general relativistic shock wave
interaction are ‘regularity singularities’
where space–time is not locally flat

BY MORITZ REINTJES AND BLAKE TEMPLE*

Department of Mathematics, University of California, Davis, CA 95616, USA

We show that the regularity of the gravitational metric tensor in spherically symmetric
space–times cannot be lifted from C 0,1 to C 1,1 within the class of C 1,1 coordinate
transformations in a neighbourhood of a point of shock wave interaction in General
Relativity, without forcing the determinant of the metric tensor to vanish at the point
of interaction. This is in contrast to Israel’s theorem, which states that such coordinate
transformations always exist in a neighbourhood of a point on a smooth single shock
surface. The results thus imply that points of shock wave interaction represent a new
kind of regularity singularity for perfect fluids evolving in space–time, singularities that
make perfectly good sense physically, that can form from the evolution of smooth initial
data, but at which the space–time is not locally Minkowskian under any coordinate
transformation. In particular, at regularity singularities, delta function sources in the
second derivatives of the metric exist in all coordinate systems of the C 1,1-atlas, but due
to cancellation, the full Riemann curvature tensor remains supnorm bounded.

Keywords: shock wave interactions; general relativity; regularity singularity

1. Introduction

The guiding principle in Albert Einstein’s pursuit of General Relativity (GR)
was the principle that space–time should be locally inertial (we say also locally
Lorentzian, locally Minkowskian). That is, an observer in freefall through a
gravitational field should observe all of the physics of special relativity, except for
the second-order acceleration effects due to space–time curvature (gravity). But
assuming space–time is locally inertial is equivalent to assuming the gravitational
metric tensor g is smooth enough to pursue the construction of Riemann normal
coordinates at a point p, coordinates in which g is exactly the Minkowski metric
at p, all first-order derivatives of g vanish at p, and such that all second-order
derivatives of g bounded in a neighbourhood of p. However, the Einstein equations
are a system of partial differential equations (PDEs) for the metric tensor g
coupled to the sources, and the PDEs by themselves determine the smoothness of
the gravitational metric tensor by the evolution they impose. Thus, the condition
on space–time that it be locally inertial at every point cannot be assumed at the
start, but must be determined by regularity theorems for the Einstein equations.
*Author for correspondence (temple@math.ucdavis.edu).
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2 M. Reintjes and B. Temple

The presence of shock waves makes this issue all the more interesting for
the Einstein–Euler equations, the equations that describe the time evolution
of a perfect fluid. In this case, the Einstein equations G = kT imply the GR
compressible Euler equations DivT = 0 through the Bianchi identities, and the
compressible Euler equations create shock waves whenever the flow is sufficiently
compressive. At a shock wave, the fluid density, pressure, velocity and hence T
are discontinuous; so the Einstein equations imply that the curvature G must
also become discontinuous at shocks. But discontinuous curvature by itself is
not inconsistent with the assumption that space–time be locally inertial. For
example, if the gravitational metric tensor were C 1,1 (differentiable with Lipschitz
continuous first derivatives, Smoller & Temple 1994), then second derivatives of
the metric are at worst discontinuous, and the metric has enough smoothness for
there to exist coordinate transformations which transform g to the Minkowski
metric at p, with zero derivatives at p, and bounded second derivatives as well
(Smoller & Temple 1994). Furthermore, Israel’s theorem asserts that a space–
time metric of regularity C 0,1, i.e. Lipschitz continuous, across a smooth single
shock surface, is lifted to C 1,1 by the C 1,1 coordinate map to Gaussian normal
coordinates, and this is smooth enough to ensure the existence of locally inertial
coordinate frames at each point. In fact, when discontinuities in the fluid are
present, C 1,1 coordinate transformations constitute the atlas of transformations
capable of lifting the regularity of the metric one order, while still preserving
the weak formulation of the Einstein equations (Smoller & Temple 1994). It is
common in GR to assume the gravitational metric tensor is at least C 1,1, and,
for example, this assumption is taken at the start in singularity theorems of
Hawking & Ellis (1973). Groah & Temple (2004) set out a framework to rigorously
address these issues, by providing the first general existence theory for spherically
symmetric shock wave solutions of the Einstein–Euler equations, allowing for
arbitrary numbers of interacting shock waves of arbitrary strength. In coordinates
where their analysis is feasible, standard Schwarzschild coordinates (SSCs; a
general spherically symmetric metric can generically be transformed to an SSC,
cf. Weinberg 1972), the gravitational metric is only C 0,1 at shock waves, and it
has remained an open problem as to whether general weak solutions constructed
by Groah & Temple could be smoothed to C 1,1 by coordinate transformation,
like the single shock surfaces addressed by Israel.
In this paper, we resolve the open problem of Groah & Temple by proving that

there do not exist C 1,1 coordinate transformations that can lift the regularity of a
gravitational metric tensor from C 0,1 to C 1,1 at a point of shock wave interaction
in a spherically symmetric space–time, without forcing the determinant of the
metric tensor to vanish at the point of interaction. Consequently, in contrast
to Israel’s theorem for single shock surfaces, shock wave solutions cannot in
general be continued as C 1,1 strong solutions of the Einstein equations beyond the
first point of shock wave interaction. We emphasize that perfect fluid solutions
are supnorm-bounded and free of delta function sources at points of shock
wave interaction.
To state the main result precisely, let gmn denote a spherically symmetric

space–time metric in SSC—that is, the metric takes the form

ds2 = gmn dxm dx n = −A(t, r) dt2 + B(t, r) dr2 + r2 dU2. (1.1)
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Shock interactions in general relativity 3

Here either t or r can be taken to be timelike, and dU2 = dw2 + sin2(w) d42 is
the line element on the unit 2-sphere (cf. Groah & Temple 2004). In §2, we
make precise the definition of a point of regular shock wave interaction in SSC.
Essentially, this is a point in (t, r)-space where two distinct shock waves enter or
leave a point p at distinct speeds, such that the metric is Lipschitz continuous
across the shocks and smooth away from the shocks, the Rankine–Hugoniot (RH)
jump conditions hold across each shock curve continuously up to the point of
interaction p, derivatives are continuous up to the shock boundaries and the SSC
Einstein equations hold weakly in a neighbourhood of p and strongly away from
the shocks (Smoller 1983).
The main result of the paper is the following theorem (cf. definition 3.1 and

theorem 7.1):

Theorem 1.1. Assume that p is a point of regular shock wave interaction in
SSCs. Then there does not exist a C 1,1 regular coordinate transformation, defined
in a neighbourhood of p, such that the metric components are C 1 functions of the
new coordinates and such that the metric has a non-zero determinant at p.

