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The evergreen problem of a bead on a rotating hoop shows a multitude of bifurca-

tions when the bead moves with friction. This motion is studied for different values

of the damping coefficient and rotational speeds of the hoop. Phase portraits and

trajectories corresponding to all different modes of motion of the bead are presented.

They illustrate the rich dynamics associated with this simple system. For some range

of values of the damping coefficient and rotational speeds of the hoop, linear stability

analysis of the equilibrium points is inadequate to classify their nature. A technique

involving transformation of coordinates and order of magnitude arguments is pre-

sented to examine such cases. This may provide a general framework to investigate

other complex systems.
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I. INTRODUCTION

The motion of a bead on a rotating circular hoop1 shows several classes of fixed points

and bifurcations2–4. It also exhibits reversibility, symmetry breaking, critical slowing down,

homoclinic and heteroclinic orbits and trapping regions. It has been shown to provide a

mechanical analogue of phase transitions5. It can also operate as a one-dimensional pon-

deromotive particle trap6. The rigid pendulum, with many applications, can be considered

a special case of this system7,8.

In this article we examine the motion of a damped bead on a rotating circular hoop.

Damping alters the nature of the fixed points of the system, showing rich nonlinear fea-

tures. The overdamped case of this model3,9 and a variant involving dry friction10 has been

previously studied.

For certain values of the damping coefficient and the rotational speed of the hoop, linear

stability analysis predicts a line of fixed points and some of the fixed points appear as

degenerate nodes. However, such fixed points are borderline cases, sensitive to nonlinear

terms. By transforming to polar coordinates and employing order of magnitude arguments

we analyze these borderline cases to determine the exact nature of these fixed points. To

our knowledge, such analytical treatment does not appear in literature. The basic equations

obtained for this system are quite generic and arise in other systems (e.g. electrical systems)

as well. Hence, our technique may serve as a framework for investigating other more complex

nonlinear systems.

II. THE PHYSICAL SYSTEM

A bead of mass m, moves on a circular hoop of radius a. The hoop rotates about its

vertical diameter with a constant angular velocity ω. The position of the bead on the hoop

is given by angle θ, measured from the vertically downward direction (−z axis), and φ is the

angular displacement of the hoop from its initial position on the x-axis (Figure 1).

The Lagrangian of the system with no damping is,

L(θ, θ̇) =
ma2

2
(θ̇2 + ω2 sin2 θ) +mga cos θ , where ω = φ̇ is a constant. (1)

Using the Euler-Lagrange equation, the equation of motion is obtained as,

θ̈ = sin θ(ω2 cos θ − g/a). (2)
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FIG. 1. Schematic figure of a bead sliding on a rotating hoop showing the angles θ and φ.

To include friction, a term −bθ̇ is introduced in (2) as,

θ̈ = sin θ(ω2 cos θ − g/a)− bθ̇ , (3)

where b is the damping coefficient. We identify ω2
c = g/a as the critical speed of rotation of

the hoop, and write k = ω2/ω2
c , µ = b/ωc. Defining τ = ωc t, (3) may be made dimensionless

by changing from t to τ ,

θ
′′

= sin θ(k cos θ − 1)− µθ′
, where

d2θ

dτ 2
= θ

′′
. (4)

For phase plane analysis, we define a new variable θ1 = θ
′
, and write (4) as,

θ
′
= θ1 (5)

θ1
′ = − sin θ(1− k cos θ)− µ θ1 . (6)

The parameter k can take only positive values whereas µ may be either positive or negative.

