
ar
X

iv
:1

81
0.

05
71

8v
1 

 [
m

at
h.

A
P]

  1
2 

O
ct

 2
01

8

INVERSION OF A NON-UNIFORM

DIFFERENCE OPERATOR

BLAKE TEMPLE AND ROBIN YOUNG

Abstract. The problem of applying Nash-Moser Newton methods to
obtain periodic solutions of the compressible Euler equations has led
authors to identify the main obstacle, namely, how to invert operators
which impose periodicity when they are based on non-uniform shift oper-
ators. Here we begin a theory for finding the inverses of such operators
by proving that a scalar non-uniform difference operator does in fact
have a bounded inverse on its range. We argue that this is the simplest
example which demonstrates the need to use direct rather than Fourier
methods to analyze inverses of linear operators involving nonuniform
shifts.

1. Introduction

In this article we explicitly invert the operator which imposes periodicity
for a scalar shift, namely,

∆Φv := SΦv − v = w,

where the shift operator SΦ is defined by

SΦv = v ◦ Φ, so that SΦv(t) = v(Φ(t)), (1)

and where the non-uniform shift Φ(t) has the form

Φ(t) = t + αφ(t). (2)

We call φ the perturbation and α the amplitude, and say the perturba-
tion is non-degenerate if it is Lipschitz continuous, and satisfies the further
conditions

φ′(t∗) 6= 0 whenever φ(t∗) = 0,

and if at any zero t∗ of φ, we have the Taylor estimate

φ(t) − φ(t∗) − φ′(t∗) (t − t∗) = O
(

(t − t∗)2)

. (3)

This is the condition that φ be better than differentiable, but not quite
twice differentiable, at each zero. In particular, any perturbation φ which is
approximately sinusoidal is non-degenerate.

We introduce the problem of inverting SΦ − I as a warmup problem for
inverting the linearized operators associated with the nonlinear operators in
[4, 5, 6, 7], which impose periodicity for the compressible Euler equations.
In this case genuine nonlinearity enters as φ(t) = sin(t) + O(α) for small
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2 BLAKE TEMPLE AND ROBIN YOUNG

α. For motivation, note that the time one evolution map of the nonlinear
Burgers equation

ut + u ux = 0

is a non-uniform shift of the form (1), so a time-periodic solution would
satisfy ∆Φv = 0. Since Burgers admits no smooth time-periodic solutions,
we expect the linear difference operator ∆Φ = SΦ − I to admit no smooth
periodic solutions as well. Here we address the question as to whether the
inverse ∆−1

Φ is bounded. In [4, 5], the authors derive a 2×2 linearized system
of the form SΦ − J , where SΦ is a diagonal shift operator and J is a fixed
constant linear operator; in this case, the shifts have the form

φ(t) = sin(t) + O(α), so that Φ(t) = t + α sin(t) + O(α2).

Inversion of the operator SΦ − J is a critical step in the proof of existence
of space- and time-periodic solutions of the compressible Euler equations by
Nash-Moser methods, but the requisite estimates for the inverses of such
operators involving shifts is beyond current mathematical technology. The
authors propose the analysis of ∆Φ here as the first step in a program to
develop a mathematical framework for inverting linearized shift operators
in general. The equation ∆Φv = 0 is an example of an iterative functional
equation such as those treated in [1] from a different point of view.

When φ(t) = 0, t is a rest point of Φ, and it follows that the interval
between any two consecutive roots of φ(t) is mapped to itself under Φ,
provided α is small enough. Denoting these roots by t±∞, it follows that

φ(t−∞) = 0 = φ(t+∞), and φ(t) 6= 0, t ∈ (t−∞, t+∞), (4)

and in particular Φ : [t−∞, t+∞] → [t−∞, t+∞], and

SΦ : L∞[t−∞, t+∞] → L∞[t−∞, t+∞].

Thus to isolate the essential issue, we address the case when the domain
of t is the interval [t−∞, t+∞], and Φ is a monotonic map of this interval
to itself. We introduce a framework to invert the operator SΦ − I on its
range in subspaces of L∞[t−∞, t+∞]. In particular, we derive estimates for
the inverse of ∆Φ in Cp[t−∞, t+∞], the subspace of L∞[t−∞, t+∞] consisting
of functions with p continuous derivatives, under the assumption that α is
sufficiently small.

We begin by proving that the operator SΦ − I admits a large class of
solutions in L∞[t−∞, t+∞] in its kernel, and we characterize them. However,
if we require continuity at either endpoint t = t±∞, we show that there are
no non-constant elements of the kernel. We then obtain a formula for the
inverse ∆−1

Φ by directly solving SΦv − v = w for v in terms of w. The
resulting formula leads to a solvability condition for w, namely,
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∣
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w(Φkt) = Const, (5)
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for every t ∈ [t−∞, t+∞]. We show that condition (5) characterizes the
image of SΦ − I, and the image of ∆Φ in the space of Lipshitz continuous
functions consists of precisely those Lipshitz continuous functions w that
meet condition (5). Moreover, we prove a bound on the inverse of SΦ − I.
We denote the space of Lipshitz continuous functions by C0,1[t−∞, t+∞],
with norm

‖v‖C0,1 = ‖v‖Lip + ‖v‖Sup,

where ‖v‖Lip is the minimal Lipshitz constant. As long as the perturbation
φ is Lipshitz, the map ∆Φ = SΦ − I is a bounded map from C0,1[t−∞, t+∞]
to itself, and the following theorem describes its inverse.

Theorem. Assume that φ(t) satisfies (3) and (4). Then there exist con-
stants αφ and Kφ, given explicitly in terms of φ, such that, if α < αφ and
w ∈ C0,1[t−∞, t+∞] satisfies w(t−∞) = w(t+∞) = 0 together with the solv-
ability condition (5), then the equation

∆Φv(t) = v(Φt) − v(t) = w(t)

has a solution v ∈ C0,1[t−∞, t+∞], uniquely determined up to constant, which
satisfies

‖v‖Lip ≤ Kφ ‖w‖Lip, so that ‖∆−1
Φ ‖Lip ≤ Kφ.

The theorem shows that ∆Φ : C0,1 → C0,1 has a bounded inverse on its
range, which consists of those Lipshitz functions satisfying the solvability
condition. In Section 4 we prove that this result extends to invertibility in
the space Cp, p ∈ N, for α sufficiently small, c.f. Theorem 4 below. Indeed,
we show that there exist constants α0 > 0 and K depending only on φ and
p, such that

∥

∥∆−1
Φ w

∥

∥

p
≤

K

|α|

∥

∥w
∥

∥

p
, for |α| ≤ α0. (6)

The solvability condition is essential because we obtain two apparently
independent expressions for v in terms of w, one of which converges, while
the other need not. Our formula requires forward and/or backward iteration
of the shift Φ, and it is not a priori clear that both iterations converge. The
solvability condition is then a compatibility between the two expressions,
which yields a unique answer, and provides convergence in all cases.