The proof of theorem 1.1 is constructive in the sense that we characterize the
Jacobians of (t, r) coordinate transformations that smooth the components of the
gravitational metric in a deleted neighbourhood of a point p of a regular shock
wave interaction, and then prove that any such Jacobian must have a vanishing
determinant at p itself. We refer to Reintjes (2011) for a proof that extends
theorem 1.1 to C 1,1 transformations, allowing for changes of angular variables.
Our assumptions in theorem 1.1 apply to the upper half (t ≥ 0) and the lower

half (t ≤ 0) of a shock wave interaction (at t = 0) separately, suitable for the
initial value problem, and also general enough to include the case of two timelike
interacting shock waves of opposite families that cross at the point p, but also
general enough to include the cases of two outgoing shock waves created by the
focusing of compressive rarefaction waves, or two incoming shock waves of the
same family that interact at p to create an outgoing shock wave of the same
family and an outgoing rarefaction wave of the opposite family (cf. Smoller 1983).
In particular, our framework and our theorems are general enough to incorporate
and apply to the shock wave interaction that was numerically simulated in
Vogler & Temple (2012).
We emphasize that although points of shock wave interaction are

straightforward to construct for the relativistic compressible Euler equations in
flat space–time, we know of no construction of a point of regular shock wave
interaction in GR with complete mathematical rigour. However, the assumptions
are straightforward, the existence theory of Groah & Temple (2004) establish
shock wave solutions of the Einstein–Euler equations for interacting shock waves
within the assumed C 0,1 regularity class and simulations of points of shock wave
interaction numerically verify the regular assumptions in our definition (Vogler &
Temple 2012). We conclude that all evidence indicates that regular shock wave
interactions exist in SSCs, and in fact cannot be avoided in solutions consisting
of, say, an outgoing spherical shock wave (the blast wave of an explosion) evolving
inside an incoming spherical shock wave (the leading edge of an implosion).
Taken on whole, we interpret this as definitive physical proof that points of
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shock wave interaction create a new kind of regularity singularity where the
gravitational metric tensor cannot be smoothed from C 0,1 to C 1,1 by any C 1,1
coordinate transformation.
It is instructive at this point to clarify the difference between the essential

C 0,1 singularities in the metric at points of shock wave interaction, and the
essential C 0,1 singularities at surface layers like the ‘thin shells’ introduced in
Israel’s (1966) illuminating paper. (See also Geroch & Traschen 1987.) To start,
recall that because the Einstein equation G = kT implies the compressible Euler
equations Div T = 0, it can be shown that at singularities where the gravitational
metric is only C 0,1, both G = kT and Div T = 0 hold in the weak sense of the
theory of distributions (cf. Israel 1966; Smoller & Temple 1994). But on surface
layers, Div T $= 0 weakly for the pointwise T defined a.e. on each side of the
surface. (For spherically symmetric solutions, this can happen only when the RH
jump relations fail at the surface, cf. Smoller & Temple (1994).) Thus pointwise
values of T must be augmented by distributional sources on the surface that come
from second derivatives of G through the Einstein equation G = kT (true delta
function sources because g ∈C 0,1), in order to meet the Bianchi identity Div T = 0
weakly. Conclude that on surface layers, the pointwise T must be augmented by
distributional sources to describe the true sources in T , and these delta function
sources are the cause of the essential C 0,1 singularity in the metric g because
second derivatives of g must have distributional sources, and consequently g
cannot be C 1,1 in any regular coordinate system.
For shock wave solutions of G = kT , the issue is more delicate because the

pointwise T solves Div T = 0 weakly at shock waves without any delta function
sources. Thus the constraint that G have delta function sources is removed, and
there is in principle no clear obstacle to the existence of coordinate systems that
smooth the metric to C 1,1. Israel’s theorem confirms that there is no obstacle to
C 1,1 smoothness in the special case of single shock surfaces, but the methods in
Groah & Temple (2004) are only sufficient to prove the existence of solutions in
C 0,1, and the question as to whether there is an obstacle for more complicated
solutions with interactions has remained unresolved until now.
The argument in the present paper resolves this issue by proving that at

points of shock wave interaction, the Einstein–Euler equations in SSC generate
an essential C 0,1 singularity in the metric that cannot be smoothed to C 1,1 by
coordinate transformation, even though Div T = 0 is solved exactly, and there
are no delta function sources present in T or G to explain the C 0,1 singularity in
the metric g.
We conclude that points of shock wave interaction are a new kind of regularity

singularity in the gravitational field that are not generated by delta function
sources in T , that can form from the evolution of smooth initial data and that
correctly reflect the physics of the equations even though the space–time is
not locally Minkowskian under any local C 1,1 coordinate transformation, and
where the metric tensor does not have sufficient regularity to satisfy strongly
the Einstein–Euler equations in any coordinate system of the C 1,1 atlas. At such
singularities, delta function sources in the second derivatives of the gravitational
metric tensor exist in all coordinate systems of the C 1,1 atlas, but due to
cancellation, the Einstein tensor remains uniformly bounded. (In fact, even the
Riemann tensor is uniformly bounded, as will be addressed in a follow-up paper
by Reintjes.)

Proc. R. Soc. A
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Shock interactions in general relativity 5

In §3, we set out the framework of shock waves in GR, and define what we call
a point of regular shock wave interaction in SSC. In §4, we introduce a canonical
form for functions C 0,1 across a hypersurface. In §5, we derive a canonical form
for Jacobians of general C 1,1 coordinate transformations necessary and sufficient
to lift the regularity of a metric tensor from C 0,1 to C 1 at points on a shock
surface. In §6, we give a new constructive proof of Israel’s theorem for spherically
symmetric space–times, combining the results from §§4 and 5. In particular, we
show that the freedom to add an arbitrary C 1-function to our canonical form
suffices for the Jacobians to be integrable to actual coordinate transformations if
and only if the RH jump conditions hold.
The main step towards theorem 1.1 is achieved in §7, where we prove that

at a point of regular shock wave interaction in SSC, there exists no coordinate
transformation of the (t, r)-plane that lifts the metric regularity to C 1. The
essential point is that the C 1 gauge freedom in our canonical forms cannot satisfy
the integrability condition on the Jacobians, without forcing the determinant of
the Jacobian to vanish at the point of interaction.