Due to the symmetry of the hoop about its vertical axis, (5) and (6) remain invariant

under the transformations θ → −θ , θ1 → −θ1. This implies that alternate quadrants of the

θ − θ1 plane have similar trajectories. Similarly, it is easily verified that if (θ(t), θ1(t)) is a

solution for positive damping (µ > 0), then for negative damping (µ < 0), (θ(−t),−θ1(−t))

and (−θ(−t), θ1(−t)) are two solutions. The phase portrait of the system for negative

damping will just be the reflection of the positive damping phase portrait with the arrows

reversed. Hence we confine our attention to θ ∈ [0, π] and µ > 0.
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When there is no damping11, the fixed points are at (0, 0) and (π, 0) for 0 ≤ k ≤ 1,

whereas for k > 1, an additional fixed point appears at (Ω1 = cos−1(1/k), 0). Damping

changes the nature of fixed points and not their number or location.

III. NATURE OF THE FIXED POINT (0, 0)

The Jacobian matrix at (0, 0) is obtained by Taylor expanding (5) and (6) about (0, 0)

and retaining the linear terms.

J(0, 0) =

 0 1

k − 1 −µ

 . (7)

Let Γ and ∆ denote the trace and determinant of the above matrix.

1. When k > 1, both Γ and ∆ are negative. The fixed point is a saddle with eigenvalues

and eigenvectors given by,

λ1,2 =
−µ± ξ1

2
, v1,2 =

 1

(−µ± ξ1)/2

 , (8)

where ξ1 =
√
µ2 + 4(k − 1). Saddles are robust and do not get perturbed by non-

linearities. Thus, (0, 0) will remain a saddle even if nonlinear terms are taken into

account (see Figures 8, 9 and 16).

For µ = 0, both λ1 and λ2 equal
√
k − 1. As k → 1+, λ1 → 0+ and λ2 → −µ−, which

means that the saddle will start looking like a line of fixed points along the direction

of v1 with solutions decaying along v2.

2. For 0 ≤ k < 1, Γ = −µ is negative, whereas ∆ = 1− k is positive. When there is no

damping, the point (0, 0) is a center. As µ is increased, the center transforms into a

stable spiral for µ < 2
√

1− k as shown in Figure 2(a). The frequency of spiralling is

ν ≈
√

1− k − µ2/4. As µ → 2
√

1− k−, ν → 0+. For µ > 2
√

1− k, the fixed point

(0, 0) transforms to a stable node (Figure 2(b)). For µ = 2
√

1− k, it is a degenerate

node. However, degenerate nodes are borderline cases and are sensitive to nonlinear

terms.
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3. For k = 1, (5) and (6) simplify to,

θ
′
= θ1 (9)

θ
′

1 = − sin θ(1− cos θ)− µ θ1 . (10)

In the linearized dynamics, θ1 decays exponentially as e−µ t. In the phase plane, all

trajectories move along a straight line with slope −µ and stop on reaching the θ axis.

However, the inclusion of nonlinear terms changes this situation.

(a) stable spiral, µ < 2
√

1− k (b) stable node, µ > 2
√

1− k

FIG. 2. Phase trajectories around (0, 0) for k = 0.91 showing (a) stable spiral for µ = 0.3 and (b)

stable node for µ = 1.

A. Nature of (0, 0) with nonlinearities

1. 0 ≤ k < 1 and µ < 2
√
1− k :

To include the effect of nonlinear terms, let us define two new variables,

θ = r cosφ, θ1 = r sinφ (11)

Equations (5) and (6) then may be written as,

r
′
= r[cosφ sinφ− 2

√
1− k sin2 φ]− sinφ sin(r cosφ)[1− k cos(r cosφ)] (12)

φ
′
= −
√

1− k sin(2φ)− sin2 φ− cosφ

r
sin(r cosφ)[1− k cos(r cosφ)] (13)

We wish to examine the fixed point(s) in the r−φ plane corresponding to (0, 0) in the θ−θ1
plane, to determine their true nature. Strictly speaking, (12) and (13) are meaningful only
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when r > 0. Neither φ nor φ
′

have any meaning when r = 0. Hence, we may assign any

arbitrary function f(φ) to φ
′

at r = 0 without altering physical predictions. However, (13)

describes accurately the approach to r = 0 (if any) in the r − φ plane at arbitrarily small

scales. We therefore set f(φ) equal to the limiting value of φ
′

as r → 0.

f(φ) = lim
r→0

φ
′
= −
√

1− k sin(2φ) +
k

2
cos(2φ)−

(
1− k

2

)
(14)

Equations (12) and (13) are periodic in φ with period π. Hence, the phase portrait in the

r− φ plane is periodic along the φ-axis with period π. This means that in the θ− θ1 plane,

the phase space is symmetric about (0, 0).