Writing ∆Φ = SΦ − I, it is insightful to compare ∆Φ, a linear difference
operator, to the derivative operator D. For the derivative operator, we know
that the range, say on Cp, lies in the much larger space Cp−1, so D can only
be inverted on a subspace of Cp−1 which contains less regular functions (by
one order) than its domain. In contrast, the difference operator ∆Φ has a
range equal to a subset of the space of all Lipschitz functions, which is in fact
the domain of ∆Φ. So the difference operator is much more well behaved
than the derivative operator. Nonetheless, the standard way of estimating
the inverse of ∆Φ fails precisely because ∆Φv does not bound Dv. Assume
for example that SΦ and D are defined on Cp. Here is how a standard
argument for estimating the inverse would go:
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Let D : Cp → Cp be a general operator we would like to invert, and
assume v = 0 is the only solution to Dv = 0; We’d like to prove

‖v‖Cp ≤ Const.‖Dv‖Cp . (7)

Assume not, so there exist vk, which we can assume have unit length, such
that

1 = ‖vk‖Cp > k‖Dvk‖Cp , so that ‖Dvk‖Cp → 0.

Now assume (and here is the point at which the argument fails for ∆Φ) that
D dominates the derivative in the sense that

‖Dv‖Cp ≥ ‖Dv‖Cp ≡ ‖v‖Cp+1 . (8)

Then we would have ‖Dvk‖Cp uniformly bounded, and this together with
the bound ‖vk‖Cp = 1 would imply that vk is compact in Cp, and hence a
subsequence vk → v̄ would converge in Cp, and the limit would not be zero.
But (8) implies that Dv̄ = 0, contradicting the assumption that the Dv = 0
has only the zero solution. Thus for this argument, we need to establish (8)
in order to obtain a bound on the inverse of D, but for shift operators, the
estimate (8) clearly fails! The purpose of this note is to develop methods
sufficient to prove the desired estimate (7) for the inverse of ∆Φ in this case
when (8) fails.

The theorem as stated above gives an estimate for the bound on the
inverse of ∆Φ in the Lipschitz norm for shift operators Φ that meet the
admissibility conditions (3) and (4). The constant that bounds the inverse
is Kφ, defined in (30) below, and this depends on seven parameters, as
expressed in Corollary 4 below. Although complicated, the main point is
that the constant Kφ depends continuously on the norm of φ for any norm
in which these seven parameters are continuous, such as say C2. Similarly,
the estimate (6) holds if φ ∈ Cp+1, and the constants α0 and K depend on
‖φ‖Cp+1 .

Part of the problem of obtaining bounds on the inverses of non-uniform
difference operators is that the difference between two shift operators is an
operator that loses a derivative [2, 8]. As a result, it is not possible to
estimate a nearby linearized operator by an estimate for the unperturbed
operator plus an estimate for the difference in the same norm. However, our
results here show that estimates for the inverse of ∆Φ in Cp are nonetheless
stable under perturbation of φ in Cp+1 because they depend on constants
which depend continuously on the Cp+1 norm of φ, (c.f. (35) of Corollary
4 and (45) of Theorem 4 below). Essentially, the above loss of derivative
has been transferred to the perturbation φ, making it consistent with the
use of a Nash-Moser iteration in which the function φ is mollified at each
step of the iteration [3, 7]. The fact that the methods here do not rely on
bounds on the difference between nearby shifts, (which is worse than the
shifts themselves), makes the methods here that much more interesting, and
maybe even a bit surprising. Our hope is that the results established here
for the scalar non-uniform difference operator Sφ − I will shed light on the
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more complicated multi-component shift operators whose inverse is required
to complete the authors’ program for establishing periodic solutions of the
compressible Euler equations, [7].

The solvability condition (5) is non-local and difficult to verify in general.
However, this problem came about as a result of a Nash-Moser iteration,
which requires solving the linear equation

DFk(Uk)[Vk+1] = Fk(Uk)

for Vk+1, (the Newton iteration step), where Fk is the nonlinear operator
and DFk(Uk) is its linearization around Uk. In our application, Fk includes
nonlinear evolution of a hyperbolic equation, which in turn yields a particu-
lar shift operator. It is somewhat surprising that the linearization DFk(Uk)
can be expressed in terms of the same shift operator, so that the same shift
appears on both sides of the equation, which indicates that the solvability
condition may naturally be satisfied in the Nash-Moser iteration.

Finally, it is important to comment on the substantial difficulties encoun-
tered by trying to invert ∆Φ = SΦ − I by Fourier methods. In fact, we
know of no argument employing Fourier analysis sufficient to obtain and
estimate the inverse of ∆Φ. The reason is that the shift operator does
not have a nice expression in terms of standard Fourier modes. Now the
Fourier framework is most natural for expressing the periodicity conditions
in the base linearized problem which has constant coefficients, but under
perturbation, the Fourier method encounters shift operators like SΦ. For
example, suppose that φ(t) = sin t, and consider SΦ acting on L2[0, π] via
SΦv(t) = v(t + α sin t). Expanding v in Fourier sine series, we can write

v(t) =
∞

∑

k=0

ak sin(kt). so that SΦv(t) =
∞

∑

k=0

ak ek(t),

where we have set

ek(t) = sin(k(t + α sin t)).

It is easy to see that ek(t) is an orthonormal basis for L2[0, π] with weight
function σ = 1/(1+ αφ′(t)), so that SΦ defines a linear isometry on L2[0, π].
Our results here show that there are many fixed points of SΦ in L2, but
imposing continuity rules out all but the constants, and we know of no
way to establish this via Fourier methods. The problem of inverting ∆Φ,
begins with determining the kernel of ∆Φ, which reduces to the problem of
expressing ek in terms of the standard Fourier basis sin(kt). This leads to
the formula

ek(t) =
∞

∑

j=0

∫ π

0
sin(jt) sin(k(t + α sin t)) dt,

which is problematic because of the essentially random distribution of coef-
ficients in the high modes, even for small k. In particular, our results imply
that although the change of basis map has many fixed points in L2, there
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are no nontrivial continuous fixed points, so none in H1. We know of no
way to produce this result directly by Fourier methods.

2. Structure of ∆Φ

Recall that we defined the non-uniform difference operator by

∆Φ = SΦ − I, so that ∆Φv(t) = v(Φt) − v(t).

For α small enough, the shift function Φ is invertible. We write Φkt to
denote k-fold composition of the shift function Φ, and we let t−∞ and t+∞

denote consecutive zeroes of φ, or equivalently fixed points of Φ. It follows
that for any t between t±∞, we have Φkt → t±∞ as k → ±∞, and indeed
Φ maps the interval [t−∞, t+∞] to itself. Here we are implicitly assuming
αφ > 0; if not we would have t+∞ < t−∞.