2. Preliminaries

Let g denote a Lorentzian metric g of signature (−1, 1, 1, 1) on a four-dimensional
space–time manifold M . We call M a Ck -manifold if it is endowed with a Ck -
atlas, a collection of four-dimensional local diffeomorphisms from M to R4, such
that any composition of two local diffeomorphisms x and y of the form x ◦ y−1 is
Ck regular. (x ◦ y−1 is referred to as a coordinate transformation.) In this paper,
we consider C 1,1-manifolds.
We use standard index notation for tensors whereby Greek versus Roman

indices distinguish coordinate systems, and repeated up–down indices are
assumed summed from 0 to 3. Under coordinate transformation, tensors
transform by contraction with the Jacobian J m

j = vxm/vxj , J jn denotes the inverse
Jacobian, and indices are raised and lowered with the metric and its inverse gij ,
which transform as bilinear forms, gmn = J imJ jn gij (cf. Weinberg 1972). We use the
fact that a matrix of functions J m

j is the Jacobian of a regular local coordinate
transformation if and only if the curls vanish, i.e.

J m
i,j = J m

j ,i and Det(J m
j ) $= 0, (2.1)

where f,j = vf /vxj denotes partial differentiation with respect to the coordinate
xj and Det(J m

j ) denotes the determinant of the Jacobian.
In this paper, we consider the Einstein–Euler equations

Gij = kTij , (2.2)

which couples the metric tensor gij to the undifferentiated perfect fluid sources

Tij = (p + r)uiuj + pgij , (2.3)

through the second-order Einstein curvature tensor Gij ≡Rij − 1
2Rg

ij , and

Div T = 0 (2.4)
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6 M. Reintjes and B. Temple

follows from Div G = 0. Here k is the coupling constant, r is the energy density,
ui the 4-velocity and p the pressure (cf. Weinberg 1972). Equation (2.4) reduces
to the relativistic compressible Euler equations when gij is the Minkowski metric,
and the Euler equations close when an equation of state (e.g. p= p(r)) is imposed.
Shock waves form from smooth solutions of the relativistic compressible Euler
equations when the initial data is sufficiently compressive (Smoller 1983).
Across a smooth shock surface S, the RH jump conditions hold,

[T mn]nn = 0, (2.5)

where [f ] = fL − fR denotes the jump in f from right to left across S, and nn is the
surface normal. The RH condition (2.5) is equivalent to the weak formulation of
(2.4) across S (cf. Smoller 1983).
In this paper, we restrict to time-dependent spherically symmetric metrics

in SSC (1.1), where the metric takes the form Weinberg (1972), where B(t, r)=
(1− 2M (t, r)/r) defines the mass functionM . The Einstein equations for a metric
in SSC are given by

Br + BB − 1
r

= kAB2rT 00, (2.6)

Bt = −kAB2rT 01, (2.7)

Ar −A1+ B
r

= kAB2rT 11 (2.8)

and Btt −Arr + F = −2kABr2T 22, (2.9)

with

F = −BAtBt
2AB

− B
2
t

2B
− Ar
r

+ ABr
rB

+ A
2
r

2A
+ ArBr
2B
.

Note that the first three Einstein equations in SSC imply that the metric cannot
be any smoother than Lipschitz continuous if the source T is discontinuous, for
example, Tij ∈ L∞, and in this paper we make the assumption throughout that
A and B are Lipschitz continuous, i.e. C 0,1 functions, of t and r . We now make
precise the notion of a point of regular shock wave interaction.

3. A point of regular shock wave interaction in Standard
Schwarzschild coordinates

In this paper, we restrict attention to radial shock waves, by which we mean
hypersurfaces S locally parametrized by

S(t,w,4)= (t, x(t),w,4), (3.1)

across which A and B are C 0,1 and T in (2.3) satisfies (2.5). Then, for each t, S
is a 2-sphere with radius x(t) and centre r = 0. Treating f and q as constant, we
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Shock interactions in general relativity 7

introduce g, the restriction of a shock surface S to the (t, r)-plane,

g(t)= (t, x(t)), (3.2)

with normal 1-form
ns = (ẋ ,−1). (3.3)

For radial shock surfaces (3.1) in SSC, the RH jump conditions (2.5) take the
simplified form

[T 00]ẋ = [T 01] (3.4)

and
[T 10]ẋ = [T 11]. (3.5)

Now suppose two timelike shock surfaces Si are parametrized in SSC by

Si(t, q,f)= (t, xi(t), q,f), i = 1, 2. (3.6)

Let gi(t) denote their corresponding restrictions to the (t, r)-plane,

gi(t)= (t, xi(t)), (3.7)

with normal 1-forms
(ni)s = (ẋ i ,−1), (3.8)

and use the notation that [f ]i(t) denotes the jump in the quantity f across the
surface gi(t).
For our theorem, it suffices to restrict attention to the lower or upper part of a

shock wave interaction that occurs at t = 0. That is, in either the lower or upper
half plane

R2− = {(t, r) : t < 0} or R2+ = {(t, r) : t > 0},
respectively, whichever half plane contains two shock waves that intersect at p
with distinct speeds. (We denote with R2± the closure of R2±.) Thus, without
loss of generality, let gi(t)= (t, xi(t)), (i = 1, 2), be two shock curves in the lower
(t, r)-plane that intersect at a point (0, r0), r0 > 0, i.e.

x1(0)= r0 = x2(0). (3.9)

We now introduce the precise definition of a point of regular shock wave
interaction in SSC. Without loss of generality, we assume a lower shock
wave interaction in R2−. Our assumptions are what one would expect of a
shock wave solution of the Einstein–Euler equations, namely, a C 0,1 metric
smooth enough to solve the Einstein equations strongly away from the shocks
and smooth enough to ensure the RH conditions to hold across each shock.