Using the identity (
√

1− k)2 + (k/2)2 = (1− k/2)2, one can write f(φ) in the form,

f(φ) =

(
1− k

2

)
[cos(2φ+ α)− 1] , (15)

where α = 2 tan−1
√

1− k, n = 0, 1, 2, . . . . Therefore, fixed points (0, φ∗) in the r − φ

plane, where f(φ∗) = 0, are given by φ∗n = nπ − tan−1
√

1− k with n = 0, 1, 2, . . . . These

correspond to the point (0, 0) in the θ − θ1 plane.

The fixed points (0, φ∗n) in the r − φ plane are separated by nπ (where n is any integer).

Hence, in the θ − θ1 plane, there are no trajectories that can approach (0, 0) along two

independent directions. So we can say that (0, 0) in the θ − θ1 plane cannot be a stable

node. In the r − φ plane, close to some fixed point (0, φ∗n), if there exist trajectories that

approach this point and stop there, the corresponding fixed point (0, 0) in the θ − θ1 plane

cannot be a stable spiral. For a spiral, φ → ±∞ as r → 0. As (12) and (13) are periodic

in φ with period π, the nature of all fixed points on the φ-axis separated by π is identical.

So we may choose to investigate (0, φ∗ = − tan−1
√

1− k). Linearization about this point

incorrectly predicts the whole φ axis to be a line of fixed points. So, we must include the

effects of the nonlinear terms. Let ε = φ− φ∗. For small r, we may write (12) and (13) as,

r
′
= −r

[√
1− k −

(
1− k

2

)
sin(2ε)

]
+O(r3) (16)

ε
′
= −

(
1− k

2

)
[1− cos(2ε)] +O(r2) (17)

Consider an initial condition, r(τ = 0) = r0 and ε(τ = 0) = ε0, where 0 < ε0 <

tan−1(
√

1− k/2). For any finite positive value of 1 − k, ε0 is finite and < 1/2. There-

fore, r0 may be chosen sufficiently small, 0 < r0 � ε0, so as to make all terms of O(r2) and
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higher, negligible compared to the leading terms in (16) and (17). When these terms are

neglected, (16) and (17) may be solved to yield,

ε(τ) = tan−1
[ 1

(2− k)τ + cot ε0

]
(18)

r(τ) = r0 sin ε0
√

[(2− k)τ + cot ε0]2 + 1 exp(−
√

1− k τ) (19)

According to this solution, the trajectory monotonically approaches the point (0, 0) in the

r − ε plane as τ → ∞. This behaviour will hold even with inclusion of nonlinear terms,

provided, the terms independent of r and of O(r) remain dominant over the entire trajectory.

The following arguments establish that it is indeed so.

First, the trajectory cannot reach the φ axis at a positive value of ε. This is because on

the φ axis, r′ = 0 and φ
′

= f(φ) < 0 in between two fixed points. Thus, there is already a

trajectory running along the φ axis directed towards ε = 0.

For the initial point (r0, ε0), with the choice 0 < r0 � ε0 < 1/2, both r and ε will start to

decrease as per (16) and (17). Hence r2 will become more negligible compared to r. Also,

for all 0 ≤ ε ≤ ε0, the ε independent term, namely, −
√

1− k r, in (16), will be dominant.

However, if ε decays more rapidly, such that at some stage r ∼ ε, then the O(r2) term will

contribute on the same scale as the first term in (17), which is O(ε2). Similarly, the O(r3)

term will contribute on the same scale as the 2nd term in (16) if in the course of decay, at

some point ε ∼ r2. However, such situations will never arise as is shown below.