Since Φ is Lipshitz, it is clear that that ∆Φ can be regarded as a map
C0,1[t−∞, t+∞] → C0,1[t−∞, t+∞]. Here C0,1 is the space of Lipshitz func-
tions with norm

‖v‖C0,1 = ‖v‖Lip + ‖v‖Sup,

where ‖v‖Sup denotes the supnorm, and

‖v‖Lip = sup
t−∞≤ta,tb≤t+∞

|v(tb) − v(ta)|

|tb − ta|
. (9)

If v ∈ C0,1[t−∞, t+∞], the following estimate follows immediately:

‖∆Φv(t)‖Lip ≤
(

1 + ‖Φ‖Lip

)

‖v‖Lip.

That is, ∆Φ is a bounded linear map from C0,1 to itself, and our goal here
is to examine the extent to which it is invertible. To do this we first identify
the kernel and range of ∆Φ.

2.1. The Kernel. We first characterize the kernel of ∆Φ = SΦ − I in the
space L∞[t−∞, t+∞], and then show that the only continuous functions in
the kernel are the constant functions.

First, choose any t0 ∈ (t−∞, t+∞), and note that we can write the interval
as a disjoint union,

(

t−∞, t+∞
)

=
⋃

k

[

Φkt0, Φk+1t0
)

.

It follows that if

v ∈ ker ∆Φ, so that v(Φt) = v(t),

then for any t and any k, we have

v(Φkt) = v(t).

For fixed t0, any ṽ0 ∈ L∞[t0, Φt0) thus determines an L∞ element of the
kernel, via

v(t) = ṽ0(Φkt), k such that Φkt ∈ [t0, Φt0), (10)
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and every L∞ element of the kernel of ∆Φ must come from some such ṽ0.
Thus (10) puts the kernel of ∆Φ in 1 − 1 correspondence with L∞[t0, Φt0),
and the resulting solutions are defined independent of what base point t0 is
chosen.

Because Φkt → t±∞ as k → ±∞, all the values of ṽ0 occur in any neigh-
borhood of t±∞ for large enough k, so that elements of the kernel will become
discontinuous at t±∞ unless ṽ0(t) = V0 = Const for all t ∈ [t0, Φt0). We
state this as a lemma:

Lemma 1. Let t0 ∈ (t−∞, t+∞). Then the kernel of ∆Φ in L∞(t−∞, t+∞)
is characterized as the set of all functions ṽ0 ∈ L∞[t0, Φt0) extended to all
of L∞(t−∞, t+∞) by the shift condition (10). Moreover, the only continuous
solutions that lie in the L∞ kernel of ∆Φ are constants, v(t) = V0.

Since the space of Lipshitz continuous functions C0,1 contains only con-
tinuous functions, we have the following corollary:

Corollary 1. The only elements of the kernel of the difference operator ∆Φ

in the space C0,1[t−∞, t+∞] are the constant functions v(t) = V0.

2.2. The Range of ∆Φ. We next obtain a condition on w to be in the
range of ∆Φ for continuous inputs v ∈ C[t−∞, t+∞]. Thus write

w = ∆Φv = SΦv − v.

We solve directly for v in terms of w. To do so, write

v(Φt) = v(t) + w(t)

v(Φ2t) = v(Φt) + w(Φt)

...

v(Φkt) = v(Φk−1t) + w(Φk−1t),

and combine these to obtain

v(t) = v(Φkt) −
k−1
∑

j=0

w(Φjt),

for k > 0. Replacing t by Φ−kt, we also get

v(t) = v(Φ−kt) +
k

∑

l=1

w(Φ−lt).

Now taking the limit k → ∞ in these gives

v(t) = v(t+∞) −
∞

∑

j=0

w(Φjt), and

v(t) = v(t−∞) +
∞

∑

l=1

w(Φ−lt),

(11)
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since v is continuous at t±∞. Equating these yields a condition on any
function w in the range of ∆Φ with continuous input, namely

+∞
∑

k=−∞

w(Φkt) = Const = v(t+∞) − v(t−∞). (12)

Since w(t) = v(Φt) − v(t), w is continuous when v is continuous, so, by
construction, we have proven the following lemma which characterizes the
range of ∆Φ :

Lemma 2. The range of the operator ∆Φv = SΦ − I on C[t−∞, t+∞] is the
set of all w ∈ C[t−∞, t+∞] such that the infinite sums converge for all t,

∣

∣

∣

∣

∣

∣

∞
∑

j=0

w(Φjt)

∣

∣

∣

∣

∣

∣

< ∞,

∣

∣

∣

∣

∣

∞
∑

k=1

w(Φ−kt)

∣

∣

∣

∣

∣

< ∞, (13)

and such that (12) holds, namely

+∞
∑

k=−∞

w(Φkt) = Const.

In this case, either equation in (11) defines v(t) such that ∆Φv = w to within
a constant.

3. Invertibility of ∆Φ

Our goal now is to prove that the difference operator ∆Φ is invertible on
its range; that is, given a Lipshitz function w satisfying (13) and (12), we
construct a function v satisfying ∆Φv = w, and derive appropriate bounds
on the solution v. We know from (11) how the solution v must be defined,
and the main issue is to show that (12) is a sufficient condition for solvability,
and then to obtain bounds on v in terms of w. We begin by examining the
iterations of the shift function in more detail.

3.1. Properties of the shift. Recall that the shift function is defined by
(2), namely

Φ(t) = t + α φ(t),

where we assume φ is non-degenerate, so that (2)-(3) hold. For definiteness,
assume that α φ(t) > 0 on the interval (t−∞, t+∞), which in turn implies
φ′(t+∞) < 0 < φ′(t−∞); similar statements and estimates hold if α φ(t) < 0
and t+∞ < t−∞. We begin by bounding φ(t) away from zero by a trapezoid,
and use this to show that for any α 6= 0, a finite number of iterations takes
us from a neighborhood of t−∞ into a neighborhood of t+∞.

From this point on in the paper, assume without loss of generality that
φ(t) ≥ 0, so that φ′(t−∞) > 0, φ′(t+∞) < 0, and that α > 0, so t−∞ < t+∞.
All proofs carry over to the case αφ′(t−∞) > 0, αφ′(t+∞) < 0 with slight
modification.
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αφ(t)

t−∞ t+∞t0 Φ7t0

αφ(t)

t−∞ t+∞

Figure 1. The Shift Function

Lemma 3. There are Lipshitz functions E+(t) and E−(t), vanishing at t+∞

and t−∞, respectively, such that, for both ± we have,

φ(t) = φ′(t±∞) {1 + E±(t)} (t − t±∞). (14)

In particular, given any δ > 0, there are ǫφ > 0 and mφ > 0 such that

|E−(t)| < δ for t−∞ ≤ t ≤ t−∞ + ǫφ, and

|E+(t)| < δ for t+∞ − ǫφ ≤ t ≤ t+∞,
(15)

and

|φ(t)| ≥ mφ for t−∞ + ǫφ ≤ t ≤ t+∞ − ǫφ.