Definition 3.1. Let r0 > 0, and let gmn be an SSC metric in C 0,1(N ∩ R2−), where
N ⊂ R2 is a neighbourhood of a point p= (0, r0) of intersection of two timelike
shock curves gi(t)= (t, xi(t)) ∈ R2−, t ∈ (−e, 0). Assume the shock speeds ẋ i(0)=
limt→0 ẋ i(t) exist and are distinct, and let N̂ denote the neighbourhood consisting
of all points in N ∩ R2− not in the closure of the two intersecting curves gi(t).
Then we say that p is a point of regular shock wave interaction in SSC if:

— The pair (g,T ) is a strong solution of the SSC Einstein equations (2.6)–
(2.9) in N̂ , with T mn ∈C 0(N̂ ) and gmn ∈C 2(N̂ ).

Proc. R. Soc. A

 on June 11, 2012rspa.royalsocietypublishing.orgDownloaded from 



8 M. Reintjes and B. Temple

— The limits of T and of metric derivatives gmn,s exist on both sides of each
shock curve gi(t) for all −e < t < 0.

— The jumps in the metric derivatives [gmn,s]i(t) are C 1 function with respect
to t for i = 1, 2 and for t ∈ (−e, 0).

— The limits
lim
t→0

[gmn,s]i(t)= [gmn,s]i(0)

exist for i = 1, 2.
— The metric g is continuous across each shock curve gi(t) separately, but no
better than Lipschitz continuous in the sense that, for each i there exists
m, n such that

[gmn,s]i(ni)s $= 0
at each point on gi , t ∈ (−e, 0) and

lim
t→0

[gmn,s]i(ni)s $= 0.

— The stress tensor T is bounded on N ∩ R2− and satisfies the RH jump
conditions

[T ns]i(ni)s = 0
at each point on gi(t), i = 1, 2, t ∈ (−e, 0), and the limits of these jumps
exist up to p as t→ 0.

4. Functions C 0,1 across a hypersurface

In this section, we give a precise definition of a function C 0,1 across a hypersurface,
and use this to derive a canonical form for such functions.

Definition 4.1. Let S be a smooth (timelike) hypersurface in some open setN ⊂
Rd . We call a function f ‘Lipschitz continuous across S’ (or C 0,1 acros S), if f ∈
C 0,1(N ), f is smooth (f ∈C 2(N \ S) suffices) in N \ S, and limits of derivatives
of f exist and are smooth functions on each side of S separately. We call a metric
gmn Lipschitz continuous across S in coordinates xm if all metric components are
C 0,1 across S.

The main point of the earlier-mentioned definition is that we assume
smoothness of f (or gmn), away and tangential to the hypersurface S. Note that
the continuity of f across S implies the continuity of all derivatives of f tangent
to S, i.e.

[f,s]vs = 0, (4.1)

for all vs tangent to S. Moreover, definition 4.1 allows for the normal derivative
of f to be discontinuous, that is,

[f,s]ns $= 0, (4.2)

where ns is normal to S with respect to some (Lorentz) metric gmn defined on N .
We can now clarify the connections between the Einstein equations and the

RH jump conditions (3.4), (3.5) for SSC metrics only C 0,1 across a hypersurface.
To this end, consider a spherically symmetric space–time metric (1.1) given in
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Shock interactions in general relativity 9

SSC, assume that the first three Einstein equations (2.6)–(2.8) hold, and assume
that the stress tensor T is discontinuous across a smooth radial shock surface
described in the (t, r)-plane by g(t) as in (3.1)–(3.3). Condition (4.1) across g
applied to each metric component gmn in SSC (1.1) then reads

[Bt] = −ẋ[Br ] (4.3)

and
[At] = −ẋ[Ar ]. (4.4)

On the other hand, the first three Einstein equations in SSC (2.6)–(2.8) imply

[Br ] = kAB2r[T 00], (4.5)

[Bt] = −kAB2r[T 01] (4.6)

and [Ar ] = kAB2r[T 11]. (4.7)

Now, using the jumps in Einstein equations (4.5)–(4.7), we find that (4.3) is
equivalent to the first RH jump condition (3.4) (cf. lemma 9, page 286, of
Smoller & Temple 1994), while the second condition (4.4) is independent of
equations (4.5)–(4.7), because At does not appear in the first-order SSC equations
(2.6)–(2.8). The result, then, is that in addition to the assumption that the
metric be C 0,1 across the shock surface in SSC, the RH conditions (3.4) and
(3.5), together with the Einstein equations (4.5)–(4.7), yield only one additional
condition over and above (4.3) and (4.4), namely

[Ar ] = −ẋ[Bt]. (4.8)

The RH jump conditions together with the Einstein equations will enter our
method in §§5–7 only through the three equations (4.8), (4.3) and (4.4).
The following lemma provides a canonical form for any function f that is

Lipschitz continuous across a single shock curve g in the (t, r)-plane, under the
assumption that the vector nm, normal to g, is obtained by raising the index
in (3.3) with respect to a Lorentzian metric g that is C 0,1 across g. (Note that
by definition 4.1, nm varies C 1 in directions tangent to g, and we suppress the
angular coordinates.)

Lemma 4.2. Suppose f is C 0,1 across a smooth curve g(t)= (t, x(t)) in the
sense of definition 4.1, t ∈ (−e, e), in an open subset N of R2. Then there exists a
function F ∈C 1(N ) such that

f (t, r)= 1
24(t)|x(t)− r | + F(t, r), (4.9)

where

4(t)= [f,m]nm

nsns

∈C 1(−e, e), (4.10)

and nm(t)= (ẋ(t),−1) is a 1-form normal to the tangent vector vm(t)= ġm(t). In
particular, it suffices that indices are raised and lowered by a Lorentzian metric
gmn that is C 0,1 across g.

Proc. R. Soc. A
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In words, the canonical form (4.9) separates off the C 0,1 kink of f across g
from its more regular C 1 behaviour away from g: the kink is incorporated into
|x(t)− r |, 4 gives the smoothly varying strength of the jump and F encodes the
remaining C 1 behaviour of f .
In §7, we need a canonical form analogous to (4.9) for two shock curves, but

such that it allows for the Jacobian to be in the weaker regularity class C 0,1 away
from the shock curves. To this end, suppose two timelike shock surfaces described
in the (t, r)-plane by, gi(t), such that (3.6)–(3.9) applies. To cover the generic case
of shock wave interaction, we assume each gi(t) is smooth away from t = 0 with
continuous tangent vectors up to t = 0, and it suffices to restrict to lower shock
wave interactions in R2−.