Let us assume that r0 = ε200 � 1 and that ε decreases very rapidly, such that, at some

instance, r = ε2. As r has decreased monotonically from its initial value, we must have

ε = r1/2 < r
1/2
0 . However, r

1/2
0 = ε100 � 1. Hence, along the entire trajectory, up to this

instance, terms of O(r2) and higher are negligible compared to the leading terms in (16) and

(17). Thus the solutions (18) and (19) are valid and give the correct orders of magnitudes

of the dynamical quantities.

As 0 < ε < ε100 � 1 and 0 < ε0 < 1/2, we may write, tan ε ∼ ε and tan ε0 ∼ ε0. Hence,

0 < tan ε < tan10 ε0, which implies tan ε < (
√

1− k/2)10 � 1. Combining this with (18)

and using the fact that (2− k) ∼ 1, we get τ & (cot ε0)
10, a very large quantity. Meanwhile

(18) and (19) together imply,

r

ε2
∼ r0 sin ε0

[ τ 3

exp(
√

1− k τ)

]
(20)

Both r0 sin ε0 and the quantity within brackets are � 1, which implies that r � ε2. This is
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in contradiction to the initial assumption that r = ε2. Therefore, we conclude that starting

with the prescribed initial condition, r will never become equal to ε2. This ensures that

along the entire trajectory, the terms independent of r and of O(r) remain the dominant

terms in (16) and (17). Both r and ε will decrease monotonously toward their respective

zero values. Neither can the trajectory cross the curve r = ε2 nor reach the φ axis before ε

becomes zero. Thus, the trajectories in the r − ε plane must approach (0, 0) tangential to

the φ axis and slow to a halt there.

In the θ − θ1 plane, the above arguments imply that, trajectories exist which start at a

finite distance from (0, 0) and reach this point along a line of slope −
√

1− k. Also, no other

such line with a different slope exists. These facts clearly establish that (0, 0) is a stable

degenerate node (Figure 3).

(a) stable degenerate node, µ = 0.6 (b) central region magnified

FIG. 3. Phase trajectories around (0, 0) for k = 0.91 and µ = 2
√

1− k.

2. k = 1 :

Proceeding as before, (9) and (10) may be written in terms of r and φ as,

r
′

= r[cosφ sinφ− µ sin2 φ]− sinφ sin(r cosφ)[1− cos(r cosφ)] (21)

φ
′

= −µ cosφ sinφ− sin2 φ− cosφ

r
sin(r cosφ)[1− cos(r cosφ)] (22)

f(φ) is defined as,

f(φ) = lim
r→0

φ
′
= −µ cosφ sinφ− sin2 φ (23)

The phase portrait is periodic in φ with period π. The fixed points in the r− φ plane of

the form (0, φ∗) are given by,

φ∗1 = nπ and φ∗2 = nπ − tan−1 µ n = 0, 1, 2, . . . . (24)
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For − tan−1 µ < φ < 0, f(φ) > 0 whereas for 0 < φ < π−tan−1 µ, f(φ) < 0. The positive

and negative nature of f(φ) repeats periodically along the φ axis.

The Jacobian at the points (0, nπ − tan−1 µ) given by,

J(0, φ2) =

 −µ 0

0 µ

 (25)

is traceless and has a negative determinant ∆ = −µ2. So, this family of fixed points are

saddles having stable manifold along r axis and unstable manifold along φ axis.

Linear analysis of the family of fixed points (0, nπ), incorrectly predicts φ = nπ to be lines

of fixed points. Let us examine the point (0, 0) in the r − φ plane for simplicity. Consider

the condition,

0 ≤ |φ| ≤ r � min{1, µ} (26)

If (26) holds, then neglecting terms of O(r3) and smaller in (21) and (22), we may write,

r
′
= φr + η1 (27)

φ
′
= −µφ− r2

2
− φ2 + η2 (28)

where η1 ∼ φ2r and η2 ∼ φ3 or φ2r2, whichever is larger. Note that as long as (26) is

satisfied, both η1 and η2 can at most be of the order of r3.