Proof. Undoing (14), for t 6= t±∞, define the functions E± by

E±(t) :=
φ(t)

φ′(t±∞) (t − t±∞)
− 1

=
φ(t) − φ(t±∞) − φ′(t±∞) (t − t±∞)

φ′(t±∞) (t − t±∞)
.

Since φ is Lipshitz, E± are Lipshitz away from t±∞, respectively, so we must
show boundedness and continuity at t±∞. It follows directly from (3) and
(4) that E± can be extended to Lipshitz functions on all of [t−∞, t+∞], and
that E±(t±∞) = 0.

Now if δ > 0 is given, let Eφ be a Lipshitz bound for E±,

‖E±‖Lip ≤ Eφ, and take ǫφ <
δ

Eφ

, (16)

so that (15) holds.
Finally, we can choose mφ > 0 because φ(t) is non-zero on the compact

interval [t−∞ + ǫφ, t+∞ − ǫφ]. Define

φ′
∞ = min

{∣

∣φ′(t−∞)
∣

∣,
∣

∣φ′(t+∞)
∣

∣

}

, (17)

and restrict the size of ǫφ if necessary, to obtain

mφ = φ′
∞ ǫφ (1 − δ).
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Then φ(t) is bounded below by the trapezoid,

φ(t) ≥















φ′
∞ (1 − δ) (t − t−∞), t−∞ ≤ t ≤ t−∞ + ǫφ,

φ′
∞ (1 − δ) ǫφ t−∞ + ǫφ ≤ t ≤ t+∞ − ǫφ,

φ′
∞ (1 − δ) (t+∞ − t), t+∞ + ǫφ ≤ t ≤ t+∞,

(18)

as pictured in Figure 1. �

Recall that Φ given by (2) is invertible for all α satisfying

|α| < αφ :=
1

‖φ‖Lip

. (19)

For convenience, assume now, without loss of generality, that

ǫφ < |t+∞ − t−∞|/4.

Corollary 2. For any non-degenerate φ and α satisfying (19), there is a
positive integer Nα depending only on α and mφ, such that for any k ≥ Nα

and t ∈ [t−∞ + ǫφ, t+∞ − ǫφ], we have both

Φ−kt ∈ (t−∞, t−∞+ǫφ
) and Φkt ∈ (t+∞ − ǫφ, t+∞).

Proof. For definiteness, suppose that αφ(t) > 0. As long as t and Φjt remain
in the interval [t−∞ + ǫφ, t+∞ − ǫφ], we have

Φt ≥ t + α mφ, and Φjt ≥ t + j α mφ,

so it suffices to take

Nα ≥
t+∞ − ǫφ − (t−∞ + ǫφ)

α mφ

+ 1. (20)

Note that if αφ < 0, the intervals change: in that case

Φ−kt ∈ (t−∞ − ǫφ, t−∞) and Φkt ∈ (t+∞, t+∞ + ǫφ),

for t ∈ [t+∞ + ǫφ, t−∞ − ǫφ]. �

We now show that because φ is non-degenerate, iteration of the shift
map Φ gives a geometric progression into the fixed points, so we can use a
geometric series to control the cumulative iterations.

Theorem 1. Let δ > 0 be given and let ǫφ, mφ and Nα be determined so
that Lemma 3 and Corollary 2 hold, and assume ta ≤ tb. If ta ≥ t−∞ + ǫφ,
then

∞
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤ Vφ|tb − ta|, (21)

and if tb ≤ t+∞ − ǫφ, then

−∞
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤ Vφ|tb − ta|, (22)

where

Vφ =
2 (1 + |α| ‖φ‖Lip)Nα

|α| φ′
∞ (1 − 2δ)

. (23)
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Proof. For definiteness, assume that ta ≥ t−∞ +ǫφ. We prove (21); a similar
argument yields (22) when tb ≤ t+∞ − ǫφ. We break the proof into two
cases:

(i) ta ≥ t+∞ − ǫφ; and
(ii) ta ∈ (t−∞ + ǫφ, t+∞ − ǫφ).

Consider first case (i). Then also tb ≥ t+∞ − ǫφ, and we can use (14) to
write

φ(tb) = φ′(t+∞) {1 + E+(tb)} (tb − t+∞),

φ(ta) = φ′(t+∞) {1 + E+(ta)} (ta − t+∞),

and recall we have assumed φ > 0 so that φ′(t+∞) < 0. Subtracting and
rearranging, we obtain

φ(tb) − φ(ta)

= φ′(t+∞) {tb − ta + E+(tb)(tb − t+∞) − E+(ta)(ta − t+∞)}

= φ′(t+∞) {tb − ta + E+(tb)(tb − ta) + (E+(tb) − E+(ta))(ta − t+∞)}

= φ′(t+∞)

{

1 + E+(tb) +
E+(tb) − E+(ta)

tb − ta

(ta − t+∞)

}

(tb − ta).

Now, according to (15), we have |E+(tb)| ≤ δ, and by (16), we have
∣

∣

∣

∣

E+(tb) − E+(ta)

tb − ta
(tb − t+∞)

∣

∣

∣

∣

≤ Eφǫφ ≤ δ.

Thus, since φ′(t+∞) < 0, we can estimate

φ′(t+∞) {1 + 2δ)} (tb − ta) ≤ φ(tb) − φ(ta) ≤ φ′(t+∞) {1 − 2δ)} (tb − ta),

which in turn gives
∣

∣Φtb − Φta

∣

∣ ≤
{

1 − |α φ′(t+∞)|(1 − 2δ)
}

(tb − ta). (24)

By induction conclude that
∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤
{

1 − |α φ′(t+∞)|(1 − 2δ)
}k

(tb − ta),

and thus

∞
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤
∞

∑

k=0

{

1 − |α φ′(t+∞)|(1 − 2δ)
}k

(tb − ta)

≤ V1 (tb − ta),

where we have set

V1 :=
1

|α φ′
∞| (1 − 2δ)

;

this completes the proof in case (i).
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Consider now case (ii). Since t−∞ + ǫφ ≤ ta ≤ tb, by Corollary 2 we know

that t+∞ − ǫφ ≤ Φkta < Φktb for all k ≥ Nα, and we write

∞
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣ =
Nα−1
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣ +
∞

∑

k=Nα

∣

∣

∣Φktb − Φkta

∣

∣

∣ . (25)

Since all the terms in the second sum lie within ǫφ of t+∞, we can estimate
the second sum by case (i) and obtain

∞
∑

k=Nα

∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤ V1

∣

∣

∣ΦNαtb − ΦNαta

∣

∣

∣ .

Now |Φt2 − Φt1| ≤ (1 + |α| ‖φ‖Lip) |t2 − t1|, so by induction,

|Φkt2 − Φkt1| ≤ (1 + |α| ‖φ‖Lip)k |t2 − t1|. (26)

Thus, the second sum in (25) is bounded by
∞

∑

k=Nα

∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤ V1(1 + |α| ‖φ‖Lip)Nα |tb − ta| .