Corollary 4.3. Let gi(t)= (t, xi(t)) be two smooth curves defined on I = (−e, 0),
some e > 0, such that the limits limt→0− gi(t)= (0, r0) and ẋ i(0)= limt→0− ẋ i(t)
both exist for i = 1, 2. Let f be a function in C 0,1(N ∩ R2−) for N a neighbourhood
of (0, r0) in R2, so that f meets condition (4.1) on each gi . Then there exists a
C 0,1 function F defined on N ∩ R2−, such that

[Ft]i ≡ 0≡ [Fr ]i , i = 1, 2 (4.11)

and

f (t, r)= 1
2

∑

i=1,2
4i(t)|xi(t)− r | + F(t, r), (4.12)

for all (t, r) in N ∩ R2−, where

4i(t)=
[f,m]inm

i

nm
i nim

∈C 0,1(I ). (4.13)

In particular, 4i has discontinuous derivatives wherever f ◦ gi does, and again it
suffices that indices are raised and lowered by a Lorentzian metric gmn that is C 0,1
across each gi .

5. A necessary and sufficient condition for smoothing metrics

In this section, we derive a necessary and sufficient pointwise condition on the
Jacobians of a coordinate transformation that it lifts the regularity of a C 0,1
metric tensor to C 1,1 in a neighbourhood of a point on a single shock surface S.
This is the starting point for §§6 and 7.
We begin with the transformation law

gab = J m
a gmnJ n

b , (5.1)

for the metric components at a point on a hypersurface S for a general C 1,1
coordinate transformation xm → xa, where, as customary, the indices indicate
the coordinate system. J m

a denotes the Jacobian of the transformation, that is,
J m

a = vxm/vxa. Assume now that the metric components gmn are only Lipschitz
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Shock interactions in general relativity 11

continuous with respect to xm across S. Then differentiating (5.1) in the direction
w =ws(v/vxs) we obtain

[gab,g]wg = J m
a J

n
b [gmn,s]ws + gmnJ m

a [J n
b,s]ws + gmnJ n

b [J m
a,s]ws, (5.2)

where [f ] denotes the jump in the quantity f across the shock surface S. Thus,
since both g and J m

a are in general Lipschitz continuous across S, the jumps appear
only on the derivatives. Equation (5.2) gives a necessary and sufficient condition
for the metric g to be C 1,1 in xa coordinates. Namely, taking w = v/vxs, (5.2)
implies that [gab,g] = 0 for every a, b,g = 0, . . . , 3 if and only if

[J m
a,g]J n

bgmn + [J n
b,g]J m

a gmn + J m
a J

n
b [gmn,g] = 0. (5.3)

Note that if the coordinate transformation is C 2, so that J m
a is C 1, then the jumps

in J vanish, and (5.2) reduces to

[gab,g]wg = J m
a J

n
b [gmn,s]ws,

which is tensorial because the non-tensorial terms cancel out in the jump [gab,g].
It is precisely the lack of covariance in (5.2) for C 1,1 transformations that provides
the necessary degrees of freedom in the jumps [J m

a,g] to lift the smoothness of a
Lipshitz metric one order at single shock surface.
We now exploit linearity in (5.3) to solve for the [J m

a,g] associated with a given
C 1,1 coordinate transformation. To this end, suppose we are given a single radial
shock surface S in SSC locally parametrized by

S(t, q,f)= (t, x(t), q,f). (5.4)

For such a hypersurface in SSC, the angular variables play a passive role, and the
essential issue regarding smoothing the metric components by C 1,1 coordinate
transformation lies in the atlas of (t, r)-coordinate transformations. Thus, we
restrict to the atlas of (t, r)-coordinate transformations for a general C 0,1 metric
in SSC (cf. (1.1)). The following lemma gives the unique solution [J m

a,g] of (5.3)
for (t, r)-transformations of C 0,1 metrics g in SSC.

Lemma 5.1. Let

gmn = −A(t, r) dt2 + B(t, r) dr2 + r2 dU2

be a given metric expressed in SSC, let S denote a single radial shock surface (5.4)
across which g is only Lipschitz continuous. Then the unique solution [J m

a,g] of
(5.3) that satisfies the integrability condition (cf. (2.1))

[J m
a,b] = [J m

b,a], (5.5)
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12 M. Reintjes and B. Temple

is given by

[J t0,t] = −1
2

( [At]
A
J t0 + [Ar ]

A
J r0

)
; [J t0,r ] = −1

2

( [Ar ]
A
J t0 + [Bt]

A
J r0

)

[J t1,t] = −1
2

( [At]
A
J t1 + [Ar ]

A
J r1

)
; [J t1,r ] = −1

2

( [Ar ]
A
J t1 + [Bt]

A
J r1

)

[J r0,t] = −1
2

( [Ar ]
B
J t0 + [Bt]

B
J r0

)
; [J r0,r ] = −1

2

( [Bt]
B
J t0 + [Br ]

B
J r0

)

and [J r1,t] = −1
2

( [Ar ]
B
J t1 + [Bt]

B
J r1

)
; [J r1,r ] = −1

2

( [Bt]
B
J t1 + [Br ]

B
J r1

)
.






(5.6)

(We use the notation m, n ∈ {t, r} and a, b ∈ {0, 1}, so that t, r are used to denote
indices whenever they appear on the Jacobian J .)

Proof. Equation (5.3) as an inhomogeneous 6× 6 linear system in eight
unknowns [J m

a,g]. Imposing the integrability condition in the form of (5.5) gives
two additional equations that complete (5.3) to an 8× 8 system that is uniquely
solvable for [J m

a,g]. The result is a purely algebraic system, whose unique solution
(5.6) is obtained by a lengthy calculation aided by MAPLE (cf. Reintjes 2011
for details.) !
Condition (5.3) is a necessary and sufficient condition for [gab,g] = 0 at a point

on a smooth single shock surface. Because lemma 5.1 tells us that we can uniquely
solve (5.3) for the Jacobian derivatives, it follows that a necessary and sufficient
condition for [gab,g] = 0 is also that the jumps in the Jacobian derivatives be
exactly the functions of the jumps in the original SSC metric components recorded
in (5.6). In the light of this, lemma 5.1 immediately implies the following corollary:

Corollary 5.2. Let p be a point on a single smooth shock curve g, and let gmn

be a metric tensor in SSC, which is C 0,1 across g in the sense of definition 4.1.
Suppose J m

a is the Jacobian of an actual coordinate transformation defined on a
neighbourhood N of p. Then the metric in the new coordinates gab is in C 1,1(N )
if and only if J m

a satisfies (5.6).