Let us take the initial condition φ0 = 0 and 0 < r0 � 1. Then, φ
′
(t = 0) = −r20/2 and

r
′
(t = 0) = 0. Hence, φ will start decreasing and become negative. As a result, r

′
will

become negative and remain so until φ or r vanishes, provided (26) remains true. It is seen

that as long as the trajectory is above the curve φ = −r2/2µ, (26) is satisfied and both r
′

and φ
′

are negative. Therefore, the trajectory approaches and eventually crosses this curve,

where φ
′

is still negative, being of the order of φ2.

Let us consider the ‘trapping region’ in Figure 4, which shows the phase flow on the

curves φ = −r and φ = −r2/2µ. At any point on the line φ = −r for which r � min{1, µ},

φ
′

r′
= −µ

r
+O(1)

As r � µ, |φ′
/r

′| � 1. Thus the phase flow is almost vertically upward, as shown in Figure

4. Everywhere inside the region, (26) is satisfied and hence r
′
< 0 and finite. Consequently,

after entering the region at point P , the trajectory must constantly move towards left.

Again, it cannot penetrate the curves AP or AB, because other trajectories are actually
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FIG. 4. Trapping Region.

flowing inward across them. Hence, we have trapped it. Upon arrival at any point on the

arc AP , a trajectory must inevitably land up at (0, 0). Note that at any point on the line

φ = −mr, (0 < m ≤ 1),

φ
′

r′
= −mµ− (m2 + 1/2)r +O(m3r2)

mr +O(m2r2)
.

For any finite value of m, this approaches −∞ as r → 0, meaning that the phase flow is

almost vertically upward on any line of non-zero slope near (0, 0). Therefore, the trajectory

must reach (0, 0) along the r axis.

Thus, the fixed points (0, nπ) in the r−φ plane are stable nodes having slow eigenvector

along r axis and fast eigenvector along φ axis. In between these, lie the saddle points

(0, nπ − tan−1 µ) (Figure 5).

(a) stable node and saddle points (b) region near (0, 0) magnified

FIG. 5. Phase portrait in the r − φ plane.

These results from the r − φ plane mean that in the θ − θ1 plane, two trajectories exist



11

which reach (0, 0) along the line of slope −µ and all other neighbouring trajectories reach it

along the θ axis. In other words, (0, 0) is a stable node here.

(a) stable node (b) central region magnified

FIG. 6. Phase trajectories about (0, 0) in the θ − θ1 plane for k = 1 and µ = 0.5.

Figure 7a shows the nature of the fixed point at (0, 0) over the entire parameter space.

(a) (0, 0), curve is µ = 2
√

1− k (b) (±Ω1, 0), curve is µ = 2
√
k − 1/k

FIG. 7. Nature of fixed points (0, 0) and (±Ω1, 0) over the k − µ plane

IV. NATURE OF THE FIXED POINT (Ω1, 0)

This fixed point exists when k ≥ 1. Linearization of (5) and (6) gives us the Jacobian at

(Ω1, 0) as,

J(Ω1, 0) =

 0 1(
1
k
− k
)
−µ

 (29)
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For 0 ≤ µ < 2
√
k − 1

k
, (Ω1, 0) is a stable spiral with eigenvalues given by,

λ = −µ
2
± i
√

(k − 1

k
)− µ2

4

Trajectories spiral in with an angular frequency ν ≈
√

(k − 1/k)− µ2/4, while their radial

distance decreases as e−µt/2. As µ → 0, this decay rate vanishes and (Ω1, 0) turns into a

center (Figure 8). Also, ν vanishes as µ → 2
√
k − 1/k

−
, representing a smooth transition

to a stable node, similar to the behaviour of the fixed point (0, 0). When µ > 2
√
k − 1

k
,

(a) center, µ = 0 (b) stable spiral, µ = 0.1

FIG. 8. Phase trajectories around (0, 0) for k = 1.1 and 0 ≤ µ < 2
√
k − 1

k .