Consider next the first sum in (25). By (26) we can estimate

Nα−1
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤
Nα−1
∑

k=0

(1 + |α| ‖φ‖Lip)k(tb − ta)

≤
(1 + |α| ‖φ‖Lip)Nα − 1

|α| ‖φ‖Lip
|tb − ta|,

where we have summed the finite geometric series.
Combining the estimates for the sums in (25), we get

∞
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣ ≤ Vφ |tb − ta| ,

where we have written

V1 (1 + |α| ‖φ‖Lip)Nα +
(1 + |α| ‖φ‖Lip)Nα − 1

|α| ‖φ‖Lip

≤
2 (1 + |α| ‖φ‖Lip)Nα

|α| φ′
∞ (1 − 2δ)

=: Vφ,

since φ′
∞ ≤ ‖φ‖Lip. This establishes case (ii), and completes the proof of

the theorem. �

3.2. Convergence of the infinite sums. Our goal is to prove invertibil-
ity of ∆Φ, which amounts to proving consistency of and estimates for our
construction (11), which expresses the solution v of the equation

∆Φv = SΦv − v = w

as an infinite series. We begin by using the geometric convergence of itera-
tions of Φ to simplify the condition for convergence of these series.
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Lemma 4. Assume that the conditions of Theorem 1 holds, and let w be
Lipschitz continuous on [t−∞, t+∞]. Then the series in (13) converge if and
only if w vanishes at the fixed points,

w(t−∞) = 0 and w(t+∞) = 0.

Moreover, if t lies within ǫφ of one of the endpoints t±∞, we have the bound
∣

∣

∣

∣

∣

∞
∑

k=0

w(Φ±kt)

∣

∣

∣

∣

∣

≤ ‖w‖Lip
|t±∞ − t|

|α| (1 − δ) φ′
∞

, (27)

where φ′
∞ is given by (17).

Proof. Assuming convergence of the series (13),
∣

∣

∣

∣

∣

∞
∑

k=0

w(Φkt)

∣

∣

∣

∣

∣

< ∞ and

∣

∣

∣

∣

∣

∞
∑

k=0

w(Φ−kt)

∣

∣

∣

∣

∣

< ∞,

it follows that w(Φ±kt) → 0, and so by continuity,

w(t±∞) = w
(

lim
k→∞

Φ±kt
)

= lim
k→∞

w(Φ±kt) = 0.

For the reverse implication, assume that w(t+∞) = 0. We show the first
sum in (13) is finite; the other case is similar. Since only finitely many terms
in each sum of (13) lie ǫφ away from t±∞, it suffices to prove

∣

∣

∣

∣

∣

∞
∑

k=0

w(Φkt)

∣

∣

∣

∣

∣

< ∞ for t ∈ (t+∞ − ǫφ, t+∞).

We write t0 := t > t+∞ − ǫφ and set tk = Φkt. Using (2) and (14), we write

tk+1 = tk + α φ′(t+∞) {1 + E+(tk)} (tk − t+∞),

which in turn yields

t+∞ − tk+1 =
(

1 + α φ′(t+∞) {1 + E+(tk)}
)

(t+∞ − tk)

≤
(

1 − |α φ′(t+∞)| (1 − δ)
)

(t+∞ − tk),

where we have used (15), and recalled that α φ′(t+∞) < 0. Continuing by
induction we obtain

t∞ − tk ≤
(

1 − |α φ′(t+∞)| (1 − δ)
)k

(t+∞ − t),

and since w(t+∞) = 0, we can write
∣

∣

∣

∣

∣

+∞
∑

k=0

w(Φkt)

∣

∣

∣

∣

∣

≤
∞

∑

k=0

∣

∣

∣w(t+∞) − w(Φkt)
∣

∣

∣ ≤
+∞
∑

k=0

‖w‖Lip |t+∞ − tk|

≤ ‖w‖Lip

+∞
∑

k=0

(

1 − |α φ′(t+∞)| (1 − δ)
)k

(t+∞ − t)

≤ ‖w‖Lip
t+∞ − t

|α φ′(t+∞)| (1 − δ)
< ∞.
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The argument in the symmetrical case t ∈ (t−∞, t−∞ + ǫφ) gives the result
∣

∣

∣

∣

∣

−∞
∑

k=0

w(Φ−kt)

∣

∣

∣

∣

∣

≤ ‖w‖Lip
t − t−∞

|α φ′(t−∞)| (1 − δ)
,

and these together yield (27). �

As a corollary, we obtain bounds on the full sum
∑∞

k=−∞ w(Φkt) provided
w vanishes at t±∞.

Corollary 3. Assume w is Lipschitz continuous and satisfies w(t±∞) = 0,
and the conditions of Theorem 1 hold. Then for any t ∈ [t−∞, t+∞],

∣

∣

∣

∣

∣

∣

∞
∑

k=−∞

w(Φkt)

∣

∣

∣

∣

∣

∣

≤ ‖w‖Lip

{

2

|α| (1 − δ) φ′
∞

+ Nα

}

|t+∞ − t−∞|. (28)

Proof. Since the Φkt → t±∞ as k → ±∞, we can replace t by Φjt for any
convenient integer j. Using Corollary 2, we choose t0 = Φjt such that

t0 ≤ t−∞ + ǫφ and ΦNα+1t0 ≥ t+∞ − ǫφ.

Then we have
∣

∣

∣

∣

∣

∣

∞
∑

k=−∞

w(Φkt)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

−∞
∑

k=0

w(Φ−kt0)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

Nα
∑

k=1

w(Φkt0)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∞
∑

k=Nα+1

w(Φkt0)

∣

∣

∣

∣

∣

∣

,

and the first and third sums are estimated by (27). We estimate the middle
term by

∣

∣

∣

∣

∣

Nα
∑

k=1

w(Φkt0)

∣

∣

∣

∣

∣

≤ Nα ‖w‖Sup ≤ Nα ‖w‖Lip |t+∞ − t−∞|,

since w vanishes at t±∞. Combining the three terms yields (28). �

3.3. Invertibility in the space C0,1. We now state and prove our main
theorem, which states that the operator ∆Φ = SΦ − I is invertible on its
range, and that the inverse is bounded in the C0,1 norm.

Theorem 2. Assume that φ(t) is non-degenerate, let δ > 0 and

|α| <
1 − δ

φ′
∞

<
1

‖φ‖Lip

be given, and choose ǫφ < (t+∞ − t−∞)/4 and Nα so that the conditions of
Theorem 1 hold. Also let w ∈ C0,1[t−∞, t+∞] satisfy w(t−∞) = w(t+∞) = 0
and the consistency condition (12), namely

+∞
∑

k=−∞

w(Φkt) = Const.

Then the equation

∆Φv(t) = v(Φt) − v(t) = w(t)
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has a solution v ∈ C0,1[t−∞, t+∞], uniquely determined up to constant, which
is explicitly given by either equation in (11), which are consistent. Moreover,
the solution satisfies the bound

‖v‖Lip ≤ Kφ ‖w‖Lip, so that ‖∆−1
Φ ‖ ≤ Kφ, (29)

where Kφ is given by

Kφ = max {K1, Vφ} , (30)

where

K1 =
2 + 2 ǫφ + |α| Nα (1 − δ) φ′

∞

|α| (1 − δ) φ′
∞ (t+∞ − t−∞ − 2ǫφ)

, (31)

and Vφ is given in (23).