We have shown in corollary 5.2 that (5.6) is a necessary and sufficient condition
on a Jacobian derivative J m

a for lifting the SSC metric regularity to C 1,1 in a
neighbourhood of a shock curve.

6. Metric smoothing on single shock surfaces and a constructive proof of
Israel’s theorem

In this section, we give an alternative constructive proof of Israel’s theorem for
spherically symmetric space–times. For this, we address the issue of how to obtain
Jacobians of actual coordinate transformations defined on a whole neighbourhood
of a shock surface that satisfy (5.6). That is, we need a set of functions J m

a
that satisfies (5.6), and also satisfies the integrability condition (2.1) in a whole
neighbourhood.
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Shock interactions in general relativity 13

Theorem 6.1 (Israel’s theorem). Suppose gmn is an SSC metric that is C 0,1
across a radial shock surface g in the sense of definition 4.1, such that it solves the
Einstein equations (2.6)–(2.9) strongly away from g, and assume T mn is everywhere
bounded and in C 0 away from g. Then around each point p on g, there exists a
C 1,1 coordinate transformation of the (t, r)-plane, defined in a neighbourhood N
of p, such that the transformed metric components gab are C 1,1 functions of the
new coordinates, if and only if the RH jump conditions (3.4), (3.5) hold on g in a
neighbourhood of p.

The main step is to construct Jacobians acting on the (t, r)-plane that satisfy
the smoothing condition (5.6) on the shock curve, the condition that guarantees
[gab,g] = 0. The following lemma gives an explicit formula for functions J m

a
satisfying (5.6). The main point is that, in the case of single shock curves, both
the RH jump conditions and the Einstein equations are necessary and sufficient
for such functions J m

a to exist.

Lemma 6.2. Let p be a point on a single shock curve g across which the SSC
metric gmn is Lipschitz continuous in the sense of definition 4.1 in a neighbourhood
N of p. Then there exists a set of functions J m

a ∈C 0,1(N ) satisfying the smoothing
condition (5.6) on g ∩ N if and only if (4.8) holds on g ∩ N . Furthermore, all J m

a

that are in C 0,1(N ) and satisfy (5.6) on g ∩ N are given by

J t0 (t, r)=
[Ar ]f(t)+ [Bt]u(t)

4A ◦ g(t)
|x(t)− r | + F(t, r)

J t1 (t, r)=
[Ar ]n(t)+ [Bt]z(t)

4A ◦ g(t)
|x(t)− r | +N (t, r)

J r0 (t, r)=
[Bt]f(t)+ [Br ]u(t)

4B ◦ g(t)
|x(t)− r | + U(t, r)

and J r1 (t, r)=
[Bt]n(t)+ [Br ]z(t)

4B ◦ g(t)
|x(t)− r | + Z (t, r),






(6.1)

for arbitrary functions F,U,Z ,N ∈C 0,1(N ), where

f = F ◦ g, u = U ◦ g, n =N ◦ g, z = Z ◦ g. (6.2)

Moreover, each arbitrary function U = F,U,Z or N satisfies

[Ur ] = 0= [Ut]. (6.3)

Proof. Suppose there exists a set of functions J m
a ∈C 0,1(N ) satisfying (5.6),

then their continuity implies that tangential derivatives along g match across g,
that is

[J m
a,t] = −ẋ[J m

a,r ] (6.4)

for all m ∈ {t, r} and a ∈ {0, 1}. Imposing (6.4) in (5.6) and using (4.3)–(4.4)
yields (4.8).
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14 M. Reintjes and B. Temple

To prove the opposite direction, it suffices to show that all t and r derivatives
of J m

a , defined in (6.1) satisfy (5.6) for all m ∈ {t, r} and a ∈ {0, 1}. This follows
directly from (4.3), (4.4) and (4.8), upon noting that (6.2) implies the identities

f = J t0 ◦ g, n = J t1 ◦ g, u = J r0 ◦ g, z = J r1 ◦ g. (6.5)

This proves the existence of functions J m
a satisfying (5.6). Applying (the one shock

version of) corollary 4.3 (which allows F to have the lower regularity F ∈C 1,1 but
imposes the jumps (7.4) along g) confirms that all such functions can be written
in the canonical form (6.1). !
To complete the proof of Israel’s theorem, we must prove the existence of

coordinate transformations xm → xa that lift the C 0,1 regularity of gmn to C 1,1.
It remains, then, to show that the functions J m

a defined earlier in ansatz (6.1)
can be integrated to coordinate functions, i.e. that they satisfy the integrability
condition (2.1) in a whole neighbourhood. This is accomplished in the following
two lemmas.

Lemma 6.3. The functions J m
a defined in (6.1) satisfy the integrability condition

(2.1) if an only if the free functions F,U,N and Z satisfy the following system of
two PDEs:

(ȧ|X | + Ft)(b|X | +N )+ Fr(e|X | + Z )− (a|X | + F)(ḃ|X | +Nt)
−Nr(d|X | + U)+ fH (X)= 0 (6.6)

and

(ḋ|X | + Ut)(b|X | +N )+ Ur(e|X | + Z )− (ė|X | + Zt)(a|X | + F)
− Zr(d|X | + U)+ hH (X)= 0, (6.7)

where X(t, r)= x(t)− r , H (·) denotes the Heaviside step function,

a = [Ar ]f(t)+ [Bt]u(t)
4A ◦ g(t)

; b = [Ar ]n(t)+ [Bt]z(t)
4A ◦ g(t)

;

d = [Bt]f(t)+ [Br ]u(t)
4B ◦ g(t)

; e = [Bt]n(t)+ [Br ]z(t)
4B ◦ g(t)

;





(6.8)

and
f = (bd − ae)|X | + aẋN − bẋF + bU − aZ ,
h = (bd − ae)ẋ |X | + dẋN − eẋF + eU − dZ ,

}
(6.9)

where, a, b, d and e are C 1 functions of t and f and h are in C 0,1.