Γ2 − 4∆ > 0, hence (Ω1, 0) is a stable node (Figure 9), with eigenvalues and eigenvectors

given by,

λ1,2 =
−µ± ξ3

2
, v1,2 =

 1

(−µ± ξ3)/2

 ,

where ξ3 =
√
µ2 − 4(k − 1/k). Both λ1 and λ2 approach the value −

√
k − 1/k as µ →

2
√
k − 1/k

+
, indicating a stable degenerate node. For µ = 2

√
k − 1

k
, Γ2 − 4∆ = 0. In the

linear stability analysis, (Ω1, 0) is a stable degenerate node with a single eigenvector,

v =

 1

−
√
k − 1/k

 , (30)

corresponding to the eigenvalue λ = −
√
k − 1/k. However, degenerate nodes can be trans-

formed into stable nodes or stable spirals due to perturbation introduced by nonlinear terms.
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(a) stable node, µ = 1 (b) stable node, µ = 2.5

FIG. 9. Phase trajectories around (0, 0) for k = 1.1 and µ > 2
√
k − 1

k .

A. Nature of (Ω1, 0) with nonlinearities

As discussed in subsection III A, (5) and (6) may be transformed to equations in r and

and φ with the substitutions, θ − Ω1 = r cosφ and θ1 = r sinφ. Define,

f(φ) = lim
r→0

φ
′
= −

√
k − 1

k
sin(2φ)− 1

2
(k − 1

k
− 1) cos(2φ)− 1

2
(k − 1

k
+ 1) (31)

f(φ) is negative at all points on the φ axis except at the fixed points given by (0, φ∗) with

φ∗ = nπ − α, where α = tan−1
√
k − 1/k, (n = 0, 1, 2, . . . ), where it is zero. These fixed

points are separated by nπ. Then, by the same reasoning as used in III A, we can argue

that (0, 0) cannot be a stable node. The remaining possibilities are a spiral or a degenerate

node.

Let us consider the fixed point (0,−α), and let ε = φ + α. Then we may expand r
′

and

ε
′

upto O(r),

r
′
= −1

2

(
k − 1

k
+ 1
)(

sin(2α)− sin(2ε)
)
r +O(r2) (32)

ε
′
= −

(
k − 1

k
+ 1
)

sin2 ε− 3

2
r

√
1− 1

r2
cos3 α

−9

4

√
1− 1

k2
cosα sin(2α) r ε+O(r2) (33)

We choose an initial point, (r0, ε0), and 0 < r0 � ε0 < min{1, α}. This choice ensures

that both r and ε will start decreasing. In the course of this monotonic decay, r cannot

reach zero before ε becomes zero, as there is a straight line trajectory moving downward
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along the φ axis. From (32) and (33) we note that r
′

and ε
′

each contains an ε independent

term of O(r). Therefore, as r and ε decrease toward their respective zero values, the 1st

order approximation gets even better. However, if at some stage, ε ∼ r, then the O(r2)

terms would contribute on the same scale as some of the terms of O(rε) in (32) and (33).

But the following argument rules out such a possibility.

Let us consider a specific case and choose r0 = ε200 . If ε is to become O(r), at some stage,

we must have r = ε2. However, for r = ε2, we have

r
′
= −

√
k − 1

k
ε2 +O(ε3)

ε
′
= −

(k − 1

k
+ 1) +

3

2

√
1− 1

k2

(k − 1
k

+ 1)
3
2

 ε2 +O(ε3)

whereas along the curve r = ε2, dr/dε = 2ε. Therefore, for a given value of k > 1, we can

always select an ε0, sufficiently small, for which, at all points on the curve r = ε2 contained

between ε = 0 and ε = ε0, the ratio r
′
/ε

′
> dr/dε. This would guarantee that the trajectory

cannot penetrate down this curve, which means that ε cannot reach zero before r does. Thus,

for a suitable choice of initial conditions, the trajectory must slow to a halt at (r = 0, ε = 0).