Proof. According to Lemma 4, the conditions w(t±∞) = 0 imply that the
infinite series converge, so that equations (11) make sense. We can choose
one of v(t±∞) arbitrarily, and the other is determined by (12), which also
implies consistency of both equations in (11). Since the solution is given by
an explicit formula, it is unique up to our choice of constant, and all that
remains is to establish (29).

As above, for definiteness we assume that α φ(t) > 0; similar estimates
hold for the other case. Assume that we are given ta and tb ∈ [t−∞, t+∞],
and suppose ta < tb. We again consider two cases:

(i) ta ≥ t−∞ + ǫφ or tb ≤ t+∞ − ǫφ; and
(ii) ta < t−∞ + ǫφ and tb > t+∞ − ǫφ.

For the first case, we assume ta ≥ t−∞ + ǫφ; the case tb ≤ t+∞ − ǫφ follows
similarly. Here Theorem 1 applies directly: we use the first equation in (11)
to describe v(t) and write

∣

∣v(tb) − v(ta)
∣

∣ =

∣

∣

∣

∣

∣

∞
∑

k=0

(

w(Φktb) − w(Φkta)
)

∣

∣

∣

∣

∣

≤ ‖w‖Lip

∞
∑

k=0

∣

∣

∣Φktb − Φkta

∣

∣

∣

≤ ‖w‖Lip Vφ

∣

∣tb − ta

∣

∣, (32)

where we have applied (21). When tb ≤ t+∞ − ǫφ, the same estimate holds
using the second equation of (11) and (22). This is the required estimate
for case (i).

We now consider case (ii), in which ta and tb lie within ǫφ of different
fixed points. We use different expressions for v(ta) and v(tb); by (11), we
have

v(ta) = v(t−∞) +
∞

∑

k=1

w(Φ−kta), and

v(tb) = v(t+∞) −
∞

∑

k=0

w(Φktb).
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Subtracting, taking the absolute value, and applying (27) gives

∣

∣v(tb) − v(tb)
∣

∣ ≤
∣

∣v(t+∞) − v(t−∞)
∣

∣ + ‖w‖Lip
2 ǫφ

|α| (1 − δ) φ′
∞

. (33)

We use (28) to write

∣

∣v(t+∞) − v(t−∞)
∣

∣ ≤ ‖w‖Lip

{

2

|α| (1 − δ) φ′
∞

+ Nα

}

|t+∞ − t−∞|,

so that (33) becomes
∣

∣v(tb) − v(tb)
∣

∣ ≤ ‖w‖Lip K0,

where we have set

K0 :=

{

2

|α| (1 − δ) φ′
∞

+ Nα

}

|t+∞ − t−∞| +
2 ǫφ

|α| (1 − δ) φ′
∞

=
2 + 2 ǫφ + |α| Nα (1 − δ) φ′

∞

|α| (1 − δ) φ′
∞

.

Finally, since

tb − ta > t+∞ − t−∞ − 2ǫφ,

we can write
∣

∣v(tb) − v(ta)
∣

∣ ≤ ‖w‖Lip K1

∣

∣tb − ta

∣

∣, (34)

where we have set

K1 :=
K0

t+∞ − t−∞ − 2ǫφ

=
2 + 2 ǫφ + |α| Nα (1 − δ) φ′

∞

|α| (1 − δ) φ′
∞ (t+∞ − t−∞ − 2ǫφ)

,

which is (31). Combining (32) and (34) yields (29), and the proof is com-
plete. �

Corollary 4. Since the dependence of Kφ in (31) is given by

Kφ ≡ Kφ(α, δ, ǫφ, Nα, t+∞ − t−∞, ‖φ‖Lip, φ′
∞), (35)

it follows that Kφ depends continuously on φ in any norm in which these
parameters are continuous. In particular, if φ is the perturbation of a fixed
φ0, we can write

Kφ =
1

|α|
K(δ, φ) where K(δ, φ) = O(1).

Indeed, (20) yields Nα = O(1/|α|), so that (31) yields K1 = O(1/|α|) and
using

(1 + |α| ‖φ‖Lip)Nα ≤ e|α| ‖φ‖Lip Nα = O(1),

we see that (23) also gives Vφ = O(1/|α|).



INVERSION OF A NON-UNIFORM DIFFERENCE OPERATOR 17

4. Inversion of ∆φ in other norms.

We now address the question: in which other norms is ∆Φ invertible?
We consider only functions which are at least Lipshitz continuous, so that
the results of the previous section apply. Our goal then is to identify those
norms in which ∆Φ is invertible on its range,

‖v‖ ≤ K ‖w‖ if ∆Φv = w.

To be specific, let ‖ · ‖ denote the norm and let X be the Banach space
of Lipshitz functions on [t−∞, t+∞] bounded in this norm; that is,

X =
{

v ∈ C0,1[t−∞, t+∞], ‖v‖ < ∞
}

.

Our starting assumption is that the norm ‖ · ‖ respects composition, in the
sense that

‖v ◦ Ψ‖ ≤ K0 ‖v‖ ‖Ψ‖ for some K0, (36)

provided Ψ : [t−∞, t+∞] → [t−∞, t+∞] and Ψ ∈ X. In particular the shift
operator SΦ is a bounded operator on X, whose norm is controlled by ‖Φ‖,
and so ∆Φ : X → X is a bounded operator,

‖∆Φ‖ ≤ K0 ‖Φ‖ + 1.

The following theorem gives a sufficient condition for the inverse of ∆Φ

to be bounded in a given norm.

Theorem 3. Assume the Banach space X has a norm satisfying (36). The
range of the operator ∆Φ : X → X is the set R that consists of those
functions w ∈ X that satisfy (12), which implicitly implies w(t±∞) = 0.
Moreover, if we can sum either of the series

∞
∑

k=0

∥

∥Φk
∥

∥ < ∞, or
∞

∑

k=1

∥

∥Φ−k
∥

∥ < ∞, (37)

where as usual, Φk denotes k-fold composition, then the solution operator
∆−1

Φ is bounded on its domain. That is, there is a constant K such that, if
w ∈ R and v satisfies

∆Φv = w, then ‖v‖ ≤ K ‖w‖.

We regard (37) as a condition on Φ (or α φ) which implies that the equa-
tion can be solved in X: that is, if the norm satisfies (36), then condition
(37) is a condition only on the shift function which implies that the equation
∆Φ is invertible on its range in the space X.