The proof of lemma 6.3 follows by substituting ansatz (6.1) into the
integrability condition (2.1) and identifying the terms in the resulting first-order
differential equations for J m

a . (For details, see Reintjes 2011.)
The proof of Israel’s theorem is complete, once we prove the existence of

solutions F,U,N and Z of (6.6), (6.7) that are C 0,1, such that they satisfy (6.3).
For this, it suffices to choose N and Z arbitrarily, so that (6.6), (6.7) reduces
to a system of two linear first-order PDE’s for the unknown functions F and
U. The condition (6.3) essentially imposes that F,U,N and Z be C 1 across the
shock g. Since (6.6), (6.7) are linear equations for F and U, they can be solved
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along characteristics, and so the only obstacle to solutions F and U with the
requisite smoothness to satisfy the condition (6.3) is the presence of the Heaviside
function H (X) on the right-hand side of (6.6), (6.7). Lemma 3.3 thus isolates the
discontinuous behaviour of equations (6.6), (6.7) in the functions f and h, the
coefficients of H . Israel’s theorem is now a consequence of the following lemma
which states that these coefficients of H (X) vanish precisely when the RH jump
conditions hold on g. (See Reintjes 2011 for details.)
Lemma 6.4. Assume the SSC metric gmn is C 0,1 across g and solves the first
three Einstein equations strongly away from g. Then the coefficients f and g of
H (X) in (6.6), (6.7) vanish on g if and only if the RH jump conditions (2.5)
hold on g.
We can now complete the proof of Israel’s theorem. Assuming that the Einstein

equations hold strongly away from the shock curve (in fact, it suffices to assume
that only the first three equations hold), we have that there exist functions J m

a
satisfying the smoothing condition (5.6) if and only if the RH jump conditions
hold (cf. lemma 6.2). Furthermore, by lemmas 6.3 and 6.4, a solution to the
integrability condition with the required regularity holds if and only if the RH
jump conditions hold (in the sense of (4.8)). Thus, under the assumption that the
Einstein equations hold strongly away from g, we can integrate the Jacobians J m

a

to coordinate functions that smooth the metric g to C 1,1 if and only if the RH
jump conditions hold. This completes the proof of theorem 6.

7. Shock wave interactions as regularity singularities in GR: transformations
in the (t, r)-plane

The main step in the proof of theorem 1.1 is to prove that there do not exist C 1,1
coordinate transformations of the (t, r)-plane in a neighbourhood of a point p of
regular shock wave interaction in SSC that lifts the regularity of the metric g from
C 0,1 to C 1,1 in a neighbourhood of p. We formulate the main step precisely for
lower shock wave interactions in R2− in the following theorem, which is the topic
of this section. A corresponding result applies to upper shock wave interactions
in R2+, as well as two wave interactions in a whole neighbourhood of p.
Theorem 7.1. Suppose that p is a point of regular shock wave interaction in

SSC, in the sense of definition 3.1, for the SSC metric gmn. Then there does not
exist a C 1,1 coordinate transformation xa ◦ (xm)−1 of the (t, r)-plane, defined on
N ∩ R2− for a neighbourhood N of p in R2, such that the metric components gab

are C 1 functions of the coordinates xa in N ∩ R2− and such that the metric has a
non-vanishing determinant at p (that is, such that limq→p Det(gab(q)) $= 0).
In the remainder of this section, we outline the proof of theorem 7.1, which

mirrors the constructive proof of Israel’s theorem 6.1 in that it uses the extension
(7.1) of ansatz (6.1) to construct all C 1,1 coordinate transformations that can
smooth the gravitational metric to C 1,1 in a neighbourhood of a point p of regular
shock wave interaction. The negative conclusion is then reached by proving that
any such coordinate transformation must have a vanishing Jacobian determinant
at p. But now, to prove non-existence, we must show the ansatz (7.1) is general
enough to include all C 0,1 Jacobians that could possibly lift the regularity of the
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metric. For this, we use condition (5.6) to construct a canonical form for the
Jacobians in a neighbourhood of p, that generalizes (6.1) to the case of two shock
curves, with the weaker assumption of C 0,1 regularity on the functions F,U,Z ,N .
We conclude the proof by showing that this canonical form is inconsistent with
the assumption that Det(gab) $= 0 at p, by using the continuity of the Jacobians
up to p.
To implement these ideas, the main step is to show that the canonical form

(4.12) of corollary 4.3 can be applied to the Jacobians J m
a in the presence of a

shock wave interaction. The result is recorded in the following lemma.

Lemma 7.2. Let p be a point of regular shock wave interaction in SSC in the
sense of definition 3.1, corresponding to the SSC metric gmn defined on N ∩ R2−.
Then there exists a set of functions J m

a ∈C 0,1(N ∩ R2−) satisfying the smoothing
condition (5.6) on gi ∩ N , i = 1, 2, if and only if (4.8) holds on each shock curve
gi ∩ N . In this case, all J m

a in C 0,1(N ∩ R2−) assume the canonical form

J t0 (t, r)=
∑

i

ai(t)|xi(t)− r | + F(t, r),

J t1 (t, r)=
∑

i

bi(t)|xi(t)− r | +N (t, r),

J r0 (t, r)=
∑

i

di(t)|xi(t)− r | + U(t, r)

and J r1 (t, r)=
∑

i

ei(t)|xi(t)− r | + Z (t, r),






(7.1)

where

ai(t)=
[Ar ]i fi(t)+ [Bt]i ui(t)

4A ◦ gi(t)
,

bi(t)=
[Ar ]i ni(t)+ [Bt]i zi(t)

4A ◦ gi(t)
,

di(t)=
[Bt]i fi(t)+ [Br ]i ui(t)

4B ◦ gi(t)

and ei(t)=
[Bt]i ni(t)+ [Br ]i zi(t)

4B ◦ gi(t)
,






(7.2)

with
fi = F ◦ gi , ui = U ◦ gi , zi = Z ◦ gi and ni =N ◦ gi , (7.3)

and where F,U,Z ,N ∈C 0,1(N ∩ R2−) have matching derivatives on each shock
curve gi(t),

[Ur ]i = 0= [Ut]i , (7.4)

for U = F,U,Z ,N, t ∈ (−e, 0).