In the θ − θ1 plane, this means that there exist trajectories which start at a finite distance

from (Ω1, 0) and reach it along the line of slope −α. Also, there is no other such line with a

different slope. Hence, (Ω1, 0) is a stable degenerate node (Figure 10). Figure 7b gives the

(a) stable degenerate node (b) region around (Ω1, 0) magnified

FIG. 10. Phase trajectories for k = 1.1 and µ = 2
√
k − 1

k .

nature of the fixed point at (±Ω1, 0) in different parts of the parameter space.
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V. NATURE OF THE FIXED POINT (π, 0)

The Jacobian matrix at (π,0) is given as,

J(π, 0) =

 0 1

k + 1 −µ

 . (34)

The fixed point is a saddle for all values of k and remains so even with the inclusion of

nonlinear terms. The eigenvalues and corresponding eigenvectors are given by,

λ1,2 =
−µ± ξ2

2
, v1,2 =

 1

(−µ± ξ2)/2

 ,

where ξ2 =
√
µ2 + 4(k + 1).

A. Trajectories

Damping of the bead leads to some qualitatively different trajectories in addition to

those observed for the frictionless case11. These are mainly the different kinds of damped

oscillations (underdamped, critically damped, overdamped) about the stable equilibrium

points. Some of these are illustrated with the following numerical plots.

(a) k = 0.75, µ = 0.05, θ
′
(0) = 0 (b) k = 4, µ = 0.5, θ

′
(0) = 0

FIG. 11. Underdamped oscillation about (a) θ = 0 and (b) θ = Ω1.

VI. PHASE PORTRAITS AND BIFURCATION

For 0 ≤ k < 1, the fixed point at (0, 0) transforms its nature as the damping coefficient

is varied. It is a center at µ = 0, as µ increases, it becomes a stable spiral. At µ = 2
√

1− k,
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(a) k = 0.75, µ = 1.5, θ
′
(0) = 0 (b) k = 4, µ = 4, θ

′
(0) = 0

FIG. 12. Overdamped oscillation about (a) θ = 0 (b) θ = Ω1.

it turns into a stable degenerate node. It makes a smooth transition to a stable node as

damping is increased further. Thus, a spiral-node bifurcation takes place at this critical

condition (Figures 2 and 3). Physically, as damping is gradually increased from 0, the

system undergoes a continuous transition from undamped oscillations of the bead about

θ = 0 (center), to underdamped oscillations (stable spiral). At µ = 2
√

1− k, the system is

critically damped (degenerate node) and becomes overdamped (stable node) as µ is increased

further.

(a) unstable spiral, µ = −1 (b) center, µ = 0 (c) stable spiral, µ = 1

FIG. 13. Phase portraits for k = 0 showing degenerate Hopf bifurcation.

For negative damping, (0, 0) becomes an unstable spiral and changes to an unstable node

as µ is made more negative. Consequently, as one crosses µ = 0, the fixed point (0, 0),

undergoes a degenerate Hopf bifurcation (Figure 13).

With increase in the angular speed of the hoop (i.e., k), the stability of the origin degrades

continuously. When k = 1, (0, 0) is a weak center. A special case of Hopf bifurcation occurs,

when µ is swept from negative to positive values acroos 0, keeping k fixed at 1 (Figure 14).
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As k is increased beyond 1, (0, 0) transforms from a stable (µ > 0) or unstable (µ < 0)

node to a saddle. Two new stable nodes appear at ±Ω1 = ± cos−1(1/k) and branch out in

opposite directions. Thus, a supercritical pitchfork bifurcation occurs at {k = 1} (Figure

15a).

(a) unstable node, µ = −0.2 (b) stable node, µ = 0.2

FIG. 14. Phase portraits for k = 1.