Proof. Since the norm satisfies (36), the forward operator is bounded and
maps X → X. Since X is a subset of the Lipshitz continuous functions,
the range R consists of those elements of X which satisfy our consistency
conditions w(t±∞) = 0 and (12).
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We must show that if w ∈ R, and if v solves ∆Φv = w, then ‖v‖ ≤ K ‖w‖
for some K. Since the solution v is given by a formula, namely (11), this
bound becomes an explicit inequality. To prove the theorem, use the formula
of (11) corresponding to the finite sum in (37), and set the corresponding
v(t+∞) or v(t−∞) to zero. For definiteness, suppose that the first inequality
in (37) holds, say

∞
∑

k=0

∥

∥Φk
∥

∥ = M ;

then set v(t+∞) = 0 and use the first equation in (11) to define v. Using
(36), it follows that

∥

∥v
∥

∥ =

∥

∥

∥

∥

∥

∞
∑

k=0

w ◦ Φk

∥

∥

∥

∥

∥

≤
∞

∑

k=0

K0

∥

∥w
∥

∥

∥

∥

∥Φk
∥

∥

∥

≤ K
∥

∥w
∥

∥,

with K = K0 M , as required; the other case follows similarly. �

In light of (37), the following corollary is immediate.

Corollary 5. If K0 = 1 in (36), then a sufficient condition for the operator
∆Φ to be bounded is that for some η > 0 and k large enough, we have

‖Φk+1‖ ≤ (1 − η) ‖Φk‖, or ‖Φ−k−1‖ ≤ (1 − η) ‖Φ−k‖.

Note that these bounds apply for the Lipshitz norm, cf. Theorem 1 and
(24).

4.1. Bounds in the Cp Norm. Because the kernel of ∆Φ is infinite dimen-
sional in spaces of discontinuous functions, it is most natural to establish
invertibility of in spaces in which the function and its derivatives are con-
tinuous. Here we prove invertibility of ∆Φ in Cp, the simplest such spaces.

Recall that for integers p ≥ 0, we can write the Cp norm as

‖f‖p = sup
t

∣

∣f(t)
∣

∣

p
,

where we have set

∣

∣f(t)
∣

∣

p
:=

∣

∣

∣

(

f(t), f ′(t), . . . , f (p)(t)
)T

∣

∣

∣ = sup
t

p
∑

j=0

|f (j)(t)|,

that is,
∣

∣f(t)
∣

∣

p
is a norm of the vector of derivatives up to p-th order. It

is convenient to work with pointwise values of the iterates Φkt. The point
here is that the order p is fixed, while the iteration number k is large, so we
wish to give an asymptotic description of dp

dtp Φkt. We know that Φkt → t+∞

geometrically for large k, and we wish to leverage this to get bounds for
‖Φk‖p.
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Lemma 5. For p ≥ 1, the space Cp[t−∞, t+∞], endowed with the norm
‖f‖p = supt

∣

∣f(t)
∣

∣

p
, is a Banach space containing the Lipshitz functions and

for which the bound (36) holds.

Rather than treat the case of general p, we treat the case p = 3, which
illustrates the development for the case of general p, which in turn follows
by induction. We show (37) holds for the norm ‖f‖p, as long as φ is itself

Cp+1. The goal is to take advantage of the geometric convergence of Φkt to
the limit t±∞ as k → ±∞.

To control the derivatives of Φ, we introduce the following notation: for
a given t = t0, define

tk = Φkt, sk = (Φkt)′, rk = (Φkt)′′, and qk = (Φkt)′′′. (38)

We now describe the discrete dynamical system for the vector

Uk = (tk, sk, rk, qk)T .

To begin, assume z = z(t) is some given function, and compute

(Φz)′ = Φ′(z) z′ =
(

1 + α φ′(z)
)

z′,

(Φz)′′ =
(

1 + α φ′(z)
)

z′′ + α φ′′(z) (z′)2, and

(Φz)′′′ =
(

1 + α φ′(z)
)

z′′′ + 3 α φ′′(z) z′ z′′ + α φ′′′(z) (z′)3.

Now setting z = Φkt and using (38), we obtain the system

tk+1 = tk + α φ(tk),

sk+1 =
(

1 + α φ′(tk)
)

sk,

rk+1 =
(

1 + α φ′(tk)
)

rk + α φ′′(tk) s2
k,

qk+1 =
(

1 + α φ′(tk)
)

qk + 3 α φ′′(tk) sk rk + α φ′′′(tk) s3
k,

(39)

which we regard as a discrete dynamical system,

Uk+1 = F (Uk), (40)

where F is the RHS of (39). Note that this is a hierarchy, in that each
successive equation beyond the nonlinear equation for tk is a linear inhomo-
geneous equation, once the previous components are given. It is clear that
the system can be extended to arbitrary fixed values of p. Also, since each
equation beyond the first is linear, solutions exist and remain bounded for
all finite k.

It is easy to find the fixed points of (39) by directly finding the rest points
of each equation in turn: the first equation yields φ(t) = 0, so t = t±∞, and
subsequent equations have trivial solutions because φ′(t±∞) 6= 0, and the
fixed points are

U−∞ := (t−∞, 0, 0, 0)T and U+∞ := (t+∞, 0, 0, 0)T .

We now show that, just as in the case for the scalar dynamical system for
tk, the rest points U±∞ are a source and sink, respectively.
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Lemma 6. For φ ∈ Cp+1 and |α| < 1/ sup |φ′(t)|, there are constants ǫφ

and η > 0, such that if
∣

∣U − U+∞

∣

∣ < ǫφ, then
∣

∣F (U) − U+∞

∣

∣ < (1 − η)
∣

∣U − U+∞

∣

∣, (41)

while also, if
∣

∣U − U−∞

∣

∣ < ǫφ, then
∣

∣U − U−∞

∣

∣ < (1 − η)
∣

∣F (U) − U−∞

∣

∣. (42)

Also, given any compact set K, there is a constant NK such that: if U0 ∈ K
and t0 ∈ [t−∞ + ǫφ, t+∞ − ǫφ, then

∣

∣Uk − U+∞

∣

∣ < ǫφ and
∣

∣U−k − U−∞

∣

∣ < ǫφ, (43)

for k ≥ NK.

This lemma states that the dynamical system (40) is contractive in a
neighborhood of U+∞, and backwards contractive in a neighborhood of U−∞,
and that given any bounded initial state, a finite number of forward or
backward steps will lead into these neighborhoods.

Proof. We have already seen that U−∞ and U+∞ are fixed points of F , and
so are rest points of the dynamical system. To linearize around these fixed
points, we compute

DF (U) =









1 + αφ′ 0 0 0
αφ′′ s 1 + αφ′ 0 0

αφ′′ r + αφ′′′ s2 2αφ′′ s 1 + αφ′ 0
� 3αφ′′ r + 3αφ′′′ s2 3αφ′′ s 1 + αφ′









,

with � = αφ′′ q + 3αφ′′′ s r + αφ(4) s3, where we note that this derivative is
well defined because φ ∈ Cp+1. Next, writing

F (U) − F (U±∞) =

∫ 1

0
DF

(

U±∞ + σ(U − U±∞)
)

dσ
(

U − U±∞),

the estimates follow provided the eigenvalues of DF (U) are bounded by
1 − η in a neighborhood of U+∞ and by 1/(1 − η) in a neighborhood of
U−∞, respectively. Since α φ′(t+∞) < 0 and α φ′(t−∞) > 0, respectively, the
eigenvalues at U±∞ are of the right form, and by continuity we can choose
ǫφ > 0 and η = O(α) so that (41) and (42) hold.