Equation (7.1) gives a canonical form for all functions J m
a that meet the

necessary and sufficient condition (5.6) for [gab,g] = 0. The essence of this
canonical form is that the jumps in derivatives across the shock waves have
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been taken out of the functions F,U,Z ,N in (7.4). However, for J m
a to be proper

Jacobians that can be integrated to a coordinate system, we must use the free
functions F,U,Z ,N to meet the integrability condition (2.1). To finish the proof
of theorem 7.1, we show that, as a consequence of (7.4) (that is, the free functions
are C 1 regular at the shocks), the Jacobian determinant DetJ m

a must vanish at
the point of shock interaction, which then implies Det(gab)= 0.
Thus, using the canonical form (7.1) restricted to the shock curve and taking

the determinant of the resulting J m
a leads directly to

Det(J m
a ◦ gi(t))= (J t0J r1 − J t1J r0 )|gi(t) = fi(t)zi(t)− ni(t)ui(t). (7.5)

Since J m
a is continuous, we obtain the same limit t→ 0 for i = 1, 2,
lim
t→0+

Det(J m
a ◦ gi(t))= fi(0)zi(0)− ni(0)ui(0)= f0z0 − n0u0. (7.6)

Therefore, the final step in the proof of theorem 7.1 is the following lemma.

Lemma 7.3. Let p ∈ N be a point of regular shock wave interaction in SSC in
the sense of definition 3.1. Then if the integrability condition

J m
a,b = J m

b,a (7.7)

holds in N ∩ R2− for the functions J m
a defined in (7.1) (so that F,U,N and Z

satisfy (7.4)), then

1
4B

(
ẋ1ẋ2
A

+ 1
B

)
[Br ]1[Br ]2(ẋ1 − ẋ2)(f0z0 − n0u0)= 0. (7.8)

Proof. Substituting the J m
a in (7.1) into (7.7) gives equations (6.6), (6.7)

except that we now sum over two shock curves instead of one. The difference
is the appearance of additional mixed terms in the coefficients f and h of
the discontinuous terms multiplying the Heaviside function H (X). The proof is
accomplished by showing that, unlike f and g in (6.6), (6.7), these mixed terms
do not vanish by the jump conditions for the Einstein equations alone. Finally,
a lengthy calculation to evaluate the limit t→ 0 demonstrates that imposing the
condition that these additional mixed terms should vanish, which is necessary for
(7.4) to hold, implies the final equation (7.8). (See Reintjes 2011 for details.)
To finish the proof of theorem 7.1, observe that the first three terms in (7.8)

are non-zero by our assumption that shock curves are non-null, and have distinct
speeds at t = 0. Thus, (7.8) implies

Det J m
a (p)= (f0z0 − n0u0)= 0, (7.9)

as claimed. !
In summary, we remark that the derivatives of J m

a are uniquely solvable in
condition (5.6), and in principle there are enough free functions in F,U,Z ,N in
the canonical form of lemma 7.1, to arrange for the discontinuous term in the
integrability condition to vanish, as in lemma 6.1 of Israel’s theorem. But taking
the limit to the point p of shock wave interaction, the condition (7.4), expressing
that [gab,g] vanishes at shocks, has the effect of freezing out all the freedom in
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F,U,Z ,N , thereby forcing condition (7.9), implying that the determinant of the
Jacobian must vanish at p. The answer was not apparent until the very last step,
and thus we find the result quite remarkable and surprising.

8. The loss of locally inertial frames

Definition 8.1. We call xj locally inertial at p if the metric gij in coordinates
xj satisfies

— gij(p)= hij , hij = diag(−1, 1, 1, 1),
— gij ,l(p)= 0 for all i, j , l ∈ {0, . . . , 3},
— gij ,kl are bounded in every compact neighbourhood of p.

This condition ensures that the physical equations in curved space–time differ
from flat by only gravitational effects, i.e. effects that are second order in the
metric derivatives. In most of the literature on GR, the gravitational metric is
assumed to be at least C 1,1 (cf. Hawking & Ellis 1973), which then directly implies
condition (3) of definition 8.1.
By theorem 1.1, there exist second-order derivatives of the metric which are

unbounded in every neighbourhood of p. Therefore, the following corollary is a
straightforward consequence of theorem 1.1.

Corollary 8.2. Let p be a point of regular shock wave interaction in SSC in the
sense of definition 3.1. Then there does not exist a C 1,1 coordinate transformation
such that the resulting metric gij is locally Minkowskian around p.

9. Conclusion

We conclude that the essential C 0,1 singularities in the gravitational metric at
points of shock wave interaction, where the pointwise a.e. T is supnorm-bounded
and satisfies Div T = 0 weakly, are a new kind of singularity in GR created
without the presence of delta function singularities in the sources. We name them
regularity singularities, and maintain that such singularities in perfect fluids are
fundamental to the mathematical theory of GR shock waves, and the partial
differential equations that describe them.
Because the gravitational metric tensor is not locally inertial at points of shock

wave interaction, it begs the question as to whether there are general relativistic
gravitational effects at points of shock wave interaction that cannot be predicted
from the compressible Euler equations in special relativity alone. At a regularity
singularity, the unbounded second derivatives in g cancel out in the curvature
tensor G, but the curvature is not the only measurable effect of the gravitational
field; so one would expect there to exist measurable general relativistic effects
at points of shock wave interaction that are physical. Indeed, even if there are
dissipativity terms, like those of the Navier–Stokes equations, which regularize the
gravitational metric at points of shock wave interaction, our results assert that the
steep gradients in the second derivatives of the metric tensor at small viscosity
cannot be removed uniformly while keeping the metric determinant uniformly
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bounded away from zero. We thus wonder whether shock wave interactions might
provide a physical regime where new general relativistic effects might be observed.
Said differently, a regularity singularity is not hidden behind an event horizon;
so it is a sort of counterexample to the cosmic censorship conjecture in the
sense that it gives rise to unbounded second-order metric derivatives, which by
themselves might yield physically measurable effects that resemble some effects
of unbounded curvature.

The ideas and methods presented here are the creation of Moritz Reintjes. The detailed proofs
are due to him and can be found in his doctoral thesis (Reintjes 2011), which was supervised
by Blake Temple. Both authors were partially supported by NSF Grant, where the problem was
first proposed.
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