(a) Supercritical bifurcation at k = 1, µ = 0 (b) Supercritical bifurcation at k = 1, µ =
√

2

FIG. 15. Section of the bifurcation diagram for (a) µ = 0 and (b) µ > 0. In (a) solid curve represents

center, dashed curve represents saddle. In (b) solid curve represents stable node, densely dashed

curve represents saddle and sparsely dashed curve represents stable spiral. Supercritical pitchfork

bifurcation occurs at k = 1 and spiral-node bifurcation occurs at k = 0.5 and k = 1.28.

As k increases from 1 to ∞, Ω1 varies from 0 to π/2. The fixed point (Ω1, 0), is a

center for zero damping, a stable spiral in the region 0 < µ < 2
√
k − 1/k (underdamped

oscillation), and becomes a stable degenerate node at critical damping µ = 2
√
k − 1/k. For

the overdamped condition µ > 2
√
k − 1/k, it is a stable node.
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For negative damping, we get just the unstable counterparts. Accordingly, a spiral-node

bifurcation is observed at µ = ±2
√
k − 1/k (Figures 8, 9, 10 and 15)b. A degenerate Hopf

bifurcation is observed for k > 1 and µ = 0 (Figure 16). The fixed points (±π, 0) are saddles

(a) unstable spiral, µ = −1 (b) center, µ = 0 (c) stable spiral, µ = 1

FIG. 16. Phase portraits for k = 4 showing degenerate Hopf bifurcation.

for all values of k. They have saddle connections between them at µ = 0, which break in

opposite directions for positive and negative damping.

The above observations are summarized in Figure 17 and Table I below.

FIG. 17. The bifurcation diagram

In Fig 17, red denotes stable node, green denotes stable spiral, blue denotes unstable

spiral, yellow denotes unstable node, brown denotes saddle, pink denotes center, gray denotes

unstable degenerate node, and black denotes stable degenerate node.

Up to now, we have limited attention to those bifurcations resulting from a variation of k

or a variation of µ. From Figure 17, we see that the curves µ2 = 2(1− k), µ2 = 2(k − 1/k),

and k = 1 divide the parameter space into 8 distinct regions of different dynamics. All these
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TABLE I. Bifurcation Table.

Points in parameter space Bifurcation along k Bifurcation along µ Figure references

1) (k, 0) ; k 6= 1 – degenerate Hopf Figures 13, 16

2) (k,±2
√

1− k) ; 0 ≤ k < 1 spiral-node spiral-node Figures 2-3, 15b

3) (1, 0) supercritical pitchfork Hopf Figures 13b, 8a, 14 , 15a

4) (1, µ) ; µ 6= 0 supercritical pitchfork – Figures 2b, 9a, 14b, 15b

5) (k,±2
√
k − 1

k ) ; k > 1 spiral-node spiral-node Figures 8-10, 15b

regions meet at the point {k = 1, µ = 0}. Traversing suitable curves in k − µ space, one

can move from any one region to another, yielding new kinds of bifurcation. Following such

a curve amounts to keeping a certain function α(k, µ) constant, while varying some other

function β(k, µ). Mathematically, the possibilities are rich. But whether it is possible to

actually implement this in the bead-hoop system is subject to further inquiry. However, this

would attain physical significance if there exists another system where α and β themselves

are the control parameters.

CONCLUDING REMARKS

The simple introduction of damping to the bead-hoop system enriches its dynamics and

leads to various new modes of motion and different classes of bifurcations. We have studied

this system over the entire parameter space and presented phase portraits and trajectories.

This serves to illustrate the qualitative changes in the system’s dynamics across different bi-

furcation curves. We have presented exact analytical treatment of the borderline cases where

linearization fails, for which no general methods are available in the literature. The method

of transforming to polar coordinates and using order of magnitude arguments, employed in

this article, can serve as a useful technique for other dynamical systems as well.
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