We now verify (43) for the above chosen ǫφ at t+∞, the case at t−∞ being
similar. So let K ⊂ R4 be compact. We show that there exists an NK ∈ N
such that if U0 ∈ K and t0 ≥ t−∞ + ǫφ, then |Uk − U∞| < ǫφ for k ≥ NK.
We define NK by induction on the components in system (39), using the
fact that system (39) is hierarchical. Let (39)j denote the j’th equation in
(39). We construct N by induction on j. Since K is compact, there exists a
constant MK such that U ∈ K implies |U | < MK.

To start the induction, note that since αφ′ < 1 and φ > 0 in (t−∞, t+∞),
(39)1 implies that if tk ∈ (t−∞, t+∞), then tk+1 ∈ (t−∞, t+∞), and tk+1 > tk.
Thus since t0 ≥ t−∞ + ǫφ, (39)1 together with the fact that the first five



INVERSION OF A NON-UNIFORM DIFFERENCE OPERATOR 21

derivatives of φ are continuous, implies that there exists an N1 such that if
k > N1, then

α|φ′(tk)| >
α|φ′(t∞)|

2
, (44)

where φ′(t∞) < 0, and

|φ(j)(tk) − φ(j)(t∞)| < δ,

for δ = η
2 , j = 1, ..., p = 3.

Consider now equation (39)2. Since (1 + αφ′) < 2, it follows from (39)2

that sN1
≤ 2ns0 < 2nMK. Thus by (44), (there is a mininum decrease

in sk at each step), it follows that there exists N2 such that |sk| < ǫφ for
k > N1 + N2.

Consider next equation (39)3. Since (1 + αφ′(tk)) < 1 − η
2 for k > N1 and

s2
k decreases monotonically and quadratically to zero for k > N1 + N2, it

follows that rN1+N2
< 2N1+N2MK, and after k > N1 + N2, sk monotonically

decreases, it follows that there exists N3 such that |rk| < ǫφ for k > N1 +
N2 + N3.

For the fourth equation (39)4, note that the corrections to qk+1 =
(

1 +

α φ′(tk)
)

qk are quadratic in the variables prior to qk, so by the same argu-
ment, there exists N4 such that if k > N ≡ NK = N1+· · · N4, then |qk| < ǫφ,
as claimed.

In summary, for the induction step, use that if p is the variable on the
LHS of the p’th equation, then by the hierarchical character of system(39),
the p’th equation looks like pk+1 =

(

1 + α φ′(tk)
)

pk plus corrections that
at least quadratic in prior variables. Thus the corrections tend to zero so
fast that a finite Np always exists to drive pk back to zero, overcoming the
growth in pk during the first N1 + · · · Np−1 steps. This concludes the proof
of Lemma 6. �

Note that if t0 = t−∞ but U0 6= U+∞, then the forward dynamical system
has solutions which tend to infinity. Thus we do not have a uniform N such
that

∣

∣Uk − U+∞

∣

∣ < ǫφ.

for k > N , without the condition that t0 should be at least ǫφ from t±∞.
The two cases in (39) suffice because the solvability condition implies we
have both a backward and forward time formula for the solution v, c.f. (11).

We now use these properties of the dynamical system (39) to sum the
norms of iterates as in (37).

Theorem 4. For integers p ≥ 1 and fixed φ ∈ Cp+1, there exists an α0 > 0
such that if |α| ≤ α0, then the operator ∆Φ : Cp[t−∞, t+∞] → Cp[t−∞, t+∞]
has a bounded inverse on its range, with bound

∥

∥∆−1
Φ w

∥

∥

p
≤

K

|α|

∥

∥w
∥

∥

p
,
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where the dependence of the constant K is given by

K ≡ K (α, δ, ǫφ, Nα, t+∞ − t−∞, ‖φ‖p+1) . (45)

Proof. It is convenient to use our previous estimate for the function, and
estimate only the first through p-th derivatives here. For fixed t0, we must
bound one of the two sums

∣

∣

∣

∞
∑

j=0

w(Φjt0)
∣

∣

∣

p̂
or

∣

∣

∣

∞
∑

j=1

w(Φ−jt0)
∣

∣

∣

p̂
,

where | · |p̂ is the norm of the vector of the first through p-th derivatives,

∣

∣f(t)
∣

∣

p̂
:=

∣

∣

∣

(

f ′(t), . . . , f (p)(t)
)T

∣

∣

∣ = sup
t

p
∑

j=1

|f (j)(t)|.

Also note that
∣

∣

∣

∑

w(Φjt)
∣

∣

∣

p̂
≤ K0 ‖w‖p

∣

∣

∣

∑

Φjt
∣

∣

∣

p̂
= K0 ‖w‖p

∣

∣

∣

∑

Ûk

∣

∣

∣, (46)

where Ûk = (sk, rk, qk)T , see (38). We thus need a uniform bound on either
of the sums

∣

∣

∣

∞
∑

j=0

Ûj

∣

∣

∣ or
∣

∣

∣

∞
∑

j=1

Û−j

∣

∣

∣.

Since φ ∈ Cp+1, each derivative is uniformly bounded and so there is a
compact set K such that U0 ∈ K uniformly in t0. Using Lemma 6, we know
that for k ≥ NK, either Uk is close to U+∞ or U−k is close to U−∞, for any

k ≥ NK. In the first case, we have |Ûk+1| ≤ (1 − η) |Ûk| for all k ≥ NK, so
that

∣

∣

∣

∞
∑

j=0

Ûj

∣

∣

∣ ≤
∣

∣

∣

NK−1
∑

j=0

Ûj

∣

∣

∣ +
∞

∑

j=NK

(1 − η)j−NK

∣

∣ÛNK

∣

∣

≤
∣

∣

∣

NK−1
∑

j=0

Ûj

∣

∣

∣ +

∣

∣ÛNK

∣

∣

η
≤

K1

η
,

and similarly for the second case, |Û−k−1| ≤ (1 − η) |Û−k| for k ≥ NK, so
that

∣

∣

∣

∞
∑

j=1

Û−j

∣

∣

∣ ≤
∣

∣

∣

NK−1
∑

j=1

Û−j

∣

∣

∣ +
∞

∑

j=NK

(1 − η)j−NK

∣

∣Û−NK

∣

∣

≤
∣

∣

∣

NK−1
∑

j=1

Û−j

∣

∣

∣ +

∣

∣Û−NK

∣

∣

η
≤

K1

η
.

Now taking the supremum over all t = t0 in (46) completes the proof. �
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